Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Short sleep duration and cardiometabolic risk: from pathophysiology to clinical evidence

Abstract

Short sleep duration has a substantial influence on the overall health of an individual. Short sleep time can be a consequence of lifestyle habits, environmental factors, or the presence of a sleep disorder, such as insomnia or sleep-disordered breathing. Short sleep time is associated with increased morbidity and mortality, mainly from cardiovascular disorders (including coronary artery disease, arrhythmias, and hypertension). Several biological mechanisms have been proposed as a possible link between short sleep duration and these diseases, such as involvement of the autonomic nervous system, endothelial function, metabolic regulation, inflammation, and the coagulation system. In this Review, we provide an overview on the effects of short sleep duration on cardiovascular health and diseases and discuss the main pathophysiological mechanisms involved, taking into account both experimental data and clinical evidence.

Key points

  • Regardless of the underlying cause, short duration of sleep seems to be associated with increased morbidity and mortality.

  • Experimental data show that sleep deprivation causes important alterations in several intermediate biological mechanisms, such as the autonomic nervous system, endothelial function, insulin and glucose regulation, inflammation, and coagulation.

  • Although a causal relationship between short sleep duration and cardiovascular risk is not confirmed, most of the data indicate a strong link between short sleep times and diabetes mellitus, obesity, and cardiovascular disorders.

  • Physicians should consider sleep to be a modifiable risk factor for health status, with particular relevance to cardiovascular and metabolic disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathophysiological pathways linking short sleep duration and risk of cardiovascular disease.
Fig. 2: Autonomic nervous system and short sleep duration.
Fig. 3: General effects of short sleep duration on different organs and systems.

Similar content being viewed by others

References

  1. Watson, N. et al. Recommended amount of sleep for a healthy adult: a joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society. J. Clin. Sleep Med. 11, 931–952 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hirshkowitz, M. et al. National Sleep Foundation’s updated sleep duration recommendations: final report. Sleep Heal. 1, 233–243 (2015).

    Article  Google Scholar 

  3. Liu, Y. et al. Prevalence of healthy sleep duration among adults — United States, 2014. MMWR Morb. Mortal. Wkly Rep. 65, 137–141 (2016).

    Article  PubMed  Google Scholar 

  4. Grandner, M. A., Patel, N. P., Gehrman, P. R., Perlis, M. L. & Pack, A. I. Problems associated with short sleep: bridging the gap between laboratory and epidemiological studies. Sleep Med. Rev. 14, 239–247 (2010).

    Article  PubMed  Google Scholar 

  5. Wheaton, A. G., Jones, S. E., Cooper, A. C. & Croft, J. B. Short sleep duration among middle school and high school students — United States, 2015. MMWR Morb. Mortal. Wkly Rep. 67, 85–90 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schutte-rodin, S. et al. Clinical guideline for the evaluation and management of chronic insomnia in adults. J. Clin. Sleep Med. 4, 487–504 (2008).

    PubMed  PubMed Central  Google Scholar 

  7. Young, T. et al. The occurrence of sleep-disordered breathing among middle-aged adults. N. Engl. J. Med. 328, 1230–1235 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Peppard, P. E. et al. Increased prevalence of sleep-disordered breathing in adults. Am. J. Epidemiol. 177, 1006–1014 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Heinzer, R. et al. Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respir. Med. 3, 310–318 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chin, K. et al. Associations between obstructive sleep apnea, metabolic syndrome, and sleep duration, as measured with an actigraph, in an urban male working population in Japan. Sleep 33, 89–95 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vgontzas, A. N. et al. Insomnia with short sleep duration and mortality: the Penn State cohort. Hypertension 33, 1159–1164 (2010).

    Google Scholar 

  12. Vgontzas, A. N., Fernandez-Mendoza, J., Liao, D. & Bixler, E. O. Insomnia with objective short sleep duration: the most biologically severe phenotype of the disorder. Sleep Med. Rev. 17, 241–254 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ren, R. et al. Objective but not subjective short sleep duration is associated with hypertension in obstructive sleep apnea. Hypertension 72, 610–617 (2018).

    Article  CAS  Google Scholar 

  14. Priou, P. et al. Cumulative association of obstructive sleep apnea severity and short sleep duration with the risk for hypertension. PLOS ONE 9, 1–12 (2014).

    Article  CAS  Google Scholar 

  15. Tobaldini, E. et al. Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases. Neurosci. Biobehav. Rev. 74, 321–329 (2017).

    Article  PubMed  Google Scholar 

  16. Li, X. et al. U-shaped relationships between sleep duration and metabolic syndrome and metabolic syndrome components in males: a prospective cohort study. Sleep Med. 16, 949–954 (2015).

    Article  PubMed  Google Scholar 

  17. Kim, J. Y. et al. A prospective study of total sleep duration and incident metabolic syndrome: the ARIRANG study. Sleep Med. 16, 1511–1515 (2015).

    Article  PubMed  Google Scholar 

  18. Gottlieb, D. J. et al. Association of sleep time with diabetes mellitus and impaired glucose tolerance. Arch. Intern. Med. 165, 863–867 (2005).

    Article  PubMed  Google Scholar 

  19. Wu, Y., Zhai, L. & Zhang, D. Sleep duration and obesity among adults: a meta-analysis of prospective studies. Sleep Med. 15, 1456–1462 (2014).

    Article  PubMed  Google Scholar 

  20. Sabanayagam, C. & Shankar, A. Sleep duration and cardiovascular disease: results from the National Health Interview Survey. Sleep 33, 1037–1042 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sauvet, F. et al. Effect of acute sleep deprivation on vascular function in healthy subjects. J. Appl. Physiol. 108, 68–75 (2010).

    Article  PubMed  Google Scholar 

  22. Tobaldini, E. et al. One night on-call: sleep deprivation affects cardiac autonomic control and inflammation in physicians. Eur. J. Intern. Med. 24, 664–670 (2013).

    Article  PubMed  Google Scholar 

  23. Zhong, X. et al. Increased sympathetic and decreased parasympathetic cardiovascular modulation in normal humans with acute sleep deprivation. J. Appl. Physiol. 98, 2024–2032 (2005).

    Article  PubMed  Google Scholar 

  24. Dettoni, J. L. et al. Cardiovascular effects of partial sleep deprivation in healthy volunteers. J. Appl. Physiol. 113, 232–236 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Takase, B. et al. Effects of chronic sleep deprivation on autonomic activity by examining heart rate variability, plasma catecholamine, and intracellular magnesium levels. Biomed. Pharmacother. 58, 35–39 (2004).

    Article  Google Scholar 

  26. Grimaldi, D., Carter, J. R., Van Cauter, E. & Leproult, R. Adverse impact of sleep restriction and circadian misalignment on autonomic function in healthy young adults. Hypertension 68, 243–250 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Spiegel, K., Leproult, R. & Van Cauter, E. Impact of sleep debt on metabolic and endocrine function. Lancet 354, 1435–1439 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Neufeld, E. V., Carney, J. J., Dolezal, B. A., Boland, D. M. & Cooper, C. B. Exploratory study of heart rate variability and sleep among emergency medical services shift workers. Prehospital Emerg. Care 21, 18–23 (2017).

    Google Scholar 

  29. Chung, M. et al. Recovery after three-shift work: relation to sleep-related cardiac neuronal regulation in nurses. Ind. Health 1, 24–30 (2012).

    Article  Google Scholar 

  30. Su, T. C. et al. Elevated blood pressure, decreased heart rate variability and incomplete blood pressure recovery after a 12-hour night shift work. J. Occup. Health 50, 380–386 (2008).

    Article  PubMed  Google Scholar 

  31. Yamasaki, F., Schwartz, J. E., Gerber, L. M., Warren, K. & Pickering, T. G. Impact of shift work and race/ethnicity on the diurnal rhythm of blood pressure and catecholamines. Hypertension 32, 417–423 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Irwin, M. R. Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation. Arch. Intern. Med. 166, 1756 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Irwin, M. R., Witarama, T., Caudill, M., Olmstead, R. & Breen, E. C. Sleep loss activates cellular inflammation and signal transducer and activator of transcription (STAT) family proteins in humans. Brain. Behav. Immun. 47, 86–92 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Sauvet, F. et al. Vascular response to 1 week of sleep restriction in healthy subjects. A metabolic response? Int. J. Cardiol. 190, 246–255 (2015).

    Article  PubMed  Google Scholar 

  35. Vgontzas, A. N. et al. Circadian interleukin-6 secretion and quantity and depth of sleep. J. Clin. Endocrinol. Metab. 84, 2603–2607 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Meier-Ewert, H. K. et al. Effect of sleep loss on C-Reactive protein, an inflammatory marker of cardiovascular risk. J. Am. Coll. Cardiol. 43, 678–683 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. van Leeuwen, W. M. A. et al. Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP. PLOS ONE 4, e4589 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ferrie, J. E. et al. Associations between change in sleep duration and inflammation: findings on C-reactive protein and interleukin 6 in the Whitehall II study. Am. J. Epidemiol. 178, 956–961 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Miller, M. a et al. Gender differences in the cross-sectional relationships between sleep duration and markers of inflammation: Whitehall II study. Sleep 32, 857–864 (2009).

    PubMed  PubMed Central  Google Scholar 

  40. Faraut, B., Boudjeltia, K. Z., Vanhamme, L. & Kerkhofs, M. Immune, inflammatory and cardiovascular consequences of sleep restriction and recovery. Sleep Med. Rev. 16, 137–149 (2012).

    Article  PubMed  Google Scholar 

  41. Boudjeltia, K. et al. Temporal dissociation between myeloperoxidase (MPO)-modified LDL and MPO elevations during chronic sleep restriction and recovery in healthy young men. PLOS ONE 6, e28230 (2011).

    Article  PubMed  CAS  Google Scholar 

  42. Weil, B. R. et al. Short sleep duration is associated with enhanced endothelin-1 vasoconstrictor tone. Can. J. Physiol. Pharmacol. 88, 777–781 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Nakazaki, C. et al. Association of insomnia and short sleep duration with atherosclerosis risk in the elderly. Am. J. Hypertens. 25, 1149–1155 (2012).

    Article  PubMed  Google Scholar 

  44. Matthews, K. A., Dahl, R. E., Owens, J. F., Lee, L. & Hall, M. Sleep duration and insulin resistance in healthy black and white adolescents. Sleep 35, 1353–1358 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rodrigues, De. Bernardi A. M. et al. Association of sleep deprivation with reduction in insulin sensitivity as assessed by the hyperglycemic clamp technique in adolescents. JAMA Pediatr. 170, 487–494 (2016).

    Article  Google Scholar 

  46. Reynolds, A. C. et al. Impact of five nights of sleep restriction on glucose metabolism, leptin and testosterone in young adult men. PLOS ONE 7, e41218 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Donga, E. et al. Partial sleep restriction decreases insulin sensitivity in type 1 diabetes. Diabetes Care 33, 1573–1577 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Francesco, T., Peverini, F., De Benedetto, M. & De Nuccio, F. Obstructive sleep apnea syndrome: blood viscosity, blood coagulation abnormalities, and early atherosclerosis. Lung 191, 1–7 (2013).

    Article  CAS  Google Scholar 

  49. Robinson, G. V., Pepperell, J. C. T., Segal, H. C., Davies, R. J. O. & Stradling, J. R. Circulating cardiovascular risk factors in obstructive sleep apnoea: data from randomised controlled trials. Thorax 59, 777–783 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kondo, Y. et al. Significant relationship between platelet activation and apnea-hypopnea index in patients with obstructive sleep apnea syndrome. Tokai J. Exp. Clin. Med. 36, 79–83 (2011).

    PubMed  Google Scholar 

  51. Von Känel, R. et al. Association between polysomnographic measures of disrupted sleep and prothrombotic factors. Chest 131, 733–739 (2007).

    Article  Google Scholar 

  52. Libby, P. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr. 83, 456–460 (2006).

    Article  Google Scholar 

  53. Visser, M., Bouter, L. M., Mcquillan, G. M., Wener, M. H. & Harris, T. B. Elevated C-reactive protein levels in overweight and obese adults. JAMA 282, 2131–2135 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Danesh, J. et al. Fibrin D-dimer and coronary heart disease prospective study and meta-analysis. Circulation 103, 2323–2327 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Kim, H. C. et al. Multimarker prediction of coronary heart disease risk. J. Am. Coll. Cardiol. 55, 2080–2091 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Münzel, T. et al. Impact of oxidative stress on the heart and vasculature: Part 2 of a 3-Part series. J. Am. Coll. Cardiol. 70, 212–229 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Itani, O., Jike, M., Watanabe, N. & Kaneita, Y. Short sleep duration and health outcomes: a systematic review, meta-analysis, and meta-regression. Sleep Med. 32, 246–256 (2017).

    Article  PubMed  Google Scholar 

  58. Chien, K.-L. et al. Habitual sleep duration and insomnia and the risk of cardiovascular events and all-cause death: report from a community-based cohort. Sleep 33, 177–184 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Campanini, M. Z. et al. Agreement between sleep diary and actigraphy in a highly educated Brazilian population. Sleep Med. 35, 27–34 (2017).

    Article  PubMed  Google Scholar 

  60. Lockley, S. W., Skene, D. J. & Arendt, J. Comparison between subjective and actigraphic measurement of sleep and sleep rhythms. J. Sleep Res. 8, 175–183 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Arora, T., Broglia, E., Pushpakumar, D., Lodhi, T. & Taheri, S. An investigation into the strength of the association and agreement levels between subjective and objective sleep duration in adolescents. PLOS ONE 8, 1–6 (2013).

    Google Scholar 

  62. Girschik, J., Fritschi, L., Heyworth, J. & Waters, F. Validation of self-reported sleep against actigraphy. J. Epidemiol. 22, 462–468 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ross, R. Atherosclerosis — An inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Willerson, J. T. Inflammation as a cardiovascular risk factor. Circulation 109, II2–10 (2004).

    PubMed  Google Scholar 

  65. Vgontzas, A. N. et al. Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. J. Clin. Endocrinol. Metab. 89, 2119–2126 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Orshal, J. M. & Khalil, R. a. Interleukin-6 impairs endothelium-dependent NO-cGMP-mediated relaxation and enhances contraction in systemic vessels of pregnant rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R1013–R1023 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Gangwisch, J. E. et al. Short sleep duration as a risk factor for hypertension: analyses of the first National Health and Nutrition Examination survey. Hypertension 47, 833–839 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Cappuccio, F. P. et al. Gender-specific associations of short sleep duration with the Whitehall II study. Hypertension 50, 693–700 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Knutson, K. L. et al. Association between sleep and blood pressure in midlife. Arch. Intern. Med. 169, 1055 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ridker, P. M. C-reactive protein and the prediction of cardiovascular events among those at intermediate risk moving an inflammatory hypothesis toward consensus. J. Am. Coll. Cardiol. 49, 2129–2138 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Albert, C. M., Ma, J., Rifai, N., Stampfer, M. J. & Ridker, P. M. Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. Circulation 105, 2595–2599 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Danesh, J. et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N. Engl. J. Med. 350, 1387–1397 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Calvin, A. D. et al. Experimental sleep restriction causes endothelial dysfunction in healthy humans. J. Am. Heart Assoc. 3, 1–7 (2014).

    Article  Google Scholar 

  74. Pongratz, G. & Straub, R. H. The sympathetic nervous response in inflammation. Arthritis Res. Ther. 16, 1–12 (2014).

    Article  CAS  Google Scholar 

  75. Podrez, E. A., Schmitt, D., Hoff, H. F. & Hazen, S. L. Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J. Clin. Invest. 103, 1547–1560 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. van Leeuwen, W. M. A. et al. Prolonged sleep restriction affects glucose metabolism in healthy young men. Int. J. Endocrinol. 2010, 108641 (2010).

    PubMed  PubMed Central  Google Scholar 

  77. Paneni, F., Diaz Cañestro, C., Libby, P., Lüscher, T. F. & Camici, G. G. The aging cardiovascular system: understanding it at the cellular and clinical levels. J. Am. Coll. Cardiol. 69, 1952–1967 (2017).

    Article  PubMed  Google Scholar 

  78. Miller, M. A., Kandala, N., Kumari, M., Marmot, M. G. & Cappuccio, F. P. Clinical and population studies relationships between sleep duration and von Willebrand factor, factor vii, and fibrinogen Whitehall II study. Arter. Thromb. Vasc. Biol. 30, 2032–2039 (2010).

    Article  CAS  Google Scholar 

  79. Tosur, Z. et al. The association between sleep characteristics and prothrombotic markers in a population based sample: Chicago area sleep study. Sleep Med. 15, 973–978 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chouchou, F. et al. Sympathetic overactivity due to sleep fragmentation is associated with elevated diurnal systolic blood pressure in healthy elderly subjects: the PROOF-SYNAPSE study. Eur. Heart J. 34, 2122–2131 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Muenter, N. K. et al. Effect of sleep restriction on orthostatic cardiovascular control in humans. J. Appl. Physiol. 88, 966–972 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Sforza, E. et al. Heart rate activation during spontaneous arousals from sleep: effect of sleep deprivation. Clin. Neurophysiol. 115, 2442–2451 (2004).

    Article  PubMed  Google Scholar 

  83. Malliani, A. & Montano, N. Emerging excitatory role of cardiovascular sympathetic afferents in pathophysiological conditions. Hypertension 39, 63–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Shen, M. J. & Zipes, D. P. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ. Res. 114, 1004–1021 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Agarwal, S. K. et al. Cardiac autonomic dysfunction and incidence of atrial fibrillation in a large population-based cohort. J. Am. Coll. Cardiol. 69, 291–299 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Meredith, I. T., Broughton, A., Jennings, G. L. & Esler, M. D. Evidence of a selective increase in cardiac sympathetic activity in patients with sustained ventricular arrhythmias. N. Engl. J. Med. 325, 618–624 (1991).

    Article  CAS  PubMed  Google Scholar 

  87. Mancia, G. & Grassi, G. The autonomic nervous system and hypertension. Circ. Res. 114, 1804–1814 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Airaksinen, K. E., Ikaheimo, M. J., Linnaluoto, M. K., Niemela, M. & Takkunen, J. T. Impaired vagal heart rate control in coronary artery disease. Heart 58, 592–597 (1987).

    Article  CAS  Google Scholar 

  89. Kochiadakis, G. E. et al. Autonomic nervous system activity before and during episodes of myocardial ischemia in patients with stable coronary artery disease during daily life. Pacing Clin. Electrophysiol. 23, 2030–2039 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Huikuri, H. V. et al. Heart rate variability and progression of coronary atherosclerosis. Arter. Thromb. Vasc. Biol. 19, 1979–1985 (1999).

    Article  CAS  Google Scholar 

  91. van Bilsen, M. et al. The autonomic nervous system as a therapeutic target in heart failure: a scientific position statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur. J. Hear. Fail. 19, 1361–1378 (2017).

    Article  Google Scholar 

  92. Floras, J. S. & Ponikowski, P. The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur. Heart J. 36, 1974–1982 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang, Y. et al. Chronic sleep fragmentation promotes obesity in young adult mice. Obesity 22, 758–762 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Tracey, K. J. The inflammatory reflex. Nature 420, 853–859 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Itani, O., Kaneita, Y., Murata, A., Yokoyama, E. & Ohida, T. Association of onset of obesity with sleep duration and shift work among Japanese adults. Sleep Med. 12, 341–345 (2011).

    Article  PubMed  Google Scholar 

  96. Cassidy, S., Chau, J. Y., Catt, M., Bauman, A. & Trenell, M. I. Cross-sectional study of diet, physical activity, television viewing and sleep duration in 233 110 adults from the UK Biobank; the behavioural phenotype of cardiovascular disease and type 2 diabetes. BMJ Open 6, e010038 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Venancio, D. P. & Suchecki, D. Prolonged REM sleep restriction induces metabolic syndrome-related changes: mediation by pro-inflammatory cytokines. Brain Behav. Immun. 47, 109–117 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Moraes, D. A., Venancio, D. P. & Suchecki, D. Sleep deprivation alters energy homeostasis through non-compensatory alterations in hypothalamic insulin receptors in Wistar rats. Horm. Behav. 66, 705–712 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Zhan, S. et al. Decrease in circulating fatty acids is associated with islet dysfunction in chronically sleep-restricted rats. Int. J. Mol. Sci. 17, 2102 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  100. Jha, P. K., Foppen, E., Kalsbeek, A. & Challet, E. Sleep restriction acutely impairs glucose tolerance in rats. Physiol. Rep. 4, e12839 (2016).

    Google Scholar 

  101. Spiegel, K., Tasali, E., Penev, P. & Van Cauter, E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann. Intern. Med. 141, 846–850 (2004).

    Article  PubMed  Google Scholar 

  102. Broussard, J. L. et al. Insulin access to skeletal muscle is impaired during the early stages of diet-induced obesity. Obesity 24, 1922–1928 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Chapman, C. D. et al. Acute sleep deprivation increases food purchasing in men. Obesity 21, E555–E560 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. St-Onge, M.-P., O’Keeffe, M., Roberts, A. L., RoyChoudhury, A. & Laferrere, B. Short sleep duration, glucose dysregulation and hormonal regulation of appetite in men and women. Sleep 35, 1503–1510 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Markwald, R. R. et al. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc. Natl Acad. Sci. USA 110, 5695–5700 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. de Oliveira, E. M. et al. Serum amyloid A production is triggered by sleep deprivation in mice and humans: is that the link between sleep loss and associated comorbidities? Nutrients 9, E311 (2017).

    Article  PubMed  CAS  Google Scholar 

  107. DePorter, D. P., Coborn, J. E. & Teske, J. A. Partial sleep deprivation reduces the efficacy of orexin-A to stimulate physical activity and energy expenditure. Obesity 25, 1716–1722 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Parrish, J. B. & Teske, J. A. Acute partial sleep deprivation due to environmental noise increases weight gain by reducing energy expenditure in rodents. Obesity 25, 141–146 (2017).

    Article  PubMed  Google Scholar 

  109. de Oliveira, E. M. et al. Late effects of sleep restriction: potentiating weight gain and insulin resistance arising from a high-fat diet in mice. Obesity 23, 391–398 (2015).

    Article  PubMed  CAS  Google Scholar 

  110. Zhang, S. X. L. et al. Sleep fragmentation promotes NADPH oxidase 2-mediated adipose tissue inflammation leading to insulin resistance in mice. Int. J. Obes. 38, 619–624 (2014).

    Article  CAS  Google Scholar 

  111. Weyer, C. et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 86, 1930–1935 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Simpson, N. S., Banks, S., Arroyo, S. & Dinges, D. F. Effects of sleep restriction on adiponectin levels in healthy men and women. Physiol. Rep. 101, 693–698 (2010).

    CAS  Google Scholar 

  114. Nilsson, P. M., Rööst, M., Engström, G., Hedblad, B. & Berglund, G. Incidence of diabetes in middle-aged men is related to sleep disturbances. Diabetes Care 27, 2464–2469 (2004).

    Article  PubMed  Google Scholar 

  115. Tasali, E., Leproult, R., Ehrmann, D. A. & Van Cauter, E. Slow-wave sleep and the risk of type 2 diabetes in humans. Proc. Natl Acad. Sci. USA 105, 1044–1049 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Benedict, C., Barclay, J. L., Ott, V., Oster, H. & Hallschmid, M. Acute sleep deprivation delays the glucagon-like peptide 1 peak response to breakfast in healthy men. Nutr. Diabetes 3, e78 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Aho, V. et al. Prolonged sleep restriction induces changes in pathways involved in cholesterol metabolism and inflammatory responses. Sci. Rep. 6, 24828 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. O’Keeffe, M., Roberts, A. L., Kelleman, M., RoyChoudhury, A. & St-Onge, M.-P. No effects of short-term sleep restriction, in a controlled feeding setting, on lipid profiles in normal weight adults. J. Sleep Res. 22 (2013).

  119. Skuladottir, G. V., Nilsson, E. K., Mwinyi, J. & Schioth, H. B. One-night sleep deprivation induces changes in the DNA methylation and serum activity indices of stearoyl-CoA desaturase in young healthy men. Lipids Health Dis. 15, 137 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Broussard, J. L. et al. Sleep restriction increases free fatty acids in healthy men. Diabetologia 58, 791–798 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Riggs, D. W., Yeager, R. A. & Bhatnagar, A. An omics approach for assessing the environmental risk of cardiovascular disease. Circ. Res. 122, 1259–1275 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cappuccio, F. P., Cooper, D., D.’Elia, L., Strazzullo, P. & Miller, M. A. Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Eur. Heart J. 32, 1484–1492 (2011).

    Article  PubMed  Google Scholar 

  123. Ikehara, S. et al. Association of sleep duration with mortality from cardiovascular disease and other causes for Japanese men and women: the JACC study. Sleep 32, 295–301 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Pepin, J. L. et al. Hypertension and sleep: overview of a tight relationship. Sleep Med. Rev. 18, 509–519 (2014).

    Article  PubMed  Google Scholar 

  125. Gottlieb, D. J. et al. Association of usual sleep duration with hypertension: the Sleep Heart Health Study. Sleep 29, 1009–1014 (2006).

    Article  PubMed  Google Scholar 

  126. Guo, X. et al. Epidemiological evidence for the link between sleep duration and high blood pressure: a systematic review and meta-analysis. Sleep Med. 14, 324–332 (2013).

    Article  PubMed  Google Scholar 

  127. Wang, Q., Xi, B., Liu, M., Zhang, Y. & Fu, M. Short sleep duration is associated with hypertension risk among adults: a systematic review and meta-analysis. Hypertens. Res. 35, 1012–1018 (2012).

    Article  PubMed  Google Scholar 

  128. Wang, Y. et al. Relationship between duration of sleep and hypertension in adults: a meta-analysis. J. Clin. Sleep Med. 11, 1047–1056 (2015).

    PubMed  PubMed Central  Google Scholar 

  129. Meng, L., Zheng, Y. & Hui, R. The relationship of sleep duration and insomnia to risk of hypertension incidence: a meta-analysis of prospective cohort studies. Hypertens. Res. 36, 985–995 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Wu, X. et al. Association of self-reported sleep duration and hypertension: results of a Chinese prospective cohort study. Clin. Exp. Hypertens. 38, 514–519 (2016).

    Article  PubMed  Google Scholar 

  131. Kim, J. & Jo, I. Age-dependent association between sleep duration and hypertension in the adult Korean population. Am. J. Hypertens. 23, 1286–1291 (2010).

    Article  PubMed  Google Scholar 

  132. Fang, J. et al. Association of sleep duration and hypertension among US adults varies by age and sex. Am. J. Hypertens. 25, 335–341 (2012).

    Article  PubMed  Google Scholar 

  133. Stranges, S. et al. A population-based study of reduced sleep duration and hypertension: the strongest association may be in premenopausal women. J. Hypertens. 28, 896–902 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Javaheri, S., Storfer-Isser, A., Rosen, C. L. & Redline, S. Sleep quality and elevated blood pressure in adolescents. Circulation 118, 1034–1040 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ramos, A. R. et al. Sleep patterns and hypertension using actigraphy in the Hispanic Community Health Study/Study of Latinos. Chest 153, 87–93 (2018).

    Article  PubMed  Google Scholar 

  136. Haack, M. et al. Increasing sleep duration to lower beat-to-beat blood pressure — a pilot study. J. Sleep Res. 22, 295–304 (2013).

    Article  PubMed  Google Scholar 

  137. Acar, G. et al. Acute sleep deprivation in healthy adults is associated with a reduction in left atrial early diastolic strain rate. Sleep Breath. 17, 975–983 (2013).

    Article  PubMed  Google Scholar 

  138. Cakici, M. et al. Negative effects of acute sleep deprivation on left ventricular functions and cardiac repolarization in healthy young adults. Pacing Clin. Electrophysiol. 38, 713–722 (2015).

    Article  PubMed  Google Scholar 

  139. Ozer, O. et al. Acute sleep deprivation is associated with increased QT dispersion in healthy young adults. Pacing Clin. Electrophysiol. 31, 979–984 (2008).

    Article  PubMed  Google Scholar 

  140. Miner, S. E. S. et al. Sleep disruption is associated with increased ventricular ectopy and cardiac arrest in hospitalized adults. Sleep 39, 927–935 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Ayas, N. T. et al. A prospective study of sleep duration and coronary heart disease in women. Arch. Intern. Med. 163, 205–209 (2003).

    Article  PubMed  Google Scholar 

  142. Chandola, T., Ferrie, J. E., Perski, A., Akbaraly, T. & Marmot, M. G. The effect of short sleep duration on coronary heart disease risk is greatest among those with sleep disturbance: a prospective study from the Whitehall II cohort. Sleep 33, 739–744 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Liu, Y., Wheaton, A. G., Chapman, D. P. & Croft, J. B. Sleep duration and chronic diseases among US adults age 45 years and older: evidence from the 2010 Behavioral Risk Factor Surveillance System. Sleep 36, 1421–1427 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  144. King, C. R. et al. Short sleep duration and incident coronary artery calcification. JAMA 300, 2859–2866 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Barger, L. K. et al. Short sleep duration, obstructive sleep apnea, shiftwork, and the risk of adverse cardiovascular events in patients after an acute coronary syndrome. J. Am. Heart Assoc. 6, e006959 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  146. McHill, A. W. & Wright, K. P. J. Role of sleep and circadian disruption on energy expenditure and in metabolic predisposition to human obesity and metabolic disease. Obes. Rev. 18 (Suppl. 1), 15–24 (2017).

    Article  PubMed  Google Scholar 

  147. Rafalson, L., Donahue, R. P. & Trevisan, M. Short sleep duration is associated with the development of impaired fasting glucose: the Western New York Health study. Ann. Epidemiol. 20, 883–889 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Spiegel, K., Tasali, E., Leproult, R. & Van Cauter, E. Effects of poor and short sleep on glucose metabolism and obesity risk. Nat. Rev. Endocrinol. 5, 253–261 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cohen, D. A. et al. Uncovering residual effects of chronic sleep loss on human performance. Sci. Transl. Med. 2, 14ra3 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Buxton, O. M. et al. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci. Transl. Med. 4, 129ra43 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Broussard, J. L., Ehrmann, D. A., Van Cauter, E., Tasali, E. & Brady, M. J. Impaired insulin signaling in human adipocytes after experimental sleep restriction: a randomized, crossover study. Ann. Intern. Med. 157, 549–557 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Cappuccio, F. P. & Miller, M. A. Sleep and cardio-metabolic disease. Curr. Cardiol. Rep. 19, 110 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Al Khatib, H. K., Harding, S. V., Darzi, J. & Pot, G. K. The effects of partial sleep deprivation on energy balance: a systematic review and meta-analysis. Eur. J. Clin. Nutr. 71, 614–624 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Nuyujukian, D. S. et al. Sleep duration and diabetes risk in American Indian and Alaska Native participants of a lifestyle intervention project. Sleep 39, 1919–1926 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Heianza, Y. et al. Role of sleep duration as a risk factor for Type 2 diabetes among adults of different ages in Japan: the Niigata Wellness study. Diabet. Med. 31, 1363–1367 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Beihl, D. A., Liese, A. D. & Haffner, S. M. Sleep duration as a risk factor for incident type 2 diabetes in a multiethnic cohort. Ann. Epidemiol. 19, 351–357 (2009).

    Article  PubMed  Google Scholar 

  157. Bromley, L. E., Booth, J. N. 3rd, Kilkus, J. M., Imperial, J. G. & Penev, P. D. Sleep restriction decreases the physical activity of adults at risk for type 2 diabetes. Sleep 35, 977–984 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Booth, J. N. et al. Reduced physical activity in adults at risk for type 2 diabetes who curtail their sleep. Obesity 20, 278–284 (2012).

    Article  PubMed  Google Scholar 

  159. Leproult, R., Deliens, G., Gilson, M. & Peigneux, P. Beneficial impact of sleep extension on fasting insulin sensitivity in adults with habitual sleep restriction. Sleep 38, 707–715 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Krueger, P. M., Reither, E. N., Peppard, P. E., Burger, A. E. & Hale, L. Cumulative exposure to short sleep and body mass outcomes: a prospective study. J. Sleep Res. 24, 629–638 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Li, L., Zhang, S., Huang, Y. & Chen, K. Sleep duration and obesity in children: a systematic review and meta-analysis of prospective cohort studies. J. Paediatr. Child Health 53, 378–385 (2017).

    Article  PubMed  Google Scholar 

  162. Morrissey, B. et al. Sleep duration and risk of obesity among a sample of Victorian school children. BMC Publ. Health 16, 245 (2016).

    Google Scholar 

  163. Halal, C. S. E. et al. Short sleep duration in the first years of life and obesity/overweight at age 4 years: a birth cohort study. J. Pediatr. 168, 99–103.e3 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Martinez, S. M. et al. Is it time for bed? Short sleep duration increases risk of obesity in Mexican American children. Sleep Med. 15, 1484–1489 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Taveras, E. M., Gillman, M. W., Pena, M.-M., Redline, S. & Rifas-Shiman, S. L. Chronic sleep curtailment and adiposity. Pediatrics 133, 1013–1022 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Martinez, S. M. et al. Short sleep duration is associated with eating more carbohydrates and less dietary fat in Mexican American children. Sleep 40, zsw057 (2017).

    Article  Google Scholar 

  167. Beebe, D. W. et al. Dietary intake following experimentally restricted sleep in adolescents. Sleep 36, 827–834 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Mullins, E. N. et al. Acute sleep restriction increases dietary intake in preschool-age children. J. Sleep Res. 26, 48–54 (2017).

    Article  PubMed  Google Scholar 

  169. Garaulet, M. et al. Short sleep duration is associated with increased obesity markers in European adolescents: effect of physical activity and dietary habits. The HELENA study. Int. J. Obes. 35, 1308–1317 (2011).

    Article  CAS  Google Scholar 

  170. Wang, F. et al. Sleep duration and overweight/obesity in preschool-aged children: a prospective study of up to 48,922 children of the Jiaxing birth cohort. Sleep 39, 2013–2019 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Cespedes, E. M. et al. Chronic insufficient sleep and diet quality: contributors to childhood obesity. Obesity 24, 184–190 (2016).

    Article  PubMed  Google Scholar 

  172. Kobayashi, D., Takahashi, O., Deshpande, G. A., Shimbo, T. & Fukui, T. Association between weight gain, obesity, and sleep duration: a large-scale 3-year cohort study. Sleep Breath. 16, 829–833 (2012).

    Article  PubMed  Google Scholar 

  173. Haghighatdoost, F., Karimi, G., Esmaillzadeh, A. & Azadbakht, L. Sleep deprivation is associated with lower diet quality indices and higher rate of general and central obesity among young female students in Iran. Nutrition 28, 1146–1150 (2012).

    Article  PubMed  Google Scholar 

  174. Sun, W. et al. Sleep duration associated with body mass index among Chinese adults. Sleep Med. 16, 612–616 (2015).

    Article  PubMed  Google Scholar 

  175. Kim, K., Shin, D., Jung, G.-U., Lee, D. & Park, S. M. Association between sleep duration, fat mass, lean mass and obesity in Korean adults: the fourth and fifth Korea National Health and Nutrition Examination surveys. J. Sleep Res. 26, 453–460 (2017).

    Article  PubMed  Google Scholar 

  176. Theorell-Haglow, J., Berglund, L., Berne, C. & Lindberg, E. Both habitual short sleepers and long sleepers are at greater risk of obesity: a population-based 10-year follow-up in women. Sleep Med. 15, 1204–1211 (2014).

    Article  PubMed  Google Scholar 

  177. Sperry, S. D., Scully, I. D., Gramzow, R. H. & Jorgensen, R. S. Sleep Duration and waist circumference in adults: a meta-analysis. Sleep 38, 1269–1276 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Chaput, J.-P., McNeil, J., Despres, J.-P., Bouchard, C. & Tremblay, A. Short sleep duration as a risk factor for the development of the metabolic syndrome in adults. Prev. Med. 57, 872–877 (2013).

    Article  PubMed  Google Scholar 

  179. Thomson, C. A. et al. Relationship between sleep quality and quantity and weight loss in women participating in a weight-loss intervention trial. Obesity 20, 1419–1425 (2012).

    Article  PubMed  Google Scholar 

  180. Chaput, J.-P. & Dutil, C. Lack of sleep as a contributor to obesity in adolescents: impacts on eating and activity behaviors. Int. J. Behav. Nutr. Phys. Act. 13, 103 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Tasali, E., Chapotot, F., Wroblewski, K. & Schoeller, D. The effects of extended bedtimes on sleep duration and food desire in overweight young adults: a home-based intervention. Appetite 80, 220–224 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Lucassen, E. A. et al. Sleep extension improves neurocognitive functions in chronically sleep-deprived obese individuals. PLOS ONE 9, e84832 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Scheer, F. A. J. L., Van Montfrans, G. A., Van Someren, E. J. W., Mairuhu, G. & Buijs, R. M. Daily nighttime melatonin reduces blood pressure in male patients with essential hypertension. Hypertension 43, 192–197 (2004).

    Article  CAS  PubMed  Google Scholar 

  184. Grossman, E. et al. Melatonin reduces night blood pressure in patients with nocturnal hypertension. Am. J. Med. 119, 898–902 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Sateia, M. J. International classification of sleep disorders - third edition. Chest 146, 1387–1394 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Reviewer information

Nature Reviews Cardiology thanks M. A. Grandner, O. Oldenburg and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

E.T., E.M.F., and N.M. researched data for the article and wrote the manuscript. E.T., M.S., G.C., L.N., and N.M. discussed the content of the article, and E.M.F., M.S., G.C., L.N., and N.M. reviewed and edited it before submission.

Corresponding author

Correspondence to Nicola Montano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Actigraphy

A method for noninvasive monitoring of rest and activity cycles in humans via a wrist-worn device; although actigraphy is not the gold standard for diagnosing a sleep disorder, it is a useful research tool because data can be recorded inexpensively and in a natural sleep environment.

Polysomnography

A type of sleep study, based on the simultaneous recording of several biological functions during sleep (electrocardiogram, respiration, brain activity, muscles, and ocular movements); in clinical practice, polysomnography is the gold-standard technique for recording sleep and diagnosing sleep disorders.

Non-dipper profile

In ambulatory blood-pressure monitoring, a non-dipper profile is characterized by the absence of a physiological fall in blood pressure during night time compared with daytime.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobaldini, E., Fiorelli, E.M., Solbiati, M. et al. Short sleep duration and cardiometabolic risk: from pathophysiology to clinical evidence. Nat Rev Cardiol 16, 213–224 (2019). https://doi.org/10.1038/s41569-018-0109-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-018-0109-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing