Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

eIF3m expression influences the regulation of tumorigenesis-related genes in human colon cancer

Abstract

Abnormal regulation of gene expression is essential for tumorigenesis. Recent studies indicate that regulation of oncogene expression and neoplastic transformation are controlled by subunits of eukaryotic translation initiation factors (eIFs). Here we focused on eIF3 performing a pivotal role in protein synthesis and the differential expression of its subunits in cancer. The most uncharacterized non-core subunit eIF3m was confirmed to be highly expressed in human cancer cell lines and colon cancer patient tissues. By expression silencing with eIF3m-specific small interfering RNA (siRNA), we confirmed that eIF3m influences cell proliferation, cell cycle progression and cell death in human colon cancer cell line HCT-116. Using a ribonomics approach, we identified a subset of elF3m-influenced genes and showed that the expression of two highly represented tumorigenesis-related genes, MIF and MT2, were affected by eIF3m at the mRNA level. We also confirmed eIF3m-dependent regulation of MT2A downstream molecule CDC25A, which is necessary for cell cycle progression in HCT-116 cells. These results suggest that eIF3m mediates regulation of tumorigenesis-related genes in human colon cancer. Further investigations on tumorigenesis-related genes and their regulation by eIFs will provide clues for designing targeted therapy for cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Ahlemann M, Zeidler R, Lang S, Mack B, Münz M, Gires O . (2006). Carcinoma-associated eIF3i overexpression facilitates mTOR-dependent growth transformation. Mol Carcinog 45: 957–967.

    Article  CAS  PubMed  Google Scholar 

  • Bach JP, Deuster O, Balzer-Geldsetzer M, Meyer B, Dodel R, Bacher M . (2009). The role of macrophage inhibitory factor in tumorigenesis and central nervous system tumors. Cancer 115: 2031–2040.

    Article  CAS  PubMed  Google Scholar 

  • Bifulco C, McDaniel K, Leng L, Bucala R . (2008). Tumor growth-promoting properties of macrophage migration inhibitory factor. Curr Pharm Des 14: 3790–3801.

    Article  CAS  PubMed  Google Scholar 

  • De Benedetti A, Graff JR . (2004). eIF-4E expression and its role in malignancies and metastases. Oncogene 23: 3189–3199.

    Article  CAS  PubMed  Google Scholar 

  • Doldan A, Chandramouli A, Shanas R, Bhattacharyya A, Cunningham JT, Nelson MA et al. (2008). Loss of the eukaryotic initiation factor 3f in pancreatic cancer. Mol Carcinog 47: 235–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez A, Ramos-Morales F, Romero F, Rios RM, Dreyfus F, Tortolero M et al. (1998). hPTTG, a human homologue of rat pttg, is overexpressed in hematopoietic neoplasms. Evidence for a transcriptional activation function of hPTTG. Oncogene 17: 2187–2193.

    Article  CAS  PubMed  Google Scholar 

  • Dong Z, Zhang J-T . (2006). Initiation factor eIF3 and regulation of mRNA translation, cell growth, and cancer. Crit Rev Oncol Hematol 59: 169–180.

    Article  PubMed  Google Scholar 

  • Fukuchi-Shimogori T, Ishii I, Kashiwagi K, Mashiba H, Ekimoto H, Igarashi K . (1997). Malignant transformation by overproduction of translation initiation factor eIF4G. Cancer Res 57: 5041–5044.

    CAS  PubMed  Google Scholar 

  • Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF et al. (1999). Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 13: 1422–1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green EM, Barrett CF, Bultynck G, Shamah SM, Dolmetsch RE . (2007). The tumor suppressor eIF3e mediates calcium-dependent internalization of the L-type calcium channel CaV1.2. Neuron 55: 615–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA . (2009). Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc 4: 44–57.

    Article  CAS  Google Scholar 

  • Humphries A, Wright NA . (2008). Colonic crypt organization and tumorigenesis. Nat Rev Cancer 8: 415–424.

    Article  CAS  PubMed  Google Scholar 

  • Ino Y, Gotoh M, Sakamoto M, Tsukagoshi K, Hirohashi S . (2002). Dysadherin, a cancer-associated cell membrane glycoprotein, down-regulates E-cadherin and promotes metastasis. Proc Natl Acad Sci USA 99: 365–370.

    Article  CAS  PubMed  Google Scholar 

  • Jin R, Chow VTK, Tan PH, Dheen ST, Duan W, Bay BH . (2002). Metallothionein 2A expression is associated with cell proliferation in breast cancer. Carcinogenesis 23: 81–86.

    Article  CAS  PubMed  Google Scholar 

  • Jin R, Huang J, Tan PH, Bay BH . (2004). Clinicopathological significance of metallothioneins in breast cancer. Pathol Oncol Res 10: 74–79.

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Richter JD . (2006). Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol Cell 24: 173–183.

    Article  CAS  PubMed  Google Scholar 

  • Koch G, Bilello JA, Kruppa J, Koch F, Oppermann H . (1980). Amplification of translational control by membrane-mediated events: a pleiotropic effect on cellular and viral gene expression. Ann N Y Acad Sci. 339: 280–306.

    Article  CAS  PubMed  Google Scholar 

  • Komatsu K, Andoh A, Ishiguro S, Suzuki N, Hunai H, Kobune-Fujiwara Y et al. (2002). Increased expression of S100A6 (Calcyclin), a calcium-binding protein of the S100 family, in human colorectal adenocarcinomas. Clin Cancer Res 6: 172–177.

    Google Scholar 

  • L′Espérance S, Popa I, Bachvarova M, Plante M, Patten N, Wu L et al. (2006). Gene expression profiling of paired ovarian tumors obtained prior to and following adjuvant chemotherapy: molecular signatures of chemoresistant tumors. Int J Oncol 29: 5–24.

    PubMed  Google Scholar 

  • LeFebvre AK, Korneeva NL, Trutschl M, Cvek U, Duzan RD, Bradley CA et al. (2006). Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e subunit. J Biol Chem 281: 22917–22932.

    Article  CAS  PubMed  Google Scholar 

  • Legendre H, Decaestecker C, Nagy Y, Hendlisz A, Schüring M-P, Salmon I et al. (2003). Prognostic values of galectin-3 and the macrophage migration inhibitory factor (MIF) in human colorectal cancers. Mod Pathol 16: 491–504.

    Article  PubMed  Google Scholar 

  • Lim D, Jocelyn KMX, Yip GWC, Bay BH . (2009). Silencing the metallothionein-2A gene inhibits cell cycle progression from G1- to S-phase involving ATM and cdc25A signaling in breast cancer cells. Cancer Lett 276: 109–117.

    Article  CAS  PubMed  Google Scholar 

  • Mack DL, Boulanger CA, Callahan R, Smith GH . (2007). Expression of truncated Int6/eIF3e in mammary alveolar epithelium leads to persistent hyperplasia and tumorigenesis. Breast Cancer Res 9: R42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mauro VP, Edelman GM . (2002). The ribosome filter hypothesis. Proc Natl Acad Sci USA 99: 12031–12036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris C, Wittmann J, Jack HM, Jalinot P . (2007). Human INT6/eIF3e is required for nonsense-mediated mRNA decay. EMBO Rep 8: 596–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam JS, Hirohashi S, Wakefield LM . (2007). Dysadherin: a new player in cancer progression. Cancer Lett 255: 161–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyronnet S, Imataka H, Gingras AC, Fukunaga R, Hunter T, Sonnenberg N . (1999). Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J 18: 270–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandran A, Madesh M, Balasubramanian KA . (2000). Apoptosis in the intestinal epithelium: its relevance in normal and pathophysiological conditions. J Gastroenterol Hepatol 15: 109–120.

    Article  CAS  PubMed  Google Scholar 

  • Raught B, Gingras AC . (1999). eIF4E activity is regulated at multiple levels. Int J Biochem Cell Biol 31: 43–57.

    Article  CAS  PubMed  Google Scholar 

  • Rosenwald IB . (2004). The role of translation in neoplastic transformation from a pathologist’s point of view. Oncogene 23: 3230–3247.

    Article  CAS  PubMed  Google Scholar 

  • Silvera D, Formenti SC, Schneider RJ . (2010). Translational control in cancer. Nat Rev Cancer 10: 254–266.

    Article  CAS  PubMed  Google Scholar 

  • Tenenbaum SA, lager PJ, Carson CC, Keene JD . (2002). Ribonomics: Identifying mRNA subsets in mRNP complexes using antibodies to RNA-binding proteins and genomic arrays. Methods 26: 191–198.

    Article  CAS  PubMed  Google Scholar 

  • Tomko RJ, Azang-Njaah NN, Lazo JS . (2009). Nitrosative stress suppresses checkpoint activation after DNA synthesis inhibition. Cell Cycle 8: 299–305.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Pan X, Hershey JW . (2007). Individual overexpression of five of human translation initiation factor eIF3 promotes malignant transformation of immortal fibroblast cells. J Biol Chem 282: 5790–5800.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Smit-McBride Z, Pan X, Rheinhardt J, Hershey JW . (2008). An oncogenic role for the phosphorylated h-subunit of human translation initiation factor eIF3. J Biol Chem 283: 24047–24060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Arslan F, Wee S, Krishnan S, Ivanov AR, Oliva A et al. (2005). PCI proteins eIF3e and eIF3m define distinct translation initiation factor 3 complexes. BMC Biol 3: 14.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Sri Ram for editorial assistance of manuscript. This study was funded by Intramural Research Grants of the National Cancer Center (NCC 0710660, NCC 0810160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y-S Lee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goh, SH., Hong, SH., Hong, SH. et al. eIF3m expression influences the regulation of tumorigenesis-related genes in human colon cancer. Oncogene 30, 398–409 (2011). https://doi.org/10.1038/onc.2010.422

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.422

Keywords

This article is cited by

Search

Quick links