Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

NETosis, complement, and coagulation: a triangular relationship

Abstract

NETosis is a regulated form of neutrophil cell death that contributes to the host defense against pathogens and was linked to various diseases soon after its first description in 2004. During NETosis, neutrophils release neutrophil extracellular traps (NETs), which can capture and kill bacteria and other pathogens to prevent them from spreading. Although substantial progress has been made in our understanding of NETosis, the precise mechanism underlying NETosis is still a matter of debate. Research continues to elucidate the molecular pathways involved in NETosis. In recent years, interactions with the complement and coagulation systems have become increasingly apparent. Activated complement proteins can stimulate NET formation, and NETs, in turn, can serve as a platform for complement activation. In addition, NETs can act as a scaffold for thrombus formation during coagulation. While crosstalk between the coagulation and complement systems has been previously described, NETosis appears to be a third important player in this consortium to protect the host against pathogens. This review summarizes our current knowledge on the mutual interactions between NETosis, the complement system and the coagulation system, with an emerging description of their complex triangular relationship.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    CAS  PubMed  Google Scholar 

  2. Jorch, S. K. & Kubes, P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat. Med. 23, 279–287 (2017).

    CAS  PubMed  Google Scholar 

  3. Urban, C. F. et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 5, e1000639 (2009).

    PubMed  PubMed Central  Google Scholar 

  4. McDonald, B., Urrutia, R., Yipp, B. G., Jenne, C. N. & Kubes, P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 12, 324–333 (2012).

    CAS  PubMed  Google Scholar 

  5. Pinegin, B., Vorobjeva, N. & Pinegin, V. Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity. Autoimmun. Rev. 14, 633–640 (2015).

    CAS  PubMed  Google Scholar 

  6. Fuchs, T. A. et al. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176, 231–241 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Metzler, K. D. et al. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood 117, 953–959 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Papayannopoulos, V., Metzler, K. D., Hakkim, A. & Zychlinsky, A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 191, 677–691 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Palmer, L. J. et al. Hypochlorous acid regulates neutrophil extracellular trap release in humans. Clin. Exp. Immunol. 167, 261–268 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Metzler, K. D., Goosmann, C., Lubojemska, A., Zychlinsky, A. & Papayannopoulos, V. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep. 8, 883–896 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pires, R. H., Felix, S. B. & Delcea, M. The architecture of neutrophil extracellular traps investigated by atomic force microscopy. Nanoscale 8, 14193–14202 (2016).

    CAS  PubMed  Google Scholar 

  12. Urban, C. F., Reichard, U., Brinkmann, V. & Zychlinsky, A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell. Microbiol. 8, 668–676 (2006).

    CAS  PubMed  Google Scholar 

  13. Li, P. et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 207, 1853–1862 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Brinkmann, V. & Zychlinsky, A. Neutrophil extracellular traps: is immunity the second function of chromatin? J. Cell Biol. 198, 773–783 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Martinod, K. et al. PAD4-deficiency does not affect bacteremia in polymicrobial sepsis and ameliorates endotoxemic shock. Blood 125, 1948–1956 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sorensen, O. E. et al. Papillon-Lefevre syndrome patient reveals species-dependent requirements for neutrophil defenses. J. Clin. Invest. 124, 4539–4548 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yipp, B. G. et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat. Med. 18, 1386–1393 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pilsczek, F. H. et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J. Immunol. 185, 7413–7425 (2010).

    CAS  PubMed  Google Scholar 

  19. Kenny E. F., et al. Diverse stimuli engage different neutrophil extracellular trap pathways. eLife 6, e24437 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. Hoppenbrouwers, T. et al. In vitro induction of NETosis: Comprehensive live imaging comparison and systematic review. PLoS ONE 12, e0176472 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. Khandpur, R. et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 5, 178ra40 (2013).

    PubMed  PubMed Central  Google Scholar 

  22. Jimenez-Alcazar, M. et al. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science 358, 1202–1206 (2017).

    CAS  PubMed  Google Scholar 

  23. Hakkim, A. et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl Acad. Sci. USA 107, 9813–9818 (2010).

    CAS  PubMed  Google Scholar 

  24. Farrera, C. & Fadeel, B. Macrophage clearance of neutrophil extracellular traps is a silent process. J. Immunol. 191, 2647–2656 (2013).

    CAS  PubMed  Google Scholar 

  25. Berends, E. T., Kuipers, A., Ravesloot, M. M., Urbanus, R. T. & Rooijakkers, S. H. Bacteria under stress by complement and coagulation. FEMS Microbiol. Rev. 38, 1146–1171 (2014).

    CAS  PubMed  Google Scholar 

  26. Morgan, B. P. The membrane attack complex as an inflammatory trigger. Immunobiology 221, 747–751 (2016).

    CAS  PubMed  Google Scholar 

  27. Joiner, K. A., Brown, E. J. & Frank, M. M. Complement and bacteria: chemistry and biology in host defense. Annu. Rev. Immunol. 2, 461–491 (1984).

    CAS  PubMed  Google Scholar 

  28. Palmer, L. J., Damgaard, C., Holmstrup, P. & Nielsen, C. H. Influence of complement on neutrophil extracellular trap release induced by bacteria. J. Periodontal Res. 51, 70–76 (2016).

    CAS  PubMed  Google Scholar 

  29. Sayegh, E. T., Bloch, O. & Parsa, A. T. Complement anaphylatoxins as immune regulators in cancer. Cancer Med. 3, 747–758 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. van der Maten, E. et al. Alternative pathway regulation by factor H modulates Streptococcus pneumoniae induced proinflammatory cytokine responses by decreasing C5a receptor crosstalk. Cytokine 88, 281–286 (2016).

    PubMed  Google Scholar 

  31. Camous, L. et al. Complement alternative pathway acts as a positive feedback amplification of neutrophil activation. Blood 117, 1340–1349 (2011).

    CAS  PubMed  Google Scholar 

  32. Geddings, J. E. & Mackman, N. New players in haemostasis and thrombosis. Thromb. Haemost. 111, 570–574 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Esmon, C. T. The regulation of natural anticoagulant pathways. Science 235, 1348–1352 (1987).

    CAS  PubMed  Google Scholar 

  34. Herwald, H. et al. Activation of the contact-phase system on bacterial surfaces--a clue to serious complications in infectious diseases. Nat. Med. 4, 298–302 (1998).

    CAS  PubMed  Google Scholar 

  35. Thammavongsa, V., Kim, H. K., Missiakas, D. & Schneewind, O. Staphylococcal manipulation of host immune responses. Nat. Rev. Microbiol. 13, 529–543 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Varju, I. et al. DNA, histones and neutrophil extracellular traps exert anti-fibrinolytic effects in a plasma environment. Thromb. Haemost. 113, 1289–1298 (2015).

    PubMed  Google Scholar 

  37. Pfeiler, S., Stark, K., Massberg, S. & Engelmann, B. Propagation of thrombosis by neutrophils and extracellular nucleosome networks. Haematologica 102, 206–213 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Schulz, C., Engelmann, B. & Massberg, S. Crossroads of coagulation and innate immunity: the case of deep vein thrombosis. J. Thromb. Haemost. 11, 233–241 (2013).

    PubMed  Google Scholar 

  39. Papareddy, P. et al. Proteolysis of human thrombin generates novel host defense peptides. PLoS Pathog. 6, e1000857 (2010).

    PubMed  PubMed Central  Google Scholar 

  40. Guglietta, S. et al. Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal tumorigenesis. Nat. Commun. 7, 11037 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Neeli, I., Dwivedi, N., Khan, S. & Radic, M. Regulation of extracellular chromatin release from neutrophils. J. Innate Immun. 1, 194–201 (2009).

    CAS  PubMed  Google Scholar 

  42. Behnen, M. et al. Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcgammaRIIIB and Mac-1. J. Immunol. 193, 1954–1965 (2014).

    CAS  PubMed  Google Scholar 

  43. Huang, Y. M., Wang, H., Wang, C., Chen, M. & Zhao, M. H. Promotion of hypercoagulability in antineutrophil cytoplasmic antibody-associated vasculitis by C5a-induced tissue factor-expressing microparticles and neutrophil extracellular traps. Arthritis Rheumatol. 67, 2780–2790 (2015).

    PubMed  Google Scholar 

  44. Wang, H., Wang, C., Zhao, M. H. & Chen, M. Neutrophil extracellular traps can activate alternative complement pathways. Clin. Exp. Immunol. 181, 518–527 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Martinelli, S. et al. Induction of genes mediating interferon-dependent extracellular trap formation during neutrophil differentiation. J. Biol. Chem. 279, 44123–44132 (2004).

    CAS  PubMed  Google Scholar 

  46. Leffler, J. et al. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J. Immunol. 188, 3522–3531 (2012).

    CAS  PubMed  Google Scholar 

  47. Yuen, J. et al. NETosing neutrophils activate complement both on their own NETs and bacteria via alternative and non-alternative pathways. Front. Immunol. 7, 137 (2016).

    PubMed  PubMed Central  Google Scholar 

  48. Schneider, A. E., Sandor, N., Karpati, E. & Jozsi, M. Complement factor H modulates the activation of human neutrophil granulocytes and the generation of neutrophil extracellular traps. Mol. Immunol. 72, 37–48 (2016).

    CAS  PubMed  Google Scholar 

  49. Romero, V. et al. Immune-mediated pore-forming pathways induce cellular hypercitrullination and generate citrullinated autoantigens in rheumatoid arthritis. Sci. Transl. Med. 5, 209ra150 (2013).

    PubMed  PubMed Central  Google Scholar 

  50. Kessenbrock, K. et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat. Med. 15, 623–625 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. O’Flynn, J., Dixon, K. O., Faber Krol, M. C., Daha, M. R. & van Kooten, C. Myeloperoxidase directs properdin-mediated complement activation. J. Innate Immun. 6, 417–425 (2014).

    PubMed  Google Scholar 

  52. Halder, L. D. et al. Factor H binds to extracellular DNA traps released from human blood monocytes in response to Candida albicans. Front. Immunol. 7, 671 (2016).

    PubMed  Google Scholar 

  53. Venge, P. & Olsson, I. Cationic proteins of human granulocytes. VI. Effects on the complement system and mediation of chemotactic activity. J. Immunol. 115, 1505–1508 (1975).

    CAS  PubMed  Google Scholar 

  54. Vogt, W. Complement activation by myeloperoxidase products released from stimulated human polymorphonuclear leukocytes. Immunobiology 195, 334–346 (1996).

    CAS  PubMed  Google Scholar 

  55. Maison, C. M., Villiers, C. L. & Colomb, M. G. Proteolysis of C3 on U937 cell plasma membranes. Purification of cathepsin G. J. Immunol. 147, 921–926 (1991).

    CAS  PubMed  Google Scholar 

  56. Brill, A. et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J. Thromb. Haemost. 10, 136–144 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. de Boer, O. J. et al. Neutrophils, neutrophil extracellular traps and interleukin-17 associate with the organisation of thrombi in acute myocardial infarction. Thromb. Haemost. 109, 290–297 (2013).

    PubMed  Google Scholar 

  58. Maugeri, N. et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J. Thromb. Haemost. 12, 2074–2088 (2014).

    CAS  PubMed  Google Scholar 

  59. Grasso, S. et al. Interaction of factor VII activating protease (FSAP) with neutrophil extracellular traps (NETs). Thromb. Res. 161, 36–42 (2017).

    PubMed  Google Scholar 

  60. Darbousset, R. et al. Tissue factor-positive neutrophils bind to injured endothelial wall and initiate thrombus formation. Blood 120, 2133–2143 (2012).

    CAS  PubMed  Google Scholar 

  61. Gould, T. J. et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler. Thromb. Vasc. Biol. 34, 1977–1984 (2014).

    CAS  PubMed  Google Scholar 

  62. von Bruhl, M. L. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 209, 819–835 (2012).

    Google Scholar 

  63. Ma, A. C. & Kubes, P. Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J. Thromb. Haemost. 6, 415–420 (2008).

    CAS  PubMed  Google Scholar 

  64. Clark, S. R. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 13, 463–469 (2007).

    CAS  PubMed  Google Scholar 

  65. Pieterse, E., Rother, N., Yanginlar, C., Hilbrands, L. B. & van der Vlag, J. Neutrophils discriminate between lipopolysaccharides of different bacterial sources and selectively release neutrophil extracellular traps. Front. Immunol. 7, 484 (2016).

    PubMed  PubMed Central  Google Scholar 

  66. Stark, K. et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood 128, 2435–2449 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Peng, H. H. et al. Mineral particles stimulate innate immunity through neutrophil extracellular traps containing HMGB1. Sci. Rep. 7, 16628 (2017).

    PubMed  PubMed Central  Google Scholar 

  68. Fuchs, T. A. et al. Extracellular DNA traps promote thrombosis. Proc. Natl Acad. Sci. USA 107, 15880–15885 (2010).

    CAS  PubMed  Google Scholar 

  69. Hamzeh-Cognasse, H. et al. Platelets and infections—complex interactions with bacteria. Front. Immunol. 6, 82 (2015).

    PubMed  PubMed Central  Google Scholar 

  70. Noubouossie, D. F. et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood 129, 1021–1029 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Semeraro, F. et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 118, 1952–1961 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Xu, J. et al. Extracellular histones are major mediators of death in sepsis. Nat. Med. 15, 1318–1321 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. McDonald, B. et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 129, 1357–1367 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Healy, L. D. et al. Colocalization of neutrophils, extracellular DNA and coagulation factors during NETosis: Development and utility of an immunofluorescence-based microscopy platform. J. Immunol. Methods 435, 77–84 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kambas, K. et al. Autophagy mediates the delivery of thrombogenic tissue factor to neutrophil extracellular traps in human sepsis. PLoS ONE 7, e45427 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kambas, K. et al. Tissue factor expression in neutrophil extracellular traps and neutrophil derived microparticles in antineutrophil cytoplasmic antibody associated vasculitis may promote thromboinflammation and the thrombophilic state associated with the disease. Ann. Rheum. Dis. 73, 1854–1863 (2014).

    CAS  PubMed  Google Scholar 

  77. Oehmcke, S., Morgelin, M. & Herwald, H. Activation of the human contact system on neutrophil extracellular traps. J. Innate Immun. 1, 225–230 (2009).

    PubMed  Google Scholar 

  78. Massberg, S. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 16, 887–896 (2010).

    CAS  PubMed  Google Scholar 

  79. Markiewski, M. M., Nilsson, B., Ekdahl, K. N., Mollnes, T. E. & Lambris, J. D. Complement and coagulation: strangers or partners in crime? Trends Immunol. 28, 184–192 (2007).

    CAS  PubMed  Google Scholar 

  80. Lupu, F., Keshari, R. S., Lambris, J. D. & Coggeshall, K. M. Crosstalk between the coagulation and complement systems in sepsis. Thromb. Res. 133, S28–S31 (2014).

    PubMed  PubMed Central  Google Scholar 

  81. Conway, E. M. Reincarnation of ancient links between coagulation and complement. J. Thromb. Haemost. 13, S121–S132 (2015).

    CAS  PubMed  Google Scholar 

  82. Amara, U. et al. Molecular intercommunication between the complement and coagulation systems. J. Immunol. 185, 5628–5636 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Huber-Lang, M. et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat. Med. 12, 682–687 (2006).

    CAS  PubMed  Google Scholar 

  84. Krisinger, M. J. et al. Thrombin generates previously unidentified C5 products that support the terminal complement activation pathway. Blood 120, 1717–1725 (2012).

    CAS  PubMed  Google Scholar 

  85. Barthel, D., Schindler, S. & Zipfel, P. F. Plasminogen is a complement inhibitor. J. Biol. Chem. 287, 18831–18842 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Subramaniam, S. et al. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development. Blood 129, 2291–2302 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Rafail, S. et al. Complement deficiency promotes cutaneous wound healing in mice. J. Immunol. 194, 1285–1291 (2015).

    CAS  PubMed  Google Scholar 

  88. Peerschke, E. I., Yin, W. & Ghebrehiwet, B. Complement activation on platelets: implications for vascular inflammation and thrombosis. Mol. Immunol. 47, 2170–2175 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. de Jong, H. K., van der Poll, T. & Wiersinga, W. J. The systemic pro-inflammatory response in sepsis. J. Innate Immun. 2, 422–430 (2010).

    PubMed  Google Scholar 

  90. Levi, M., Schultz, M. & van der Poll, T. Sepsis and thrombosis. Semin. Thromb. Hemost. 39, 559–566 (2013).

    CAS  PubMed  Google Scholar 

  91. Demers, M. et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc. Natl Acad. Sci. USA 109, 13076–13081 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Johan van der Vlag and Nils Rother for their useful feedback on the manuscript. This work was supported in part by the Dutch Technology Foundation STW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ger J. M. Pruijn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Bont, C.M., Boelens, W.C. & Pruijn, G.J.M. NETosis, complement, and coagulation: a triangular relationship. Cell Mol Immunol 16, 19–27 (2019). https://doi.org/10.1038/s41423-018-0024-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-018-0024-0

Keywords

This article is cited by

Search

Quick links