Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Machine learning for genetic prediction of psychiatric disorders: a systematic review

This article has been updated

Abstract

Machine learning methods have been employed to make predictions in psychiatry from genotypes, with the potential to bring improved prediction of outcomes in psychiatric genetics; however, their current performance is unclear. We aim to systematically review machine learning methods for predicting psychiatric disorders from genetics alone and evaluate their discrimination, bias and implementation. Medline, PsycInfo, Web of Science and Scopus were searched for terms relating to genetics, psychiatric disorders and machine learning, including neural networks, random forests, support vector machines and boosting, on 10 September 2019. Following PRISMA guidelines, articles were screened for inclusion independently by two authors, extracted, and assessed for risk of bias. Overall, 63 full texts were assessed from a pool of 652 abstracts. Data were extracted for 77 models of schizophrenia, bipolar, autism or anorexia across 13 studies. Performance of machine learning methods was highly varied (0.48–0.95 AUC) and differed between schizophrenia (0.54–0.95 AUC), bipolar (0.48–0.65 AUC), autism (0.52–0.81 AUC) and anorexia (0.62–0.69 AUC). This is likely due to the high risk of bias identified in the study designs and analysis for reported results. Choices for predictor selection, hyperparameter search and validation methodology, and viewing of the test set during training were common causes of high risk of bias in analysis. Key steps in model development and validation were frequently not performed or unreported. Comparison of discrimination across studies was constrained by heterogeneity of predictors, outcome and measurement, in addition to sample overlap within and across studies. Given widespread high risk of bias and the small number of studies identified, it is important to ensure established analysis methods are adopted. We emphasise best practices in methodology and reporting for improving future studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Discrimination for all models.

Similar content being viewed by others

Change history

  • 16 September 2020

    Following publication of this article, the authors noticed that the Supplementary Figures were accidentally omitted. The Supplementary Information file has now been updated to include the figures.

References

  1. Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. J Mach Learn Res. 2011;15:315–23.

    Google Scholar 

  2. Hinton G, Deng L, Yu D, Dahl G, Mohamed AR, Jaitly N, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag. 2012;29:82–97.

    Google Scholar 

  3. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 2012;25:1097–105.

  4. Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural networks. Adv Neural Inf Process Syst. 2014;27:3104–12.

  5. Cordell HJ. Detecting gene–gene interactions that underlie human diseases. Nat Rev Genet. 2009;10:392–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Krystal JH, Murray JD, Chekroud AM, Corlett PR, Yang G, Wang X-J, et al. Computational psychiatry and the challenge of Schizophrenia. Schizophr Bull. 2017;43:473–5.

    PubMed  PubMed Central  Google Scholar 

  7. Schnack HG. Improving individual predictions: machine learning approaches for detecting and attacking heterogeneity in schizophrenia (and other psychiatric diseases). Schizophr Res. 2019;214:34–42.

    PubMed  Google Scholar 

  8. Tandon N, Tandon R. Will machine learning enable us to finally cut the gordian knot of Schizophrenia. Schizophr Bull. 2018;44:939–41.

    PubMed  PubMed Central  Google Scholar 

  9. Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, van Calster B. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol. 2019;110:12–22.

    PubMed  Google Scholar 

  10. Chen X, Ishwaran H. Random forests for genomic data analysis. Genomics 2012;99:323–9.

    CAS  PubMed  Google Scholar 

  11. Okser S, Pahikkala T, Aittokallio T. Genetic variants and their interactions in disease risk prediction—machine learning and network perspectives. BioData Min. 2013;6:5.

    PubMed  PubMed Central  Google Scholar 

  12. Okser S, Pahikkala T, Airola A, Salakoski T, Ripatti S, Aittokallio T. Regularized machine learning in the genetic prediction of complex traits. PLoS Genet. 2014;10:e1004754.

    PubMed  PubMed Central  Google Scholar 

  13. Iniesta R, Stahl D, McGuffin P. Machine learning, statistical learning and the future of biological research in psychiatry. Psychol Med. 2016;46:2455–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Librenza-Garcia D, Kotzian BJ, Yang J, Mwangi B, Cao B, Pereira Lima LN, et al. The impact of machine learning techniques in the study of bipolar disorder: a systematic review. Neurosci Biobehav Rev. 2017;80:538–54.

    PubMed  Google Scholar 

  15. Lee Y, Ragguett R-M, Mansur RB, Boutilier JJ, Rosenblat JD, Trevizol A, et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: a meta-analysis and systematic review. J Affect Disord. 2018;241:519–32.

    PubMed  Google Scholar 

  16. Durstewitz D, Koppe G, Meyer-Lindenberg A. Deep neural networks in psychiatry. Mol Psychiatry. 2019;24:1583–98.

    PubMed  Google Scholar 

  17. Ho DSW, Schierding W, Wake M, Saffery R, O’Sullivan J. Machine learning SNP based prediction for precision medicine. Front Genet 2019;10:267.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J, Duncan L, et al. Analysis of shared heritability in common disorders of the brain. Science. 2018;360:eaap8757.

    PubMed  Google Scholar 

  19. Kapur S, Phillips A, Insel T. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol Psychiatry. 2012;17:1174–9.

    CAS  PubMed  Google Scholar 

  20. Moons KGM, de Groot JAH, Bouwmeester W, Vergouwe Y, Mallett S, Altman DG, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med. 2014;11:e1001744.

    PubMed  PubMed Central  Google Scholar 

  21. Janssens ACJ, Ioannidis JP, van Duijn CM, Little J, Khoury MJ. Strengthening the reporting of genetic risk prediction studies: the GRIPS statement. Genome Med. 2011;3:16.

    PubMed  PubMed Central  Google Scholar 

  22. Debray TPA, Damen JAAG, Snell KIE, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ. 2017;356:i6460.

    PubMed  Google Scholar 

  23. Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med. 2019;170:51.

    PubMed  Google Scholar 

  24. Moher D, Liberati A, Tetzlaff J, Altman DG, Group TP. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

    PubMed  PubMed Central  Google Scholar 

  25. Pirooznia M, Seifuddin F, Judy J, Mahon PB, Potash JB, Zandi PP, et al. Data mining approaches for genome-wide association of mood disorders. Psychiatr Genet. 2012;22:55–61.

    PubMed  PubMed Central  Google Scholar 

  26. Guo Y, Wei Z, Keating BJ, Hakonarson H, The Genetic Consortium for Anorexia Nervosa, The Wellcome Trust Case Control Consortium 3, et al. Machine learning derived risk prediction of anorexia nervosa. BMC Med Genomics. 2016;9:4.

    PubMed  PubMed Central  Google Scholar 

  27. Vivian-Griffiths T, Baker E, Schmidt KM, Bracher-Smith M, Walters J, Artemiou A, et al. Predictive modeling of schizophrenia from genomic data: comparison of polygenic risk score with kernel support vector machines approach. Am J Med Genet Part B Neuropsychiatr Genet. 2019;180:80–5.

    Google Scholar 

  28. Power C, Elliott J. Cohort profile: 1958 British birth cohort (National Child Development Study). Int J Epidemiol. 2006;35:34–41.

    PubMed  Google Scholar 

  29. The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447:661–78.

    PubMed Central  Google Scholar 

  30. Li C, Yang C, Gelernter J, Zhao H. Improving genetic risk prediction by leveraging pleiotropy. Hum Genet. 2014;133:639–50.

    PubMed  Google Scholar 

  31. Acikel C, Son YA, Celik C, Gul H. Evaluation of potential novel variations and their interactions related to bipolar disorders: analysis of genome-wide association study data. Neuropsychiatr Dis Treat. 2016;12:2997–3004.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen J, Wu J, Mize T, Shui D, Chen X. Prediction of Schizophrenia diagnosis by integration of genetically correlated conditions and traits. J Neuroimmune Pharmacol. 2018;13:532–40.

    PubMed  PubMed Central  Google Scholar 

  33. Trakadis YJ, Sardaar S, Chen A, Fulginiti V, Krishnan A. Machine learning in schizophrenia genomics, a case-control study using 5,090 exomes. Am J Med Genet Part B Neuropsychiatr Genet. 2019;180:103–12.

    CAS  Google Scholar 

  34. Aguiar-Pulido V, Seoane JA, Rabuñal JR, Dorado J, Pazos A, Munteanu CR. Machine learning techniques for single nucleotide polymorphism—disease classification models in schizophrenia. Molecules. 2010;15:4875–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang H, Liu J, Sui J, Pearlson G, Calhoun VD. A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of Schizophrenia. Front Hum Neurosci. 2010;4:192.

    PubMed  PubMed Central  Google Scholar 

  36. Aguiar-Pulido V, Gestal M, Fernandez-Lozano C, Rivero D, Munteanu CR. Applied computational techniques on Schizophrenia using genetic mutations. Curr Top Med Chem. 2013;13:675–84.

    CAS  PubMed  Google Scholar 

  37. Engchuan W, Dhindsa K, Lionel AC, Scherer SW, Chan JH, Merico D. Performance of case-control rare copy number variation annotation in classification of autism. BMC Med Genomics. 2015;8:S7.

    PubMed  PubMed Central  Google Scholar 

  38. Laksshman S, Bhat RR, Viswanath V, Li X, Sundaram L, Bhat RR, et al. DeepBipolar: identifying genomic mutations for bipolar disorder via deep learning. Hum Mutat. 2017;38:1217–24.

    CAS  PubMed Central  Google Scholar 

  39. Wang D, Liu S, Warrell J, Won H, Shi X, Navarro FCP, et al. Comprehensive functional genomic resource and integrative model for the human brain. Science. 2018;362:eaat8464.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ghafouri-Fard S, Taheri M, Omrani MD, Daaee A, Mohammad-Rahimi H, Kazazi H. Application of single-nucleotide polymorphisms in the diagnosis of autism spectrum disorders: a preliminary study with artificial neural networks. J Mol Neurosci. 2019;68:515–21.

    CAS  PubMed  Google Scholar 

  41. Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P, et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature. 2014;506:185–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ripke S, Neale BM, Corvin A, Walters JTR, Farh K-H, Holmans PA, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    CAS  PubMed Central  Google Scholar 

  43. Daneshjou R, Wang Y, Bromberg Y, Bovo S, Martelli PL, Babbi G, et al. Working toward precision medicine: predicting phenotypes from exomes in the Critical Assessment of Genome Interpretation (CAGI) challenges. Hum Mutat 2017;38:1182–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Patil S, Habib Awan K, Arakeri G, Jayampath Seneviratne C, Muddur N, Malik S, et al. Machine learning and its potential applications to the genomic study of head and neck cancer—a systematic review. J Oral Pathol Med. 2019;48:773–9.

    PubMed  Google Scholar 

  45. Islam MM, Yang HC, Poly TN, Jian WS, Li YCJ. Deep learning algorithms for detection of diabetic retinopathy in retinal fundus photographs: a systematic review and meta-analysis. Comput Methods Prog Biomed. 2020;191:105320.

    Google Scholar 

  46. Moons KGM, Kengne AP, Woodward M, Royston P, Vergouwe Y, Altman DG, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. Heart. 2012;98:683–90.

    PubMed  Google Scholar 

  47. Biesheuvel CJ, Vergouwe Y, Oudega R, Hoes AW, Grobbee DE, Moons KGM. Advantages of the nested case-control design in diagnostic research. BMC Med Res Methodol. 2008;8:1–7.

    Google Scholar 

  48. Kallner A. Bayes’ theorem, the roc diagram and reference values: definition and use in clinical diagnosis. Biochem Med. 2018;28:16–25.

    Google Scholar 

  49. Sun G-W, Shook TL, Kay GL. Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis. J Clin Epidemiol. 1996;49:907–16.

    CAS  PubMed  Google Scholar 

  50. Vabalas A, Gowen E, Poliakoff E, Casson AJ. Machine learning algorithm validation with a limited sample size. PLoS One. 2019;14:e0224365.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Steyerberg EW. Clinical prediction models. 2nd ed. Springer Nature, Switzerland; 2019.

  52. Janssens ACJ, Ioannidis JP, Bedrosian S, Boffetta P, Dolan SM, Dowling N, et al. Strengthening the reporting of genetic risk prediction studies (GRIPS): explanation and elaboration. Eur J Hum Genet. 2011;19:615.

    Google Scholar 

  53. Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997;30:1145–59.

    Google Scholar 

  54. Wray NR, Yang J, Goddard ME, Visscher PM. The genetic interpretation of area under the ROC curve in genomic profiling. PLoS Genet. 2010;6:e1000864.

    PubMed  PubMed Central  Google Scholar 

  55. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning. New York, NY: Springer New York; 2013.

    Google Scholar 

  56. Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J Mach Learn Res. 2012;13:281–305.

    Google Scholar 

  57. Ben-Hur A, Weston JA. User’s guide to support vector machines. In: Data mining techniques for the life sciences. Humana Press, New York, NY; 2010. p. 223–39.

  58. Pavlou M, Ambler G, Seaman SR, Guttmann O, Elliott P, King M, et al. How to develop a more accurate risk prediction model when there are few events. BMJ 2015;351:h3868.

    PubMed  PubMed Central  Google Scholar 

  59. Steyerberg EW, Harrell FE, Borsboom GJJ, Eijkemans MJ, Vergouwe Y, Habbema JDF. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol. 2001;54:774–81.

    CAS  PubMed  Google Scholar 

  60. Varma S, Simon R. Bias in error estimation when using cross-validation for model selection. BMC Bioinforma. 2006;7:91.

    Google Scholar 

  61. Lee SH, Ripke S, Neale BM, Faraone SV, Purcell SM, Perlis RH, et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet. 2013;45:984–94.

    CAS  PubMed  Google Scholar 

  62. Marchini J, Cardon LR, Phillips MS, Donnelly P. The effects of human population structure on large genetic association studies. Nat Genet. 2004;36:512–7.

    CAS  PubMed  Google Scholar 

  63. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.

    CAS  PubMed  Google Scholar 

  64. Belgard TG, Jankovic I, Lowe JK, Geschwind DH. Population structure confounds autism genetic classifier. Mol Psychiatry. 2014;19:405–7.

    CAS  PubMed  Google Scholar 

  65. Martin AR, Gignoux CR, Walters RK, Wojcik GL, Neale BM, Gravel S, et al. Human demographic history impacts genetic risk prediction across diverse populations. Am J Hum Genet. 2017;100:635–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bridges M, Heron EA, O’Dushlaine C, Segurado R, Morris D, Corvin A, et al. Genetic classification of populations using supervised learning. PLoS One. 2011;6:e14802.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Schrider DR, Kern AD. Supervised machine learning for population genetics: a new paradigm. Trends Genet. 2018;34:301–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Flagel L, Brandvain Y, Schrider DR. The unreasonable effectiveness of convolutional neural networks in population genetic inference. Mol Biol Evol. 2019;36:220–38.

    CAS  PubMed  Google Scholar 

  69. Stephan J, Stegle O, Beyer A. A random forest approach to capture genetic effects in the presence of population structure. Nat Commun. 2015;6:7432.

    CAS  PubMed  Google Scholar 

  70. Zhao Y, Chen F, Zhai R, Lin X, Wang Z, Su L, et al. Correction for population stratification in random forest analysis. Int J Epidemiol. 2012;41:1798–806.

    PubMed  PubMed Central  Google Scholar 

  71. Zheutlin AB, Chekroud AM, Polimanti R, Gelernter J, Sabb FW, Bilder RM, et al. Multivariate pattern analysis of genotype–phenotype relationships in Schizophrenia. Schizophr Bull. 2018;44:1045–52.

    PubMed  PubMed Central  Google Scholar 

  72. Collins GS, Moons KGM. Reporting of artificial intelligence prediction models. Lancet. 2019;393:1577–9.

    PubMed  Google Scholar 

  73. Boulesteix A-L, Wright MN, Hoffmann S, König IR. Statistical learning approaches in the genetic epidemiology of complex diseases. Hum Genet. 2020;139:73–84.

  74. Teschendorff AE. Avoiding common pitfalls in machine learning omic data science. Nat Mater. 2019;18:422–7.

    CAS  PubMed  Google Scholar 

  75. Tandon N, Tandon R. Machine learning in psychiatry—standards and guidelines. Asian J Psychiatr. 2019;44:A1–4.

    PubMed  Google Scholar 

  76. Luo W, Phung D, Tran T, Gupta S, Rana S, Karmakar C, et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J Med Internet Res. 2016;18:e323.

    PubMed  PubMed Central  Google Scholar 

  77. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med. 2015;162:55.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Dementia Research Institute (UKDRI-3003) and MRC Centre for Neuropsychiatric Genetics and Genomics Centre (MR/L010305/1) and Program Grants (MR/P005748/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Escott-Price.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bracher-Smith, M., Crawford, K. & Escott-Price, V. Machine learning for genetic prediction of psychiatric disorders: a systematic review. Mol Psychiatry 26, 70–79 (2021). https://doi.org/10.1038/s41380-020-0825-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0825-2

This article is cited by

Search

Quick links