Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

KAP regulates ROCK2 and Cdk2 in an RNA-activated glioblastoma invasion pathway

Abstract

Aberrant splicing of the cyclin-dependent kinase-associated phosphatase, KAP, promotes glioblastoma invasion in a Cdc2-dependent manner. However, the mechanism by which this occurs is unknown. Here we show that miR-26a, which is often amplified in glioblastoma, promotes invasion in phosphatase and tensin homolog (PTEN)-competent and PTEN-deficient glioblastoma cells by directly downregulating KAP expression. Mechanistically, we find that KAP binds and activates ROCK2. Thus, RNA-mediated downregulation of KAP leads to decreased ROCK2 activity and this, in turn, increases Rac1-mediated invasion. In addition, the decrease in KAP expression activates the cyclin-dependent kinase, Cdk2, and this directly promotes invasion by increasing retinoblastoma phosphorylation, E2F-dependent Cdc2 expression and Cdc2-mediated inactivation of the actomyosin inhibitor, caldesmon. Importantly, glioblastoma cell invasion mediated by this pathway can be antagonized by Cdk2/Cdc2 inhibitors in vitro and in vivo. Thus, two distinct RNA-based mechanisms activate this novel KAP/ROCK2/Cdk2-dependent invasion pathway in glioblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Mrugala MM . Advances and challenges in the treatment of glioblastoma: a clinician's perspective. Discov Med 2013; 15: 221–230.

    PubMed  Google Scholar 

  2. Kwiatkowska A, Symons M . Signaling determinants of glioma cell invasion. Adv Exp Med Biol 2013; 986: 121–141.

    Article  CAS  Google Scholar 

  3. Yu Y, Jiang X, Schoch BS, Carroll RS, Black PM, Johnson MD . Aberrant splicing of cyclin-dependent kinase-associated protein phosphatase KAP increases proliferation and migration in glioblastoma. Cancer Res 2007; 67: 130–138.

    Article  CAS  Google Scholar 

  4. Hannon GJ, Casso D, Beach D . KAP: a dual specificity phosphatase that interacts with cyclin-dependent kinases. Proc Natl Acad Sci USA 1994; 91: 1731–1735.

    Article  CAS  Google Scholar 

  5. Lin WR, Lai MW, Yeh CT . Cyclin-dependent kinase-associated protein phosphatase is overexpressed in alcohol-related hepatocellularcarcinoma and influences xenograft tumor growth. Oncol Rep 2013; 29: 903–910.

    Article  CAS  Google Scholar 

  6. Yeh CT, Lu SC, Chen TC, Peng CY, Liaw YF . Aberrant transcripts of the cyclin-dependent kinase-associated protein phosphatase in hepatocellularcarcinoma. Cancer Res 2000; 60: 4697–4700.

    CAS  PubMed  Google Scholar 

  7. Lee SW, Reimer CL, Fang L, Iruela-Arispe ML, Aaronson SA . Overexpression of kinase-associated phosphatase (KAP) in breast and prostate cancer and inhibition of the transformed phenotype by antisense KAP expression. Mol Cell Biol 2000; 20: 1723–1732.

    Article  CAS  Google Scholar 

  8. Kim H, Huang W, Jiang X, Pennicooke B, Park PJ, Johnson MD . Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci USA 2010; 107: 2183–2188.

    Article  CAS  Google Scholar 

  9. Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH et al. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 2009; 23: 1327–1337.

    Article  CAS  Google Scholar 

  10. Liu B, Wu X, Liu B, Wang C, Liu Y, Zhou Q et al. MiR-26a enhances metastasis potential of lung cancer cells via AKT pathway by targeting PTEN. Biochim Biophys Acta 2012; 1822: 1692–1704.

    Article  CAS  Google Scholar 

  11. Yang X, Liang L, Zhang XF, Jia HL, Qin Y, Zhu XC et al. MicroRNA-26a suppresses tumor growth and metastasis of human hepatocellularcarcinoma by targeting interleukin-6-Stat3 pathway. Hepatology 2013; 58: 158–170.

    Article  CAS  Google Scholar 

  12. Yu L, Lu J, Zhang B, Liu X, Wang L, Li SY et al. miR-26a inhibits invasion and metastasis of nasopharyngealcancer by targeting EZH2. Oncol Lett 2013; 5: 1223–1228.

    Article  CAS  Google Scholar 

  13. Wilkinson S, Paterson HF, Marshall CJ . Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylationand cell invasion. Nat Cell Biol 2005; 7: 255–261.

    Article  CAS  Google Scholar 

  14. Salhia B, Rutten F, Nakada M, Beaudry C, Berens M, Kwan A et al. Inhibition of Rho-kinase affects astrocytoma morphology, motility, and invasion through activation of Rac1. Cancer Res 2005; 65: 8792–8800.

    Article  CAS  Google Scholar 

  15. Li JQ, Miki H, Wu F, Saoo K, Nishioka M, Ohmori M et al. Cyclin A correlates with carcinogenesis and metastasis, and p27(kip1) correlates with lymphatic invasion, in colorectal neoplasms. Hum Pathol 2002; 33: 1006–1015.

    Article  CAS  Google Scholar 

  16. Li JQ, Miki H, Ohmori M, Wu F, Funamoto Y . Expression of cyclin E and cyclin-dependent kinase 2 correlates with metastasis and prognosis in colorectal carcinoma. Hum Pathol 2001; 32: 945–953.

    Article  CAS  Google Scholar 

  17. Pandithage R, Lilischkis R, Harting K, Wolf A, Jedamzik B, Luscher-Firzlaff J et al. The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility. J Cell Biol 2008; 180: 915–929.

    Article  CAS  Google Scholar 

  18. Berthet C, Kaldis P . Cdk2 and Cdk4 cooperatively control the expression of Cdc2. Cell Div 2006; 1: 10.

    Article  Google Scholar 

  19. Han IS, Seo TB, Kim KH, Yoon JH, Yoon SJ, Namgung U . Cdc2-mediated Schwann cell migration during peripheral nerve regeneration. J Cell Sci 2007; 120: 246–255.

    Article  CAS  Google Scholar 

  20. Satterwhite LL, Lohka MJ, Wilson KL, Scherson TY, Cisek LJ, Corden JL et al. Phosphorylationof myosin-II regulatory light chain by cyclin-p34cdc2: a mechanism for the timing of cytokinesis. J Cell Biol 1992; 118: 595–605.

    Article  CAS  Google Scholar 

  21. Morrison DL, Sanghera JS, Stewart J, Sutherland C, Walsh MP, Pelech SL . Phosphorylationand activation of smooth muscle myosin light chainkinase by MAP kinase and cyclin-dependent kinase-1. Biochem Cell Biol 1996; 74: 549–557.

    Article  CAS  Google Scholar 

  22. Knights MJ, Kyle S, Ismail A . Characteristic features of stem cells in glioblastomas: from cellular biology to genetics. Brain Pathol 2012; 22: 592–606.

    Article  CAS  Google Scholar 

  23. Tawara S, Fukumoto Y, Shimokawa H . Effects of combined therapy with a Rho-kinase inhibitor and prostacyclin on monocrotaline-induced pulmonary hypertension in rats. J Cardiovasc Pharmacol 2007; 50: 195–200.

    Article  CAS  Google Scholar 

  24. Yamaguchi H, Kasa M, Amano M, Kaibuchi K, Hakoshima T . Molecular mechanism for the regulation of rho-kinase by dimerization and its inhibition by fasudil. Structure 2006; 14: 589–600.

    Article  CAS  Google Scholar 

  25. Jacobs M, Hayakawa K, Swenson L, Bellon S, Fleming M, Taslimi P et al. The structure of dimeric ROCK I reveals the mechanism for ligand selectivity. J Biol Chem 2006; 281: 260–268.

    Article  CAS  Google Scholar 

  26. Amano M, Chihara K, Nakamura N, Kaneko T, Matsuura Y, Kaibuchi K . The COOH terminus of Rho-kinase negatively regulates rho-kinase activity. J Biol Chem 1999; 274: 32418–32424.

    Article  CAS  Google Scholar 

  27. Ferretti R, Palumbo V, Di Savino A, Velasco S, Sbroggio M, Sportoletti P et al. Morgana/chp-1, a ROCK inhibitor involved in centrosome duplication and tumorigenesis. Dev Cell 2010; 18: 486–495.

    Article  CAS  Google Scholar 

  28. Ma Z, Kanai M, Kawamura K, Kaibuchi K, Ye K, Fukasawa K . Interaction between ROCK II and nucleophosmin/B23 in the regulation of centrosome duplication. Mol Cell Biol 2006; 26: 9016–9034.

    Article  CAS  Google Scholar 

  29. Yoneda A, Multhaupt HA, Couchman JR . The Rho kinases I and II regulate different aspects of myosin II activity. J Cell Biol 2005; 170: 443–453.

    Article  CAS  Google Scholar 

  30. Corsino PE, Davis BJ, Norgaard PH, Parker NN, Law M, Dunn W et al. Mammary tumors initiated by constitutive Cdk2 activation contain an invasive basal-like component. Neoplasia 2008; 10: 1240–1252.

    Article  CAS  Google Scholar 

  31. Bales E, Mills L, Milam N, McGahren-Murray M, Bandyopadhyay D, Chen D et al. The low molecular weight cyclin E isoforms augment angiogenesis and metastasis of human melanoma cells in vivo. Cancer Res 2005; 65: 692–697.

    CAS  Google Scholar 

  32. Joyce D, Bouzahzah B, Fu M, Albanese C, D'Amico M, Steer J et al. Integration of Rac-dependent regulation of cyclin D1 transcription through a nuclear factor-kappaB-dependent pathway. J Biol Chem 1999; 274: 25245–25249.

    Article  CAS  Google Scholar 

  33. Nalepa G, Barnholtz-Sloan J, Enzor R, Dey D, He Y, Gehlhausen JR et al. The tumor suppressor CDKN3 controls mitosis. J Cell Biol 2013; 201: 997–1012.

    Article  CAS  Google Scholar 

  34. Lowery DM, Clauser KR, Hjerrild M, Lim D, Alexander J, Kishi K et al. Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate. EMBO J 2007; 26: 2262–2273.

    Article  CAS  Google Scholar 

  35. Wang HF, Takenaka K, Nakanishi A, Miki Y . BRCA2 and nucleophosmin coregulate centrosome amplification and form a complex with the Rho effector kinase ROCK2. Cancer Res 2011; 71: 68–77.

    Article  CAS  Google Scholar 

  36. Kim TM, Huang W, Park R, Park PJ, Johnson MD . A developmental taxonomy of glioblastoma defined and maintained by MicroRNAs. Cancer Res 2011; 71: 3387–3399.

    Article  CAS  Google Scholar 

  37. Yang HW, Menon LG, Black PM, Carroll RS, Johnson MD . SNAI2/Slug promotes growth and invasion in human gliomas. BMC Cancer 2010; 10: 301.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by R01 NS062219 from the National Institute of Neurological Disorders and Stroke, a National Institutes of Health Director’s New Innovator Award (DP2OD002319) and a Brain Science Foundation Research Award to MDJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M D Johnson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Jiang, X., Yu, Y. et al. KAP regulates ROCK2 and Cdk2 in an RNA-activated glioblastoma invasion pathway. Oncogene 34, 1432–1441 (2015). https://doi.org/10.1038/onc.2014.49

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.49

This article is cited by

Search

Quick links