Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Clinical Research

In vivo prostate cancer detection and grading using restriction spectrum imaging-MRI

Abstract

Background:

Magnetic resonance imaging (MRI) is emerging as a robust, noninvasive method for detecting and characterizing prostate cancer (PCa), but limitations remain in its ability to distinguish cancerous from non-cancerous tissue. We evaluated the performance of a novel MRI technique, restriction spectrum imaging (RSI-MRI), to quantitatively detect and grade PCa compared with current standard-of-care MRI.

Methods:

In a retrospective evaluation of 33 patients with biopsy-proven PCa who underwent RSI-MRI and standard MRI before radical prostatectomy, receiver-operating characteristic (ROC) curves were performed for RSI-MRI and each quantitative MRI term, with area under the ROC curve (AUC) used to compare each term’s ability to differentiate between PCa and normal prostate. Spearman rank-order correlations were performed to assess each term’s ability to predict PCa grade in the radical prostatectomy specimens.

Results:

RSI-MRI demonstrated superior differentiation of PCa from normal tissue, with AUC of 0.94 and 0.85 for RSI-MRI and conventional diffusion MRI, respectively (P=0.04). RSI-MRI also demonstrated superior performance in predicting PCa aggressiveness, with Spearman rank-order correlation coefficients of 0.53 (P=0.002) and −0.42 (P=0.01) for RSI-MRI and conventional diffusion MRI, respectively, with tumor grade.

Conclusions:

RSI-MRI significantly improves upon current noninvasive PCa imaging and may potentially enhance its diagnosis and characterization.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Chou R, Croswell JM, Dana T, Bougatsos C, Blazina I, Fu R et al. Screening for prostate cancer: a review of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med 2011; 155: 762–771.

    Article  PubMed  Google Scholar 

  2. Moyer VA . Screening for prostate cancer: US Preventive Services Task Force recommendation statement. Ann Intern Med 2014; 157: 120–134.

    Article  Google Scholar 

  3. Langer DL, van der Kwast TH, Evans AJ, Trachtenberg J, Wilson BC, Haider MA . Prostate cancer detection with multi-parametric MRI: logistic regression analysis of quantitative T2, diffusion-weighted imaging, and dynamic contrast-enhanced MRI. J Magn Reson Imaging 2009; 30: 327–334.

    Article  PubMed  Google Scholar 

  4. Engelbrecht M, Huisman H, Laheij R, Jager G, van Leenders G, Hulsbergen-Van De Kaa C et al. Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology 2003; 229: 248–254.

    Article  PubMed  Google Scholar 

  5. Kozlowski P, Chang SD, Jones EC, Berean KW, Chen H, Goldenberg SL . Combined diffusion-weighted and dynamic contrast-enhanced MRI for prostate cancer diagnosis—correlation with biopsy and histopathology. J Magn Reson Imaging 2006; 24: 108–113.

    Article  PubMed  Google Scholar 

  6. Turkbey B, Pinto PA, Mani H, Bernardo M, Pang Y, McKinney YL et al. Prostate cancer: value of multiparametric MR imaging at 3T for detection—histopathologic correlation. Radiology 2010; 255: 89–99.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Siddiqui MM, Rais-Bahrami S, Truong H, Stamatakis L, Vourganti S, Nix J et al. Magnetic resonance imaging/ultrasound-fusion biopsy significantly upgrades prostate cancer versus systematic 12-core transrectal ultrasound biopsy. Eur Urol 2013; 64: 713–719.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Siddiqui MM, Rais-Bahrami S, Turkbey B, George AK, Rothwax J, Shakir N et al. Comparison of MR/ultrasound fusion–guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 2015; 313: 390–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. White NS, McDonald CR, Farid N, Kuperman J, Karow D, Schenker-Ahmed NM et al. Diffusion-weighted imaging in cancer: physical foundations and applications of restriction spectrum imaging. Cancer Res 2014; 74: 4638–4652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. White NS, Leergaard TB, D’Arceuil H, Bjaalie JG, Dale AM . Probing tissue microstructure with restriction spectrum imaging: Histological and theoretical validation. Hum Brain Mapp 2013; 34: 327–346.

    Article  PubMed  Google Scholar 

  11. Kothari P, White N, Farid N, Chung R, Kuperman J, Girard H et al. Longitudinal restriction spectrum imaging is resistant to pseudoresponse in patients with high-grade gliomas treated with bevacizumab. AJNR Am J Neuroradiol 2013; 34: 1752–1757.

    Article  PubMed  PubMed Central  Google Scholar 

  12. White N, McDonald C, Farid N, Kuperman J, Kesari S, Dale A . Improved conspicuity and delineation of high-grade primary and metastatic brain tumors using “restriction spectrum imaging”: quantitative comparison with high B-value DWI and ADC. AJNR Am J Neuroradiol 2013; 34: 958–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rakow-Penner R, White N, Parsons J, Choi H, Liss M, Kuperman J et al. Novel technique for characterizing prostate cancer utilizing MRI restriction spectrum imaging: proof of principle and initial clinical experience with extraprostatic extension. Prostate Cancer Prostatic Dis 2015; 18: 81–85.

    Article  CAS  PubMed  Google Scholar 

  14. Liss MA, White NS, Parsons JK, Schenker-Ahmed NM, Rakow-Penner R, Kuperman JM et al. MRI-derived restriction spectrum imaging cellularity index is associated with high grade prostate cancer on radical prostatectomy specimens. Front Oncol 2015; 5: 1–8.

    Article  CAS  Google Scholar 

  15. Holland D, Kuperman JM, Dale AM . Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo Planar Imaging. Neuroimage 2010; 50: 175–183.

    Article  PubMed  Google Scholar 

  16. Tofts P, Brix G, Buckley DL, Evelhock JL, Henderson E, Knopp MV et al. Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999; 10: 223–232.

    Article  CAS  PubMed  Google Scholar 

  17. Vourganti S, Rastinehad A, Yerram NK, Nix J, Volkin D, Hoang A et al. Multiparametric magnetic resonance imaging and ultrasound fusion biopsy detect prostate cancer in patients with prior negative transrectal ultrasound biopsies. J Urol 2012; 188: 2152–2157.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sonn G a, Chang E, Natarajan S, Margolis DJ, Macairan M, Lieu P et al. Value of targeted prostate biopsy using magnetic resonance-ultrasound fusion in men with prior negative biopsy and elevated prostate-specific antigen. Eur Urol 2014; 65: 809–815.

    Article  PubMed  Google Scholar 

  19. Peng Y, Jiang Y, Yang C, Brown J, Antic T, Sethi I et al. Quantitative analysis of multiparametric prostate MR images: differentiation between prostate cancer and normal tissue and correlation with Gleason score–a computer-aided diagnosis development study. Radiology 2013; 267: 787–796.

    Article  PubMed  Google Scholar 

  20. Peng Y, Jiang Y, Antic T, Giger M, Eggener S, Oto A . Validation of quantitative analysis of multiparametric prostate MR images for prostate cancer detection and aggressiveness assessment: a cross-imager study. Radiology 2014; 271: 461–471.

    Article  PubMed  Google Scholar 

  21. Oto A, Yang C, Kayhan A, Tretiakova M, Antic T, Schmid-Tannwald C et al. Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis. AJR Am J Roentgenol 2011; 197: 1382–1390.

    Article  PubMed  Google Scholar 

  22. Nagarajan R, Margolis D, Raman S, Sheng K, King C, Reiter R et al. Correlation of Gleason scores with diffusion-weighted imaging findings of prostate cancer. Adv Urol 2012; 2012: 1–5.

    Article  Google Scholar 

  23. Bittencourt LK, Barentsz JO, de Miranda LC, Gasparetto EL . Prostate MRI: diffusion-weighted imaging at 1.5T correlates better with prostatectomy Gleason Grades than TRUS-guided biopsies in peripheral zone tumours. Eur Radiol 2012; 22: 468–475.

    Article  PubMed  Google Scholar 

  24. Rakow-Penner RA, White NS, Margolis DJ, Parsons JK, Schenker-Ahmed N, Kuperman JM et al. Prostate diffusion imaging with distortion correction. Magn Reson Imaging 2015; 33: 1178–1181.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tomasetti C, Vogelstein B . Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 2014; 347: 78–81.

    Article  Google Scholar 

  26. Cohen MS, Hanley RS, Kurteva T, Ruthazer R, Silverman ML, Sorcini A et al. Comparing the Gleason prostate biopsy and Gleason prostatectomy grading system: the Lahey Clinic Medical Center experience and an international meta-analysis. Eur Urol 2008; 54: 371–381.

    Article  PubMed  Google Scholar 

  27. Kvåle R, Møller B, Wahlqvist R, Fosså SD, Berner A, Busch C et al. Concordance between Gleason scores of needle biopsies and radical prostatectomy specimens: a population-based study. BJU Int 2009; 103: 1647–1654.

    Article  PubMed  Google Scholar 

  28. Rajinikanth A, Manoharan M, Soloway CT, Civantos FJ, Soloway MS . Trends in Gleason score: concordance between biopsy and prostatectomy over 15 years. Urology 2008; 72: 177–182.

    Article  PubMed  Google Scholar 

  29. Oto A, Kayhan A, Jiang Y, Tretiakova M, Yang C, Antic T et al. Prostate cancer: differentiation of central gland cancer from benign prostatic hyperplasia by using diffusion-weighted and dynamic contrast-enhanced MR imaging. Radiology 2010; 257: 715–723.

    Article  PubMed  Google Scholar 

  30. Akin O, Sala E, Moskowitz CS, Kuroiwa K, Ishill NM, Pucar D et al. Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology 2006; 239: 784–792.

    Article  PubMed  Google Scholar 

  31. Li H, Sugimura K, Kaji Y, Kitamura Y, Fujii M, Hara I et al. Conventional MRI capabilities in the diagnosis of prostate cancer in the transition zone. AJR Am J Roentgenol 2006; 186: 729–742.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by grant R01EB000790; American Cancer Society, Institutional Research Grant Number 70-002; DoD, Prostate Cancer Research Program, Idea Development Award W81XWH-13-1-0391, #PC120532; National Science Foundation, Grant Number 1430082; UCSD Clinician Scientist Program; and General Electric, Investigator-Initiated Research Award BOK92325.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D S Karow.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCammack, K., Kane, C., Parsons, J. et al. In vivo prostate cancer detection and grading using restriction spectrum imaging-MRI. Prostate Cancer Prostatic Dis 19, 168–173 (2016). https://doi.org/10.1038/pcan.2015.61

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2015.61

This article is cited by

Search

Quick links