Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RETRACTED ARTICLE: MicroRNA-4268 inhibits cell proliferation via AKT/JNK signalling pathways by targeting Rab6B in human gastric cancer

This article was retracted on 24 August 2023

This article has been updated

Abstract

MicroRNAs (miRNAs) play critical roles in the tumorigenesis and progression of gastric cancer (GC). However, the biological function of miR-4268 in GC and its mechanism remain unclear. In the present study, qTR-PCR found that the expression of miR-4268 was significantly downregulated in GC tissues and cell lines. The overexpression of miR-4268 inhibited GC cell proliferation and the cell cycle G1/S phase transition, and induced cell apoptosis. In contrast, inhibition of miR-4268 promoted cell proliferation and G1–S transition, and suppressed cell apoptosis. Further analyses revealed that miR-4268 expression was negatively correlated with Rab6B expression in GC tissues. Rab6B was verified to be a direct target of miR-4268. Notably, silencing Rab6B resulted in the same biological effects in GC cells as those induced by overexpression of miR-4268. Importantly, both miR-4268 overexpression and Rab6B silence inhibited the AKT/JNK signaling pathways, which modulated cell cycle regulators (Cyclin D1 and CDK4). In contrast, inhibition of miR-4268 promoted the AKT/JNK signaling pathways. MiR-4268 overexpression also promoted the p38 MAPK signaling pathway. Taken together, miR-4268 suppresses GC cell proliferation through inhibiting the AKT/JNK signaling pathways by targeting Rab6B and induces cell apoptosis through promoting the p38 MAPK signaling pathway. Our findings indicate a tumor-suppressor role of miR-4268 in GC pathogenesis and the potential of miR-4268 in GC theropy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Jiang YX, Yang SW, Li PA, Luo X, Li ZY, Hao YX. et al. The promotion of the transformation of quiescent gastric cancer stem cells by IL-17 and the underlying mechanisms. Oncogene. 2016;36:1256–64.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhao L, Liu Y, Tong D, Qin Y, Yang J, Xue M. et al. MeCP2 promotes gastric cancer progression through regulating FOXF1/Wnt5a/β-Catenin and MYOD1/Caspase-3 signaling pathways. EbioMedicine. 2017;16:87–100.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tan P, Yeoh KG. Genetics and molecular pathogenesis of gastric adenocarcinoma. Gastroenterology. 2015;149:1153–62.

    Article  CAS  PubMed  Google Scholar 

  4. Hundahl SA, Phillips JL, Menck HR. The National Cancer Data Base Report on poor survival of U.S. gastric carcinoma patients treated with gastrectomy: Fifth Edition American Joint Committee on Cancer staging, proximal disease, and the “different disease” hypothesis. Cancer. 2000;88:921–32.

    Article  CAS  PubMed  Google Scholar 

  5. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao T, Chen Y, Sheng S, Wu Y, Zhang T. Upregulating microRNA-498 inhibits gastric cancer proliferation invasion and chemoresistance through inverse interaction of Bmi1. Cancer Gene Ther. 2018. https://doi.org/10.1038/s41417-018-0065-7.

  7. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136:642–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gorur A, Balci FS, Dogruer UN, Ayaz L, Akbayir S, Yildirim YH. et al. Determination of plasma microRNA for early detection of gastric cancer. Mol Biol Rep. 2013;40:2091–6.

    Article  CAS  PubMed  Google Scholar 

  9. Liu H, Zhu L, Liu B, Yang L, Meng X, Zhang W. et al. Genome-wide microRNA profiles identify miR- 378 as a serum biomarker for early detection of gastric cancer. Cancer Lett. 2012;316:196–203.

    Article  CAS  PubMed  Google Scholar 

  10. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.

    Article  CAS  PubMed  Google Scholar 

  11. Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. 2014;9:287–314.

    Article  PubMed  Google Scholar 

  12. Zhao LY, Tong DD, Xue M, Ma HL, Liu SY, Yang J. et al. MeCP2, a target of miR-638, facilitates gastric cancer cell proliferation through activation of the MEK1/2-ERK1/2 signaling pathway by upregulating GIT1. Oncogenesis. 2017;6:e368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo B, Zhao Z, Wang Z, Li Q, Wang X, Wang W. et al. MicroRNA-302b-3p suppresses cell proliferation through AKT pathway by targeting IGF-1R in human gastric cancer. Cell Physiol Biochem. 2017;42:1701–11.

    Article  CAS  PubMed  Google Scholar 

  14. Opdam FJ, Echard A, Croes HJ, van den Hurk JA, van de Vorstenbosch RA, Ginsel LA. et al. The small GTPase Rab6B, a novel Rab6 subfamily member, is cell-type specifically expressed and localised to the Golgi apparatus. J Cell Sci. 2000;113:2725–35.

    Article  CAS  PubMed  Google Scholar 

  15. Li J, Jin Q, Huang F, Tang Z, Huang J. Effects of Rab27A and Rab27B on invasion, proliferation, apoptosis, and chemoresistance in human pancreatic cancer cells. Pancreas. 2017;46:1173–79.

    Article  CAS  PubMed  Google Scholar 

  16. Dai Y, Liu Y, Huang D, Yu C, Cai G, Pi L. et al. Increased expression of Rab coupling protein in squamous cell carcinoma of the head and neck and its clinical significance. Oncol Lett. 2012;3:1231–36.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu L, Wang Y, Bai R, Yang K, Tian Z. MiR-186 inhibited aerobic glycolysis in gastric cancer via HIF-1α regulation. Oncogenesis. 2017;6:e318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao HY, Huo FC, Wang HY, Pei DS. MicroRNA-9 inhibits the gastric cancer cell proliferation by targeting TNFAIP8. Cell Prolif. 2017;50:e12331.

  19. Zhang J, Jin M, Chen X, Zhang R, Huang Y, Liu H. et al. Loss of PPM1F expression predicts tumour recurrence and is negatively regulated by miR-590-3p in gastric cancer. Cell Prolif. 2018;51:e12444

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liang J, Liu X, Xue H, Qiu B, Wei B, Sun K. MicroRNA-103a inhibits gastric cancer cell proliferation, migration and invasion by targeting c-Myb. Cell Prolif. 2015;48:78–85.

    Article  CAS  PubMed  Google Scholar 

  21. Vosgha H, Salajegheh A, Smith RA, Lam AK. The important roles of miR-205 in normal physiology, cancers and as a potential therapeutic target. Curr Cancer Drug Targets. 2014;14:621–37.

    Article  CAS  PubMed  Google Scholar 

  22. Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10:513–25.

    Article  CAS  PubMed  Google Scholar 

  23. Bhuin T, Roy JK. Rab proteins: the key regulators of intracellular vesicle transport. Exp Cell Res. 2014;328:1–19.

    Article  CAS  PubMed  Google Scholar 

  24. Pfeffer SR. Rab GTPases: master regulators that establish the secretory and endocytic pathways. Mol Biol Cell. 2017;28:712–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tu K, Li J, Verma VK, Liu C, Billadeau DD, Lamprecht G. et al. Vasodilator stimulated phosphoprotein promotes activation of hepatic stellate cells by regulating Rab11-dependent plasma membrane targeting of transforming growth factor beta receptors. Hepatology. 2015;61:361–74.

    Article  CAS  PubMed  Google Scholar 

  26. Hou Q, Wu YH, Grabsch H, Zhu Y, Leong SH, Ganesan K. et al. Integrative genomics identifies RAB23 as an invasion mediator gene in diffuse-type gastric cancer. Cancer Res. 2008;68:4623–30.

    Article  CAS  PubMed  Google Scholar 

  27. Wheeler DB, Zoncu R, Root DE, Sabatini DM, Sawyers CL. Identification of an oncogenic RAB. protein Sci. 2015;350:211–17.

    CAS  Google Scholar 

  28. Luo ML, Gong C, Chen CH, Hu H, Huang P, Zheng M. et al. The Rab2A GTPase promotes breast cancer stem cells and tumorigenesis via Erk signaling activation. Cell Rep. 2015;11:111–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thomas JD, Zhang YJ, Wei YH, Cho JH, Morris LE, Wang HY. et al. Rab1A is an mTORC1 activator and a colorectal oncogene. Cancer Cell. 2014;26:754–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang X, Liu F, Qin X, Huang T, Huang B, Zhang Y. et al. Expression of Rab1A is upregulated in human lung cancer and associated with tumor size and T stage. Aging (Albany NY). 2016;8:2790–98.

    Article  CAS  PubMed  Google Scholar 

  31. Kajiho H, Kajiho Y, Frittoli E, Confalonieri S, Bertalot G, Viale G. et al. RAB2A controls MT1-MMP endocytic and E-cadherin polarized Golgi trafficking to promote invasive breast cancer programs. EMBO Rep. 2016;17:1061–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lodhi SS, Farmer R, Singh AK, Jaiswal YK, Wadhwa G. 3D structure generation, virtual screening and docking of human Ras-associated binding (Rab3A) protein involved in tumourigenesis. Mol Biol Rep. 2014;41:3951–59.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang D, Lu C, Ai H. Rab5a is overexpressed in oral cancer and promotes invasion through ERK/MMP signaling. Mol Med Rep. 2017;16:4569–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou Y, Wu B, Li JH, Nan G, Jiang JL, Chen ZN. Rab22a enhances CD147 recycling and is required for lung cancer cell migration and invasion. Exp Cell Res. 2017;357:9–16.

    Article  CAS  PubMed  Google Scholar 

  35. Guo B, Wang W, Zhao Z, Li Q, Zhou K, Zhao L. et al. Rab14 act as oncogene and induce proliferation of gastric cancer cells via AKT signaling pathway. PLoS ONE. 2017;12:e0170620

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kou Y, Qiao L, Wang Q. Identification of core miRNA based on small RNA-seq and RNA-seq for colorectal cancer by bioinformatics. Tumour Biol. 2015;36:2249–55.

    Article  CAS  PubMed  Google Scholar 

  37. Ejaz A, Mitterberger MC, Lu Z, Mattesich M, Zwierzina ME, Hörl S. et al. Weight loss upregulates the small gtpase diras3 in human white adipose progenitor cells, which negatively regulates adipogenesis and activates autophagy via akt-mtor inhibition. EbioMedicine. 2016;6:149–61.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xu N, Lao Y, Zhang Y, Gillespie DA. AKT: a double-edged sword in cell proliferation and genome stability. J Oncol. 2012;2012:951724

    Article  PubMed  PubMed Central  Google Scholar 

  39. Huang T, Liu D, Wang Y, Li P, Sun L, Xiong H. et al. FGFR2 promotes gastric cancer progression by inhibiting the expression of thrombospondin4 via PI3K-Akt-Mtor pathway. Cell Physiol Biochem. 2018;50:1332–45.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang J, Tong DD, Xue M, Jiang QY, Wang XF, Yang PB. et al. FAM196B acts as oncogene and promotes proliferation of gastric cancer cells through AKT signaling pathway. Cell Mol Biol (Noisy-le-Gd). 2017;63:18–23.

    Article  CAS  Google Scholar 

  41. Goel HL, Sayeed A, Breen M, Zarif MJ, Garlick DS, Leav I. et al. β1 integrins mediate resistance to ionizing radiation in vivo by inhibiting c-Jun amino terminal kinase 1. J Cell Physiol. 2013;228:1601–09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eke I, Deuse Y, Hehlgans S, Gurtner K, Krause M, Baumann M. et al. β1/FAK/cortactin signaling is essential for human head and neck cancer resistance to radiotherapy. J Clin Invest. 2012;122:1529–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ou J, Luan W, Deng J, Sa R, Liang H. αV integrin induces multicellular radioresistance in human nasopharyngeal carcinoma via activating SAPK/JNK pathway. PLoS ONE. 2012;7:e38737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang A, Ding G, Huang S, Wu Y, Pan X, Guan X. et al. c-Jun NH 2 -terminal kinase mediation of angiotensin II-induced proliferation of human mesangial cells. Am J Physiol Ren Physiol. 2005;288:1118–24.

    Article  Google Scholar 

  45. Bubici C, Papa S. JNK signalling in cancer: in need of new, smarter therapeutic targets. Br J Pharmacol. 2014;171:24–37.

    Article  CAS  PubMed  Google Scholar 

  46. Maddika S, Ande SR, Wiechec E, Hansen LL, Wesselborg S, Los M. Akt-mediated phosphorylation of CDK2 regulates its dual role in cell cycle progression and apoptosis. J Cell Sci. 2008;121:979–88.

    Article  CAS  PubMed  Google Scholar 

  47. Zhao LY, Zhang J, Guo B, Yang J, Han J, Zhao XG. et al. MECP2 promotes cell proliferation by activation ERK1/2 and inhibiting p38 activity in human hepatocellular carcinoma HEPG2 cells. Cell Mol Biol (Noisy-le-Gd). 2013;59:OL1876–81.

    CAS  Google Scholar 

  48. Kim HJ, Oh JE, Kim SW, Chun YJ, Kim MY. Ceramide induces p38 MAPK-dependent apoptosis and Bax translocation via inhibition of Akt in HL-60 cells. Cancer Lett. 2007;260:88–95.

    Article  PubMed  Google Scholar 

  49. Sun Y, Zhang D, Mao M, Lu Y, Jiao N. Roles of p38 and JNK protein kinase pathways activated by compound cantharidin capsules containing serum on proliferation inhibition and apoptosis of human gastric cancer cell line. Exp Ther Med. 2017;14:1809–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roy S, Roy S, Kar M. et al. p38 MAPK pathway and its interaction with TRF2 in cisplatin induced chemotherapeutic response in head and neck cancer. Oncogenesis. 2018;7:53

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang A, Lakshmanan J, Motameni A, Harbrecht BG. MicroRNA-203 suppresses proliferation in liver cancer associated with PIK3CA, p38 MAPK, c-Jun, and GSK3 signaling. Mol Cell Biochem. 2018;441:89–98.

    Article  CAS  PubMed  Google Scholar 

  52. Wada M, Canals D, Adada M, Coant N, Salama MF, Helke KL. et al. P38 delta MAPK promotes breast cancer progression and lung metastasis by enhancing cell proliferation and cell detachment. Oncogene. 2017;36:6649–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (81772985, 81874192, 81702918, and 81702765), Shaanxi Province Natural Science Foundation (2014JM2–3032), and Yanan City Science and Technology Research Development Planning Project (2016KS-06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Huang or Dongdong Tong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail:https://doi.org/10.1038/s41417-023-00660-9

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Xue, M., Zhang, L. et al. RETRACTED ARTICLE: MicroRNA-4268 inhibits cell proliferation via AKT/JNK signalling pathways by targeting Rab6B in human gastric cancer. Cancer Gene Ther 27, 461–472 (2020). https://doi.org/10.1038/s41417-019-0118-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-019-0118-6

Search

Quick links