Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The genetics of macrophage activation syndrome

Abstract

Macrophage activation syndrome (MAS), or secondary hemophagocytic lymphohistiocytosis (HLH), is a cytokine storm syndrome associated with multi-organ system dysfunction and high mortality rates. Laboratory and clinical features resemble primary HLH, which arises in infancy (1 in 50,000 live births) from homozygous mutations in various genes critical to the perforin-mediated cytolytic pathway employed by NK cells and cytotoxic CD8 T lymphocytes. MAS/secondary HLH is about ten times more common and typically presents beyond infancy extending into adulthood. The genetics of MAS are far less defined than for familial HLH. However, the distinction between familial HLH and MAS/secondary HLH is blurred by the finding of heterozygous perforin-pathway mutations in MAS patients, which may function as hypomorphic or partial dominant-negative alleles and contribute to disease pathogenesis. In addition, mutations in a variety of other pathogenic pathways have been noted in patients with MAS/secondary HLH. Many of these genetically disrupted pathways result in a similar cytokine storm syndrome, and can be broadly categorized as impaired viral control (e.g., SH2P1A), dysregulated inflammasome activity (e.g., NLRC4), other immune defects (e.g., IKBKG), and dysregulated metabolism (e.g., LIPA). Collectively these genetic lesions likely combine with states of chronic inflammation, as seen in various rheumatic diseases (e.g., still disease), with or without identified infections, to result in MAS pathology as explained by the threshold model of disease. This emerging paradigm may ultimately support genetic risk stratification for high-risk chronic and even acute inflammatory disorders. Moving forward, continued whole-exome and -genome sequencing will likely identify novel MAS gene associations, as well as noncoding mutations altering levels of gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Threshold model of MAS development.
Fig. 2: MAS genes involved in perforin-mediated cytolysis.
Fig. 3: MAS genes involved in inflammasome activation.

Similar content being viewed by others

References

  1. Schulert GS, Grom AA. Pathogenesis of macrophage activation syndrome and potential for cytokine- directed therapies. Annu Rev Med. 2015;66:145–59.

    Article  CAS  PubMed  Google Scholar 

  2. Crayne CB, Albeituni S, Nichols KE, Cron RQ. The immunology of macrophage activation syndrome. Front Immunol. 2019;10:119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schulert GS, Canna SW. Convergent pathways of the hyperferritinemic syndromes. Int Immunol. 2018;30:195–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Emile J-F, Abla O, Fraitag S, Horne A, Haroche J, Donadieu J, et al. Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood. 2016;127:2672–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nikiforow S, Berliner N. To “lump” or to “split” in macrophage activation syndrome and hemophagocytic lymphohistiocytosis. Arthritis Rheumatol. 2019. https://doi.org/10.1002/art.41106.

  6. Bracaglia C, Prencipe G, De Benedetti F. Macrophage activation syndrome: different mechanisms leading to a one clinical syndrome. Pediatr Rheumatol. 2017;15:5.

    Article  Google Scholar 

  7. Carter SJ, Tattersall RS, Ramanan AV. Macrophage activation syndrome in adults: recent advances in pathophysiology, diagnosis and treatment. Rheumatology. 2019;58:5–17.

    Article  CAS  PubMed  Google Scholar 

  8. Trottestam H, Horne A, Aricò M, Egeler RM, Filipovich AH, Gadner H, et al. Chemoimmunotherapy for hemophagocytic lymphohistiocytosis: long-term results of the HLH-94 treatment protocol. Blood. 2011;118:4577–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cascio A, Pernice LM, Barberi G, Delfino D, Biondo C, Beninati C, et al. Secondary hemophagocytic lymphohistiocytosis in zoonoses. A systematic review. Eur Rev Med Pharm Sci. 2012;16:1324–37.

    CAS  Google Scholar 

  10. Maakaroun NR, Moanna A, Jacob JT, Albrecht H. Viral infections associated with haemophagocytic syndrome. Rev Med Virol. 2010;20:93–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carcillo JA, Halstead ES, Hall MW, Nguyen TC, Reeder R, Aneja R, et al. Three hypothetical inflammation pathobiology phenotypes and pediatric sepsis-induced multiple organ failure outcome*. Pediatr Crit Care Med. 2017;18:513–23.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shakoory B, Carcillo JA, Chatham WW, Amdur RL, Zhao H, Dinarello CA, et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior phase III trial. Crit Care Med. 2016;44:275–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carcillo JA, Berg RA, Wessel D, Pollack M, Meert K, Hall M, et al. A multicenter network assessment of three inflammation phenotypes in pediatric sepsis-induced multiple organ failure. Pediatr Crit Care Med. 2019;20:1.

    Article  Google Scholar 

  14. Crayne C, Cron RQ. Pediatric macrophage activation syndrome, recognizing the tip of the Iceberg. Eur J Rheumatol. 2019;1–8. [Epub ahead of print].

  15. Minoia F, Davì S, Horne A, Demirkaya E, Bovis F, Li C, et al. Clinical features, treatment, and outcome of macrophage activation syndrome complicating systemic juvenile idiopathic arthritis: a multinational, multicenter study of 362 patients. Arthritis Rheumatol. 2014;66:3160–9.

    Article  PubMed  Google Scholar 

  16. Strippoli R, Caiello I, De Benedetti F. Reaching the threshold: a multilayer pathogenesis of macrophage activation syndrome. J Rheumatol. 2013;40:761–7.

    Article  CAS  PubMed  Google Scholar 

  17. Canna SW, Behrens EM. Making sense of the cytokine storm: a conceptual framework for understanding, diagnosing, and treating hemophagocytic syndromes. Pediatr Clin North Am. 2012;59:329–44.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Risma K, Jordan MB. Hemophagocytic lymphohistiocytosis. Curr Opin Pediatr. 2012;24:9–15.

    Article  CAS  PubMed  Google Scholar 

  19. Cron RQ, Behrens EM, Shakoory B, Ramanan AV, Chatham WW. Does viral hemorrhagic fever represent reactive hemophagocytic syndrome? J Rheumatol. 2015;42:1078–80.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang K, Jordan MB, Marsh RA, Johnson JA, Kissell D, Meller J, et al. Hypomorphic mutations in PRF1, MUNC13-4, and STXBP2 are associated with adult-onset familial HLH. Blood. 2011;118:5794–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Behrens EM, Cron RQ. Kill or be killed. J Immunol. 2015;194:5041–3.

    Article  CAS  PubMed  Google Scholar 

  22. Stepp SE, Dufourcq-Lagelouse R, Le Deist F, Bhawan S, Certain S, Mathew PA, et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science. 1999;286:1957–9.

    Article  CAS  PubMed  Google Scholar 

  23. Janka GE. Familial and acquired hemophagocytic lymphohistiocytosis. Annu Rev Med. 2012;63:233–46.

    Article  CAS  PubMed  Google Scholar 

  24. Willenbring R, Johnson A. Finding a balance between protection and pathology: the dual role of perforin in human disease. Int J Mol Sci. 2017;18:1608.

    Article  PubMed Central  CAS  Google Scholar 

  25. Jenkins MR, Rudd-Schmidt JA, Lopez JA, Ramsbottom KM, Mannering SI, Andrews DM, et al. Failed CTL/NK cell killing and cytokine hypersecretion are directly linked through prolonged synapse time. J Exp Med. 2015;212:307–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang M, Bracaglia C, Prencipe G, Bemrich-Stolz CJ, Beukelman T, Dimmitt RA, et al. A heterozygous RAB27A mutation associated with delayed cytolytic granule polarization and hemophagocytic lymphohistiocytosis. J Immunol. 2016;196:2492–503.

    Article  CAS  PubMed  Google Scholar 

  27. Behrens EM, Beukelman T, Paessler M, Cron RQ. Occult macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis. J Rheumatol. 2007;34:1133–8.

    PubMed  Google Scholar 

  28. Bleesing J, Prada A, Siegel DM, Villanueva J, Olson J, Ilowite NT, et al. The diagnostic significance of soluble CD163 and soluble interleukin-2 receptor alpha-chain in macrophage activation syndrome and untreated new-onset systemic juvenile idiopathic arthritis. Arthritis Rheum. 2007;56:965–71.

    Article  CAS  PubMed  Google Scholar 

  29. Grom AA, Villanueva J, Lee S, Goldmuntz EA, Passo MH, Filipovich A. Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid arthritis and macrophage activation syndrome. J Pediatr. 2003;142:292–6.

    Article  CAS  PubMed  Google Scholar 

  30. Sullivan KE, Delaat CA, Douglas SD, Filipovich AH. Defective natural killer cell function in patients with hemophagocytic lymphohistiocytosis and in first degree relatives. Pediatr Res. 1998;44:465–8.

    Article  CAS  PubMed  Google Scholar 

  31. Vastert SJ, van Wijk R, D’Urbano LE, de Vooght KM, de Jager W, Ravelli A, et al. Mutations in the perforin gene can be linked to macrophage activation syndrome in patients with systemic onset juvenile idiopathic arthritis. Rheumatol. 2010;49:441–9.

    Article  CAS  Google Scholar 

  32. Zhang K, Biroschak J, Glass DN, Thompson SD, Finkel T, Passo MH, et al. Macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis is associated with MUNC13-4 polymorphisms. Arthritis Rheum. 2008;58:2892–6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hazen MM, Woodward AL, Hofmann I, Degar BA, Grom A, Filipovich AH, et al. Mutations of the hemophagocytic lymphohistiocytosis-associated gene UNC13D in a patient with systemic juvenile idiopathic arthritis. Arthritis Rheum. 2008;58:567–70.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang M, Behrens EM, Atkinson TP, Shakoory B, Grom AA, Cron RQ. Genetic defects in cytolysis in macrophage activation syndrome. Curr Rheumatol Rep. 2014;16:439.

    Article  PubMed  CAS  Google Scholar 

  35. Schulert GS, Zhang M, Husami A, Fall N, Brunner H, Zhang K, et al. Novel UNC13D intronic variant disrupting a NFκB enhancer in a patient with recurrent macrophage activation syndrome and systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 2018. https://doi.org/10.1002/art.40438.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Risma KA, Frayer RW, Filipovich AH, Sumegi J. Aberrant maturation of mutant perforin underlies the clinical diversity of hemophagocytic lymphohistiocytosis. J Clin Invest. 2006;116:182–92.

    Article  CAS  PubMed  Google Scholar 

  37. House IG, Thia K, Brennan AJ, Tothill R, Dobrovic A, Yeh WZ, et al. Heterozygosity for the common perforin mutation, p.A91V, impairs the cytotoxicity of primary natural killer cells from healthy individuals. Immunol Cell Biol. 2015;93:575–80.

    Article  CAS  PubMed  Google Scholar 

  38. Kaufman KM, Linghu B, Szustakowski JD, Husami A, Yang F, Zhang K, et al. Whole exome sequencing reveals overlap between macrophage activation syndrome in systemic juvenile idiopathic arthritis and familial hemophagocytic lymphohistiocytosis. Arthritis Rheumatol. 2014. https://doi.org/10.1002/art.38793.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schulert GS, Zhang M, Fall N, Husami A, Kissell D, Hanosh A, et al. Whole-exome sequencing reveals mutations in genes linked to hemophagocytic lymphohistiocytosis and macrophage activation syndrome in fatal cases of H1N1 influenza. J Infect Dis. 2016;213:1180–8.

    Article  CAS  PubMed  Google Scholar 

  40. Harms PW, Schmidt LA, Smith LB, Newton DW, Pletneva MA, Walters LL, et al. Autopsy findings in eight patients with fatal H1N1 influenza. Am J Clin Pathol. 2010;134:27–35.

    Article  PubMed  Google Scholar 

  41. Sepulveda FE, Garrigue A, Maschalidi S, Garfa-Traore M, Ménasché G, Fischer A, et al. Polygenic mutations in the cytotoxicity pathway increase susceptibility to develop HLH immunopathology in mice. Blood. 2016;127:2113–21.

    Article  CAS  PubMed  Google Scholar 

  42. Jessen B, Kögl T, Sepulveda FE, de Saint Basile G, Aichele P, Ehl S. Graded defects in cytotoxicity determine severity of hemophagocytic lymphohistiocytosis in humans and mice. Front Immunol. 2013;4:448.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Zhang K, Chandrakasan S, Chapman H, Valencia CA, Husami A, Kissell D, et al. Synergistic defects of different molecules in the cytotoxic pathway lead to clinical familial hemophagocytic lymphohistiocytosis. Blood. 2014;124:1331–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Spessott WA, Sanmillan ML, McCormick ME, Patel N, Villanueva J, Zhang K, et al. Hemophagocytic lymphohistiocytosis caused by dominant-negative mutations in STXBP2 that inhibit SNARE-mediated membrane fusion. Blood. 2015;125:1566–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Eloseily EM, Weiser P, Crayne CB, Haines H, Mannion ML, Stoll ML, et al. Benefit of anakinra in treating pediatric secondary hemophagocytic lymphohistiocytosis. Arthritis Rheumatol. 2020;72:326–34.

    Article  CAS  PubMed  Google Scholar 

  46. Chen X, Wang F, Zhang Y, Teng W, Wang M, Nie D, et al. Genetic variant spectrum in 265 Chinese patients with hemophagocytic lymphohistiocytosis: Molecular analyses of PRF1, UNC13D, STX11, STXBP2, SH2D1A, and XIAP. Clin Genet. 2018;94:200–12.

    Article  CAS  PubMed  Google Scholar 

  47. Miao Y, Zhu H-Y, Qiao C, Xia Y, Kong Y, Zou Y-X, et al. Pathogenic gene mutations or variants identified by targeted gene sequencing in adults with hemophagocytic lymphohistiocytosis. Front Immunol. 2019;10:395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chinn IK, Eckstein OS, Peckham-Gregory EC, Goldberg BR, Forbes LR, Nicholas SK, et al. Genetic and mechanistic diversity in pediatric hemophagocytic lymphohistiocytosis. Blood. 2018;132:89–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang M, Cron R, Absher D, Crayne C, Atkinson P, Chatham W, et al. Characterization of DOCK8 as a novel gene associated with macrophage activation syndrome. Arthritis Rheumatol. 2019;71(suppl 10). https://acrabstracts.org/abstract/characterization-of-dock8-as-a-novel-gene-associated-with-macrophage-activation-syndrome.

  50. Lam MT, Coppola S, Krumbach OHF, Prencipe G, Insalaco A, Cifaldi C, et al. A novel disorder involving dyshematopoiesis, inflammation, and HLH due to aberrant CDC42 function. J Exp Med. 2019;216:2778–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gernez Y, de Jesus AA, Alsaleem H, Macaubas C, Roy A, Lovell D, et al. Severe autoinflammation in 4 patients with C-terminal variants in cell division control protein 42 homolog (CDC42) successfully treated with IL-1β inhibition. J Allergy Clin Immunol. 2019;144:1122–25.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nichols KE, Harkin DP, Levitz S, Krainer M, Kolquist KA, Genovese C, et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc Natl Acad Sci. 1998;95:13765–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Coffey AJ, Brooksbank RA, Brandau O, Oohashi T, Howell GR, Bye JM, et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet. 1998;20:129–35.

    Article  CAS  PubMed  Google Scholar 

  54. Sayos J, Wu C, Morra M, Wang N, Zhang X, Allen D, et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature. 1998;395:462–9.

    Article  CAS  PubMed  Google Scholar 

  55. Rezaei N, Mahmoudi E, Aghamohammadi A, Das R, Nichols KE. X-linked lymphoproliferative syndrome: a genetic condition typified by the triad of infection, immunodeficiency and lymphoma. Br J Haematol. 2011;152:13–30.

    Article  CAS  PubMed  Google Scholar 

  56. Arico M, Imashuku S, Clementi R, Hibi S, Teramura T, Danesino C, et al. Hemophagocytic lymphohistiocytosis due to germline mutations inSH2D1A, the X-linked lymphoproliferative disease gene. Blood. 2001;97:1131–3.

    Article  CAS  PubMed  Google Scholar 

  57. Huck K, Feyen O, Niehues T, Rüschendorf F, Hübner N, Laws H-J, et al. Girls homozygous for an IL-2–inducible T cell kinase mutation that leads to protein deficiency develop fatal EBV-associated lymphoproliferation. J Clin Invest. 2009;119:1350–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Atherly LO, Lucas JA, Felices M, Yin CC, Reiner SL, Berg LJ. The Tec family tyrosine kinases Itk and Rlk regulate the development of conventional CD8+ T cells. Immunity. 2006;25:79–91.

    Article  CAS  PubMed  Google Scholar 

  59. Stepensky P, Weintraub M, Yanir A, Revel-Vilk S, Krux F, Huck K, et al. IL-2-inducible T-cell kinase deficiency: clinical presentation and therapeutic approach. Haematologica. 2011;96:472–6.

    Article  CAS  PubMed  Google Scholar 

  60. Peperzak V, Xiao Y, Veraar EAM, Borst J. CD27 sustains survival of CTLs in virus-infected nonlymphoid tissue in mice by inducing autocrine IL-2 production. J Clin Invest. 2010;120:168–78.

    Article  CAS  PubMed  Google Scholar 

  61. Malbran A, Belmonte L, Ruibal-Ares B, Baré P, Massud I, Parodi C, et al. Loss of circulating CD27+ memory B cells and CCR4+ T cells occurring in association with elevated EBV loads in XLP patients surviving primary EBV infection. Blood. 2004;103:1625–31.

    Article  CAS  PubMed  Google Scholar 

  62. Salzer E, Daschkey S, Choo S, Gombert M, Santos-Valente E, Ginzel S, et al. Combined immunodeficiency with life-threatening EBV-associated lymphoproliferative disorder in patients lacking functional CD27. Haematologica. 2013;98:473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Alkhairy OK, Perez-Becker R, Driessen GJ, Abolhassani H, van Montfrans J, Borte S, et al. Novel mutations in TNFRSF7/CD27: clinical, immunologic, and genetic characterization of human CD27 deficiency. J Allergy Clin Immunol. 2015;136:703–12.e10.

    Article  CAS  PubMed  Google Scholar 

  64. Izawa K, Martin E, Soudais C, Bruneau J, Boutboul D, Rodriguez R, et al. Inherited CD70 deficiency in humans reveals a critical role for the CD70–CD27 pathway in immunity to Epstein-Barr virus infection. J Exp Med. 2017;214:73–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Abolhassani H, Edwards ESJ, Ikinciogullari A, Jing H, Borte S, Buggert M, et al. Combined immunodeficiency and Epstein-Barr virus-induced B cell malignancy in humans with inherited CD70 deficiency. J Exp Med. 2017;214:91–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hsu AP, McReynolds LJ, Holland SM. GATA2 deficiency. Curr Opin Allergy Clin Immunol. 2015;15:104–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cohen JI, Dropulic L, Hsu AP, Zerbe CS, Krogmann T, Dowdell K, et al. Association of GATA2 deficiency with severe primary epstein-barr virus (EBV) infection and EBV-associated cancers. Clin Infect Dis. 2016;63:41–7.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Suzuki T, Takaya S, Kunimatsu J, Kutsuna S, Hayakawa K, Shibata H, et al. GATA2 mutation underlies hemophagocytic lymphohistiocytosis in an adult with primary cytomegalovirus infection. J Infect Chemother. 2019. https://doi.org/10.1016/j.jiac.2019.07.002.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Prader S, Felber M, Volkmer B, Trück J, Schwieger-Briel A, Theiler M, et al. Life-threatening primary varicella zoster virus infection with hemophagocytic lymphohistiocytosis-like disease in GATA2 haploinsufficiency accompanied by expansion of double negative T-lymphocytes. Front Immunol. 2018;9:2766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. van de Vosse E, van Dissel JT. IFN-γR1 defects: mutation update and description of the IFNGR1 variation database. Hum Mutat. 2017;38:1286–96.

    Article  PubMed  CAS  Google Scholar 

  71. Tesi B, Sieni E, Neves C, Romano F, Cetica V, Cordeiro AI, et al. Hemophagocytic lymphohistiocytosis in 2 patients with underlying IFN-γ receptor deficiency. J Allergy Clin Immunol. 2015;135:1638–41.

    Article  PubMed  Google Scholar 

  72. Humblet-Baron S, Franckaert D, Dooley J, Ailal F, Bousfiha A, Deswarte C, et al. IFN-γ and CD25 drive distinct pathologic features during hemophagocytic lymphohistiocytosis. J Allergy Clin Immunol. 2019;143:2215–26.e7.

    Article  CAS  PubMed  Google Scholar 

  73. Staines-Boone AT, Deswarte C, Venegas Montoya E, Sánchez-Sánchez LM, García Campos JA, Muñiz-Ronquillo T, et al. Multifocal recurrent osteomyelitis and hemophagocytic lymphohistiocytosis in a boy with partial dominant IFN-γR1 deficiency: case report and review of the literature. Front Pediatr. 2017;5:75.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yanagimachi M, Naruto T, Miyamae T, Hara T, Kikuchi M, Hara R, et al. Association of IRF5 polymorphisms with susceptibility to macrophage activation syndrome in patients with juvenile idiopathic arthritis. J Rheumatol. 2011;38:769–74.

    Article  CAS  PubMed  Google Scholar 

  75. Yanagimachi M, Goto H, Miyamae T, Kadota K, Imagawa T, Mori M, et al. Association of IRF5 polymorphisms with susceptibility to hemophagocytic lymphohistiocytosis in children. J Clin Immunol. 2011;31:946–51.

    Article  PubMed  Google Scholar 

  76. Ban T, Sato GR, Tamura T. Regulation and role of the transcription factor IRF5 in innate immune responses and systemic lupus erythematosus. Int Immunol. 2018;30:529–36.

    CAS  PubMed  Google Scholar 

  77. Mogensen TH. IRF and STAT transcription factors—from basic biology to roles in infection, protective immunity, and primary immunodeficiencies. Front Immunol. 2019;9:3047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Stephan JL, Zeller J, Hubert P, Herbelin C, Dayer JM, Prieur AM. Macrophage activation syndrome and rheumatic disease in childhood—a report of 4 new cases. Clin Exp Rheumatol. 1993;11:451–6.

    CAS  PubMed  Google Scholar 

  79. Grom AA, Passo M. Macrophage activation syndrome in systemic juvenile rheumatoid arthritis. J Pediatr. 1996;129:630–2.

    Article  CAS  PubMed  Google Scholar 

  80. Mellins ED, Macaubas C, Grom AA. Pathogenesis of systemic juvenile idiopathic arthritis: some answers, more questions. Nat Rev Rheumatol. 2011;7:416–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Masters SL, Simon A, Aksentijevich I, Kastner DL. Horror autoinflammaticus: the molecularpathophysiology of autoinflammatory disease (*). Annu Rev Immunol. 2009;27:621–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kitamura A, Sasaki Y, Abe T, Kano H, Yasutomo K. An inherited mutation in NLRC4 causes autoinflammation in human and mice. J Exp Med. 2014;211:2385–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Canna SW, de Jesus AA, Gouni S, Brooks SR, Marrero B, Liu Y, et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 2014;46:1140–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, Loring E, Choi M, et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet. 2014;46:1135–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Canna SW, Girard C, Malle L, de Jesus A, Romberg N, Kelsen J, et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J Allergy Clin Immunol. 2017;139:1698–701.

    Article  CAS  PubMed  Google Scholar 

  86. Murata K, Yoshitomi H, Tanida S, Ishikawa M, Nishitani K, Ito H, et al. Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther. 2010;12:R86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Kawashima M, Yamamura M, Taniai M, Yamauchi H, Tanimoto T, Kurimoto M, et al. Levels of interleukin-18 and its binding inhibitors in the blood circulation of patients with adult-onset Still’s disease. Arthritis Rheum. 2001;44:550–60.

    Article  CAS  PubMed  Google Scholar 

  88. Maeno N, Takei S, Nomura Y, Imanaka H, Hokonohara M, Miyata K. Highly elevated serum levels of interleukin-18 in systemic juvenile idiopathic arthritis but not in other juvenile idiopathic arthritis subtypes or in Kawasaki disease: comment on the article by Kawashima et al. Arthritis Rheum. 2002;46:2539–41.

    Article  PubMed  Google Scholar 

  89. Shimizu M, Nakagishi Y, Yachie A. Distinct subsets of patients with systemic juvenile idiopathic arthritis based on their cytokine profiles. Cytokine. 2013;61:345–8.

    Article  CAS  PubMed  Google Scholar 

  90. Yasin S, Fall N, Brown RA, Henderlight M, Canna SW, Girard-Guyonvarc’h C, et al. IL-18 as a biomarker linking systemic juvenile idiopathic arthritis and macrophage activation syndrome. Rheumatology. 2019. https://doi.org/10.1093/rheumatology/kez282.

    Article  PubMed Central  Google Scholar 

  91. Rigaud S, Fondanèche M-C, Lambert N, Pasquier B, Mateo V, Soulas P, et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature. 2006;444:110–4.

    Article  CAS  PubMed  Google Scholar 

  92. Marsh RA, Madden L, Kitchen BJ, Mody R, McClimon B, Jordan MB, et al. XIAP deficiency: a unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood. 2010;116:1079–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Latour S, Aguilar C. XIAP deficiency syndrome in humans. Semin Cell Dev Biol. 2015;39:115–23.

    Article  CAS  PubMed  Google Scholar 

  94. Wada T, Kanegane H, Ohta K, Katoh F, Imamura T, Nakazawa Y, et al. Sustained elevation of serum interleukin-18 and its association with hemophagocytic lymphohistiocytosis in XIAP deficiency. Cytokine. 2014;65:74–8.

    Article  CAS  PubMed  Google Scholar 

  95. Arduini A, Marasco E, Marucci G, Pardeo M, Insalaco A, Caiello I, et al. An unusual presentation of purine nucleoside phosphorylase deficiency mimicking systemic juvenile idiopathic arthritis complicated by macrophage activation syndrome. Pediatr Rheumatol. 2019;17:25.

    Article  Google Scholar 

  96. Rigante D, Emmi G, Fastiggi M, Silvestri E, Cantarini L. Macrophage activation syndrome in the course of monogenic autoinflammatory disorders. Clin Rheumatol. 2015. https://doi.org/10.1007/s10067-015-2923-0.

    Article  PubMed  Google Scholar 

  97. Ter Haar NM, Jeyaratnam J, Lachmann HJ, Simon A, Brogan PA, Doglio M, et al. The phenotype and genotype of mevalonate kinase deficiency: A series of 114 cases from the eurofever registry. Arthritis Rheumatol. 2016;68:2795–805.

    Article  PubMed  CAS  Google Scholar 

  98. Kernan KF, Ghaloul-Gonzalez L, Shakoory B, Kellum JA, Angus DC, Carcillo JA. Adults with septic shock and extreme hyperferritinemia exhibit pathogenic immune variation. Genes Immun. 2019;20:520–6.

    Article  CAS  PubMed  Google Scholar 

  99. Hanson EP, Monaco-Shawver L, Solt LA, Madge LA, Banerjee PP, May MJ, et al. Hypomorphic nuclear factor-κB essential modulator mutation database and reconstitution system identifies phenotypic and immunologic diversity. J Allergy Clin Immunol. 2008;122:1169–77.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Salt BH, Niemela JE, Pandey R, Hanson EP, Deering RP, Quinones R, et al. IKBKG (nuclear factor-κB essential modulator) mutation can be associated with opportunistic infection without impairing Toll-like receptor function. J Allergy Clin Immunol. 2008;121:976–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Maubach G, Schmädicke A-C, Naumann M. NEMO links nuclear factor-κB to human diseases. Trends Mol Med. 2017;23:1138–55.

    Article  CAS  PubMed  Google Scholar 

  102. Ricci S, Romano F, Nieddu F, Picard C, Azzari C. OL-EDA-ID syndrome: a novel hypomorphic NEMO mutation associated with a severe clinical presentation and transient HLH. J Clin Immunol. 2017;37:7–11.

    Article  PubMed  Google Scholar 

  103. de Jesus AA, Hou Y, Brooks S, Malle L, Biancotto A, Huang Y, et al. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J Clin Invest. 2019. https://doi.org/10.1172/JCI129301.

    Article  Google Scholar 

  104. Behrens EM, Kreiger PA, Cherian S, Cron RQ. Interleukin 1 receptor antagonist to treat cytophagic histiocytic panniculitis with secondary hemophagocytic lymphohistiocytosis. J Rheumatol. 2006;33:2081–4.

    PubMed  Google Scholar 

  105. Zhou Q, Wang H, Schwartz DM, Stoffels M, Park YH, Zhang Y, et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet. 2016;48:67–73.

    Article  CAS  PubMed  Google Scholar 

  106. Aksentijevich I, Zhou Q. NF-κB pathway in autoinflammatory diseases: dysregulation of protein modifications by ubiquitin defines a new category of autoinflammatory diseases. Front Immunol. 2017;8:399.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Li G, Liu H, Guan W, Xu H, Wu B, Sun L. Expanding the spectrum of A20 haploinsufficiency in two Chinese families: cases report. BMC Med Genet. 2019;20:124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Urriola N, Williams A, Keat K. Macrophage activation syndrome/haemophagocytic lymphohistiocytosis secondary to Burkholderia cepacia complex septicaemia in an elderly female carrier of X-linked chronic granulomatous disease with extreme lyonisation: ‘cepacia syndrome’ revisited. BMJ Case Rep. 2019;12:e230434.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Álvarez-Cardona A, Rodríguez-Lozano AL, Blancas-Galicia L, Rivas-Larrauri FE, Yamazaki-Nakashimada MA. Intravenous immunoglobulin treatment for macrophage activation syndrome complicating chronic granulomatous disease. J Clin Immunol. 2012;32:207–11.

    Article  PubMed  Google Scholar 

  110. van Montfrans JM, Rudd E, van de Corput L, Henter J-I, Nikkels P, Wulffraat N, et al. Fatal hemophagocytic lymphohistiocytosis in X-linked chronic granulomatous disease associated with a perforin gene variant. Pediatr Blood Cancer. 2009;52:527–9.

    Article  PubMed  Google Scholar 

  111. Valentine G, Thomas TA, Nguyen T, Lai Y-C. Chronic granulomatous disease presenting as hemophagocytic lymphohistiocytosis: a case report. Pediatrics. 2014;134:e1727–30.

    Article  PubMed  Google Scholar 

  112. Akagi K, Kawai T, Watanabe N, Yokoyama M, Arai K, Harayama S, et al. A case of macrophage activation syndrome developing in a patient with chronic granulomatous disease-associated colitis. J Pediatr Hematol Oncol. 2014;36:e169–72.

    Article  PubMed  Google Scholar 

  113. Parekh C, Hofstra T, Church JA, Coates TD. Hemophagocytic lymphohistiocytosis in children with chronic granulomatous disease. Pediatr Blood Cancer. 2011;56:460–2.

    Article  PubMed  Google Scholar 

  114. Palacı́n M, Bertran J, Chillarón J, Estévez R, Zorzano A. Lysinuric protein intolerance: mechanisms of pathophysiology. Mol Genet Metab. 2004;81:27–37.

    Article  CAS  Google Scholar 

  115. Mauhin W, Habarou F, Gobin S, Servais A, Brassier A, Grisel C, et al. Update on lysinuric protein intolerance, a multi-faceted disease retrospective cohort analysis from birth to adulthood. Orphanet J Rare Dis. 2017;12:3.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Gruber C, Martin-Fernandez M, Ailal F, Qiu X, Taft J, Altman J, et al. Homozygous STAT2 gain-of-function mutation by loss of USP18 activity in a patient with type I interferonopathy. J Exp Med. 2020;217. https://doi.org/10.1084/jem.20192319.

  117. Duncan CJA, Thompson BJ, Chen R, Rice GI, Gothe F, Young DF, et al. Severe type I interferonopathy and unrestrained interferon signaling due to a homozygous germline mutation in STAT2. Sci Immunol. 2019;4:eaav7501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tsoukas P, Schneider C, Van der kraak L, Canna S. Abortive viral infection becomes macrophage activation syndrome in mice with chronically elevated interleukin-18: evidence for synergy wiht cytotoxic impairment. Arthritis Rheumatol. 2018;70(suppl 10). https://acrabstracts.org/abstract/abortive-viral-infection-becomes-macrophage-activation-syndrome-in-mice-with-chronically-elevated-interleukin-18-evidence-for-synergy-with-cytotoxic-impairment/.

  119. Ombrello MJ, Arthur VL, Remmers EF, Hinks A, Tachmazidou I, Grom AA, et al. Genetic architecture distinguishes systemic juvenile idiopathic arthritis from other forms of juvenile idiopathic arthritis: clinical and therapeutic implications. Ann Rheum Dis. 2017;76:906–13.

    Article  CAS  PubMed  Google Scholar 

  120. Asano T, Furukawa H, Sato S, Yashiro M, Kobayashi H, Watanabe H, et al. Effects of HLA-DRB1 alleles on susceptibility and clinical manifestations in Japanese patients with adult onset Still’s disease. Arthritis Res Ther. 2017;19:199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Kernan KF, Ghaloul-Gonzalez L, Vockley J, Carcillo JA. Rapid whole genome sequencing and fulfilling the promise of precision pediatric critical care*. Pediatr Crit Care Med. 2019;20:1085–6.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Sanford EF, Clark MM, Farnaes L, Williams MR, Perry JC, Ingulli EG, et al. Rapid whole genome sequencing has clinical utility in children in the PICU*. Pediatr Crit Care Med. 2019;20:1007–20.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Tesi B, Bryceson YT. HLH: genomics illuminates pathophysiological diversity. Blood. 2018;132:5–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from SOBI (investigator initiated clinical trial), the UAB Center for Genomics Research and HudsonAlpha Institute for Biotechnology, and the Histiocytosis Association to RQC; and by grants from the NIH (National Institute of Arthritis and Musculoskeletal and Skin Diseases grants K08‐AR‐072075), and from Cincinnati Children’s Research Foundation to GSS.

Author information

Authors and Affiliations

Authors

Contributions

GSS and RQC co-designed and co-authored the review. Both authors thoroughly revised and reviewed the manuscript.

Corresponding author

Correspondence to Randy Q. Cron.

Ethics declarations

Conflict of interest

RQC has served as a paid consultant to SOBI, Pfizer, and Novartis, each less than $5000. GSS has served as a paid consultant to Novartis and SOBI, each less than $5000.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulert, G.S., Cron, R.Q. The genetics of macrophage activation syndrome. Genes Immun 21, 169–181 (2020). https://doi.org/10.1038/s41435-020-0098-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-020-0098-4

This article is cited by

Search

Quick links