Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Selection on Aedes aegypti alters Wolbachia-mediated dengue virus blocking and fitness

Abstract

The dengue, Zika and chikungunya viruses are transmitted by the mosquito Aedes aegypti and pose a substantial threat to global public health. Current vaccines and mosquito control strategies have limited efficacy, so novel interventions are needed1,2. Wolbachia are bacteria that inhabit insect cells and have been found to reduce viral infection—a phenotype that is referred to as viral ‘blocking’3. Although not naturally found in A. aegypti4, Wolbachia were stably introduced into this mosquito in 20114,5 and were shown to reduce the transmission potential of dengue, Zika and chikungunya6,7. Subsequent field trials showed Wolbachia’s ability to spread through A. aegypti populations and reduce the local incidence of dengue fever8. Despite these successes, the evolutionary stability of viral blocking is unknown. Here, we utilized artificial selection to reveal genetic variation in the mosquito that affects Wolbachia-mediated dengue blocking. We found that mosquitoes exhibiting weaker blocking also have reduced fitness, suggesting the potential for natural selection to maintain blocking. We also identified A. aegypti genes that affect blocking strength, shedding light on a possible mechanism for the trait. These results will inform the use of Wolbachia as biocontrol agents against mosquito-borne viruses and direct further research into measuring and improving their efficacy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the selection treatments.
Fig. 2: Evolution of Wolbachia-mediated blocking of the dengue virus in A. aegypti.
Fig. 3: Relationship between the fitness of Wolbachia-infected mosquitoes and their ability to block dengue virus across the evolved mosquito populations.
Fig. 4: Genetic variation in A. aegypti associated with Wolbachia-mediated dengue virus blocking.

Similar content being viewed by others

Data availability

Raw data are deposited in the Dryad online repository (https://doi.org/10.5061/dryad.6vv10h0) and sequence data are available via the European Nucleotide Archive (accession number: PRJEB33044).

References

  1. Moyes, C. L. et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl. Trop. Dis. 11, e0005625 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Global Strategy for Dengue Prevention and Control, 2012–2020 (World Health Organization, 2012).

  3. Teixeira, L., Ferreira, A. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, e2 (2008).

    Article  PubMed  CAS  Google Scholar 

  4. Gloria-Soria, A., Chiodo, T. G. & Powell, J. R. Lack of evidence for natural Wolbachia infections in Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 55, 1354–1356 (2018).

    PubMed  PubMed Central  Google Scholar 

  5. Walker, T. et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476, 450–453 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Moreira, L. A. et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell 139, 1268–1278 (2009).

    Article  PubMed  Google Scholar 

  7. Aliota, M. T., Peinado, S. A., Velez, I. D. & Osorio, J. E. The wMel strain of Wolbachia reduces transmission of Zika virus by Aedes aegypti. Sci. Rep. 6, 28792 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. O’Neill, S. L. et al. Scaled deployment of Wolbachia to protect the community from Aedes transmitted arboviruses. Gates Open Res. 2, 36 (2018).

    Article  PubMed  Google Scholar 

  9. Terradas, G., Allen, S. L., Chenoweth, S. F. & McGraw, E. A. Family level variation in Wolbachia-mediated dengue virus blocking in Aedes aegypti. Parasit. Vectors 10, 622 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Longdon, B. et al. The causes and consequences of changes in virulence following pathogen host shifts. PLoS Pathog. 11, e1004728 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bull, J. J. & Turelli, M. Wolbachia versus dengue: evolutionary forecasts. Evol. Med. Public Health 2013, 197–207 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ant, T. H., Herd, C. S., Geoghegan, V., Hoffmann, A. A. & Sinkins, S. P. The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathog. 14, e1006815 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Hoffmann, A. A., Ross, P. A. & Rašić, G. Wolbachia strains for disease control: ecological and evolutionary considerations. Evol. Appl. 8, 751–768 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pan, X. et al. The bacterium Wolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Aedes aegypti. ISME J. 12, 277–288 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Caragata, E. P. et al. Dietary cholesterol modulates pathogen blocking by Wolbachia. PLoS Pathog. 9, e1003459 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bhattacharya, T., Newton, I. L. G. & Hardy, R. W. Wolbachia elevates host methyltransferase expression to block an RNA virus early during infection. PLoS Pathog. 13, e1006427 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Pan, X. et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc. Natl Acad. Sci. USA 109, E23–E31 (2012).

    Article  PubMed  Google Scholar 

  18. Terradas, G., Joubert, D. A. & McGraw, E. A. The RNAi pathway plays a small part in Wolbachia-mediated blocking of dengue virus in mosquito cells. Sci. Rep. 7, 43847 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Amuzu, H. E. & McGraw, E. A. Wolbachia-based dengue virus inhibition is not tissue-specific in Aedes aegypti. PLoS Negl. Trop. Dis. 10, e0005145 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Frankham, R. Are responses to artificial selection for reproductive fitness characters consistently asymmetrical? Genet. Res. Camb. 56, 35–42 (1990).

    Article  Google Scholar 

  21. Ohm, J. R. et al. Fitness consequences of altered feeding behavior in immune-challenged mosquitoes. Parasit. Vectors 9, 113 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Rueda, L. M., Patel, K. J., Axtell, R. C. & Stinner, R. E. Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 27, 892–898 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Halbleib, J. M. & Nelson, W. J. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 20, 3199–3214 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Colpitts, T. M. et al. Use of a tandem affinity purification assay to detect interactions between West Nile and dengue viral proteins and proteins of the mosquito vector. Virology 417, 179–187 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Lindsey, A. R. I., Bhattacharya, T., Newton, I. L. G. & Hardy, R. W. Conflict in the intracellular lives of endosymbionts and viruses: a mechanistic look at Wolbachia-mediated pathogen-blocking. Viruses 10, 141 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  26. Sheehan, K. B., Martin, M., Lesser, C. F., Isberg, R. R. & Newton, I. L. Identification and characterization of a candidate Wolbachia pipientis type IV effector that interacts with the actin cytoskeleton. mBio 7, e00622-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hughes, G. L. et al. Wolbachia infections in Anopheles gambiae cells: transcriptomic characterization of a novel host–symbiont interaction. PLoS Pathog. 7, e1001296 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Frentiu, F. D. et al. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia. PLoS Negl. Trop. Dis. 8, e2688 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ferguson, N. M. et al. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Sci. Transl. Med. 7, 279ra237 (2015).

    Article  CAS  Google Scholar 

  30. Hoffmann, A. A. et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476, 454–457 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Ye, Y. H. et al. Evolutionary potential of the extrinsic incubation period of dengue virus in Aedes aegypti. Evolution 70, 2459–2469 (2016).

    Article  PubMed  Google Scholar 

  32. Ritchie, S. A. et al. An explosive epidemic of DENV-3 in Cairns, Australia. PLoS ONE 8, e68137 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ye, Y. H. et al. Comparative susceptibility of mosquito populations in North Queensland, Australia to oral infection with dengue virus. Am. J. Trop. Med. Hyg. 90, 422–430 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jupatanakul, N., Sim, S. & Dimopoulos, G. The insect microbiome modulates vector competence for arboviruses. Viruses 6, 4294–4313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kawecki, T. J. et al. Experimental evolution. Trends Ecol. Evol. 27, 547–560 (2012).

    Article  PubMed  Google Scholar 

  36. Zheng, M. L., Zhang, D. J., Damiens, D. D., Lees, R. S. & Gilles, J. R. Standard operating procedures for standardized mass rearing of the dengue and chikungunya vectors Aedes aegypti and Aedes albopictus (Diptera: Culicidae)—II—egg storage and hatching. Parasit. Vectors 8, 348 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Joshi, V., Mourya, D. T. & Sharma, R. C. Persistence of dengue-3 virus through transovarial transmission passage in successive generations of Aedes aegypti mosquitoes. Am. J. Trop. Med. Hyg. 67, 158–161 (2002).

    Article  PubMed  Google Scholar 

  38. Yeap, H. L. et al. Assessing quality of life-shortening Wolbachia-infected Aedes aegypti mosquitoes in the field based on capture rates and morphometric assessments. Parasit. Vectors 7, 58 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dobson, S. L. & Rattanadechakul, W. A novel technique for removing Wolbachia infections from Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 38, 844–849 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. McMeniman, C. J. et al. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323, 141–144 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 47, D807–D811 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  42. Dutton, T. J. & Sinkins, S. P. Strain-specific quantification of Wolbachia density in Aedes albopictus and effects of larval rearing conditions. Insect Mol. Biol. 13, 317–322 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Dutra, H. L. et al. The influence of larval competition on Brazilian Wolbachia-infected Aedes aegypti mosquitoes. Parasit. Vectors 9, 282 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Ross, P. A., Endersby, N. M., Yeap, H. L. & Hoffmann, A. A. Larval competition extends developmental time and decreases adult size of wMelPop Wolbachia-infected Aedes aegypti. Am. J. Trop. Med. Hyg. 91, 198–205 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Joy, T. K., Arik, A. J., Corby-Harris, V., Johnson, A. A. & Riehle, M. A. The impact of larval and adult dietary restriction on lifespan, reproduction and growth in the mosquito Aedes aegypti. Exp. Gerontol. 45, 685–690 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mains, J. W., Mercer, D. R. & Dobson, S. L. Digital image analysis to estimate numbers of Aedes eggs oviposited in containers. J. Am. Mosq. Control Assoc. 24, 496–501 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kozłowski, J. Measuring fitness in life history studies. Trends Ecol. Evol. 8, 84–85 (1993).

    Article  PubMed  Google Scholar 

  48. Jha, A. R. et al. Shared genetic signals of hypoxia adaptation in Drosophila and in high-altitude human populations. Mol. Biol. Evol. 33, 501–517 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Kerton, M. Jones, E. Kennedy, H. Amuzu, G. Terradas, M. Novelo Canto, S. Mole, D. Guy, L. Jimenez, C. Hammer and C. Koh for technical support throughout the experiment. We thank D. Marshall, C. Godfray and K. King for helpful discussions on the manuscript. This work was supported by a grant (APP1103804) from the National Health and Medical Research Council of Australia to E.A.M.

Author information

Authors and Affiliations

Authors

Contributions

S.A.F. and E.A.M. conceived and designed the experiments and wrote the manuscript. S.A.F. planned and performed the experiments, including mosquito rearing and infection, selection, RNA and DNA collection and analysis, antibiotic treatment, and life-history measurements. L.T.S. measured candidate gene expression. S.A.F. performed statistical analysis and interpreted the data. S.L.A., A.S., S.F.C. and I.A. collaboratively processed and statistically analysed the genomic data. S.A.F. interpreted the results. J.R.O. and S.A.F. designed the Leslie matrix models to assess mosquito fitness. J.R.O. ran the models. S.A.F. statistically analysed and interpreted the data.

Corresponding authors

Correspondence to Suzanne A. Ford or Elizabeth A. McGraw.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Tables 1–2 and captions for supplementary files.

Reporting Summary

Supplementary File 1

Realized heritability of Wolbachia-mediated dengue blocking.

Supplementary File 2

A summary of SNPs in genes that are significantly differentiated in the A. aegypti genome between the high and low-blocking populations.

Supplementary File 3

A summary of SNPs in genes that are significantly differentiated in the A. aegypti genome between the random and low-blocking populations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ford, S.A., Allen, S.L., Ohm, J.R. et al. Selection on Aedes aegypti alters Wolbachia-mediated dengue virus blocking and fitness. Nat Microbiol 4, 1832–1839 (2019). https://doi.org/10.1038/s41564-019-0533-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-019-0533-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing