Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New insights into the immunopathogenesis of systemic lupus erythematosus

Key Points

  • Our understanding of the pathogenesis of systemic lupus erythematosus (SLE) has changed rapidly over the past decade

  • Refinements in our understanding over the past 3 years have led to the potential for precision targeting of therapeutic strategies

  • Advances in epigenetic therapeutic agents and the manipulation of cells ex vivo have the potential to further improve patient care

Abstract

The aetiology of systemic lupus erythematosus (SLE) is multifactorial, and includes contributions from the environment, stochastic factors, and genetic susceptibility. Great gains have been made in understanding SLE through the use of genetic variant identification, mouse models, gene expression studies, and epigenetic analyses. Collectively, these studies support the concept that defective clearance of immune complexes and biological waste (such as apoptotic cells), neutrophil extracellular traps, nucleic acid sensing, lymphocyte signalling, and interferon production pathways are all central to loss of tolerance and tissue damage. Increased understanding of the pathogenesis of SLE is driving a renewed interest in targeted therapy, and researchers are now on the verge of developing targeted immunotherapy directed at treating either specific organ system involvement or specific subsets of patients with SLE. Accordingly, this Review places these insights within the context of our current understanding of the pathogenesis of SLE and highlights pathways that are ripe for therapeutic targeting.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The current model of the pathogenesis of SLE.
Figure 2: Cellular contributions to the development of SLE.
Figure 3: Nucleic acid sensors in SLE.
Figure 4: Cytokines implicated in SLE.
Figure 5: Involvement of B cells in SLE.

Similar content being viewed by others

References

  1. Bernatsky, S. et al. Mortality in systemic lupus erythematosus. Arthritis Rheum. 54, 2550–2557 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Zhu, T. Y., Tam, L. S. & Li, E. K. Cost-of-illness studies in systemic lupus erythematosus: a systematic review. Arthritis Care Res. (Hoboken) 63, 751–760 (2011).

    Article  Google Scholar 

  3. Casciola-Rosen, L. A., Anhalt, G. & Rosen, A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med. 179, 1317–1330 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Theofilopoulos, A. N., Kono, D. H., Beutler, B. & Baccala, R. Intracellular nucleic acid sensors and autoimmunity. J. Interferon Cytokine Res. 31, 867–886 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dieker, J. et al. Circulating apoptotic microparticles in systemic lupus erythematosus patients drive the activation of dendritic cell subsets and prime neutrophils for NETosis. Arthritis Rheumatol. 68, 462–472 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Leadbetter, E. A. et al. Chromatin–IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Achtman, J. C. & Werth, V. P. Pathophysiology of cutaneous lupus erythematosus. Arthritis Res. Ther. 17, 182 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grimaldi, C. M. Sex and systemic lupus erythematosus: the role of the sex hormones estrogen and prolactin on the regulation of autoreactive B cells. Curr. Opin. Rheumatol. 18, 456–461 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Shelly, S., Boaz, M. & Orbach, H. Prolactin and autoimmunity. Autoimmun. Rev. 11, A465–A470 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Cunningham, M. & Gilkeson, G. Estrogen receptors in immunity and autoimmunity. Clin. Rev. Allergy Immunol. 40, 66–73 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Dorgham, K. et al. Ultraviolet light converts propranolol, a nonselective β-blocker and potential lupus-inducing drug, into a proinflammatory AhR ligand. Eur. J. Immunol. 45, 3174–3187 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Nelson, P., Rylance, P., Roden, D., Trela, M. & Tugnet, N. Viruses as potential pathogenic agents in systemic lupus erythematosus. Lupus 23, 596–605 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Sawalha, A. H., Schmid, W. R., Binder, S. R., Bacino, D. K. & Harley, J. B. Association between systemic lupus erythematosus and Helicobacter pylori seronegativity. J. Rheumatol. 31, 1546–1550 (2004).

    PubMed  Google Scholar 

  14. Ram, M. et al. The putative protective role of hepatitis B virus (HBV) infection from autoimmune disorders. Autoimmun. Rev. 7, 621–625 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, M. et al. Toxoplasma gondii infection inhibits the development of lupus-like syndrome in autoimmune (New Zealand Black × New Zealand White) F1 mice. Int. Immunol. 16, 937–946 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Gan, L. et al. Gene expression profiles from disease discordant twins suggest shared antiviral pathways and viral exposures among multiple systemic autoimmune diseases. PLoS ONE 10, e0142486 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi, L. et al. The SLE transcriptome exhibits evidence of chronic endotoxin exposure and has widespread dysregulation of non-coding and coding RNAs. PLoS ONE 9, e93846 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nockher, W. A., Wigand, R., Schoeppe, W. & Scherberich, J. E. Elevated levels of soluble CD14 in serum of patients with systemic lupus erythematosus. Clin. Exp. Immunol. 96, 15–19 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhai, J. X. et al. PDTC attenuate LPS-induced kidney injury in systemic lupus erythematosus-prone MRL/lpr mice. Mol. Biol. Rep. 39, 6763–6771 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Pasare, C. & Medzhitov, R. Toll-like receptors: linking innate and adaptive immunity. Microbes Infect. 6, 1382–1387 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Gallo, P. M. et al. Amyloid-DNA composites of bacterial biofilms stimulate autoimmunity. Immunity 42, 1171–1184 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hevia, A. et al. Intestinal dysbiosis associated with systemic lupus erythematosus. mBio 5, e01548–e01514 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Johnson, B. M., Gaudreau, M. C., Al-Gadban, M. M., Gudi, R. & Vasu, C. Impact of dietary deviation on disease progression and gut microbiome composition in lupus-prone SNF1 mice. Clin. Exp. Immunol. 181, 323–337 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, H., Liao, X., Sparks, J. B. & Luo, X. M. Dynamics of gut microbiota in autoimmune lupus. Appl. Environ. Microbiol. 80, 7551–7560 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Van Praet, J. T. et al. Commensal microbiota influence systemic autoimmune responses. EMBO J. 34, 466–474 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alarcon-Segovia, D. et al. Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis Rheum. 52, 1138–1147 (2005).

    Article  PubMed  Google Scholar 

  30. Morris, D. L. et al. Unraveling multiple MHC gene associations with systemic lupus erythematosus: model choice indicates a role for HLA alleles and non-HLA genes in Europeans. Am. J. Hum. Genet. 91, 778–793 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cui, Y., Sheng, Y. & Zhang, X. Genetic susceptibility to SLE: recent progress from GWAS. J. Autoimmun. 41, 25–33 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Farh, K. K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Martin, P. et al. Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci. Nat. Commun. 6, 10069 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Li, Y. R. et al. Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases. Nat. Med. 21, 1018–1027 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Harley, I. T., Kaufman, K. M., Langefeld, C. D., Harley, J. B. & Kelly, J. A. Genetic susceptibility to SLE: new insights from fine mapping and genome-wide association studies. Nat. Rev. Genet. 10, 285–290 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Belot, A. & Cimaz, R. Monogenic forms of systemic lupus erythematosus: new insights into SLE pathogenesis. Pediatr. Rheumatol. Online J. 10, 21 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Richardson, B. et al. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 33, 1665–1673 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Richardson, B., Ray, D. & Yung, R. Murine models of lupus induced by hypomethylated T cells. Methods Mol. Med. 102, 285–294 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sawalha, A. H. et al. Defective T-cell ERK signaling induces interferon-regulated gene expression and overexpression of methylation-sensitive genes similar to lupus patients. Genes Immun. 9, 368–378 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Coit, P. et al. Renal involvement in lupus is characterized by unique DNA methylation changes in naive CD4+ T cells. J. Autoimmun. 61, 29–35 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Coit, P. et al. Epigenetic reprogramming in naive CD4+ T cells favoring T cell activation and non-TH1 effector T cell immune response as an early event in lupus flares. Arthritis Rheumatol. 68, 2200–2209 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lim, U. & Song, M. A. Dietary and lifestyle factors of DNA methylation. Methods Mol. Biol. 863, 359–376 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Cooney, C. A., Dave, A. A. & Wolff, G. L. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J. Nutr. 132, 2393S–2400S (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Zhao, M. et al. Increased 5-hydroxymethylcytosine in CD4+ T cells in systemic lupus erythematosus. J. Autoimmun. 69, 64–73 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Mishra, N., Reilly, C. M., Brown, D. R., Ruiz, P. & Gilkeson, G. S. Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J. Clin. Invest. 111, 539–552 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Regna, N. L. et al. HDAC expression and activity is upregulated in diseased lupus-prone mice. Int. Immunopharmacol. 29, 494–503 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Regna, N. L. et al. Specific HDAC6 inhibition by ACY-738 reduces SLE pathogenesis in NZB/W mice. Clin. Immunol. 162, 58–73 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Skov, S. et al. Histone deacetylase inhibitors: a new class of immunosuppressors targeting a novel signal pathway essential for CD154 expression. Blood 101, 1430–1438 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Yang, Y. et al. The effect of mycophenolic acid on epigenetic modifications in lupus CD4+ T cells. Clin. Immunol. 158, 67–76 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, Z., Song, L., Maurer, K., Petri, M. A. & Sullivan, K. E. Global H4 acetylation analysis by ChIP-chip in systemic lupus erythematosus monocytes. Genes Immun. 11, 124–133 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Coit, P. et al. Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naive CD4+ T cells from lupus patients. J. Autoimmun. 43, 78–84 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, Z. et al. Interferon regulatory factor 1 marks activated genes and can induce target gene expression in systemic lupus erythematosus. Arthritis Rheumatol. 67, 785–796 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shi, L. et al. Monocyte enhancers are highly altered in systemic lupus erythematosus. Epigenomics 7, 921–935 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, Z., Song, L., Maurer, K., Bagashev, A. & Sullivan, K. E. Monocyte polarization: the relationship of genome-wide changes in H4 acetylation with polarization. Genes Immun. 12, 445–456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, Z., Maurer, K., Perin, J. C., Song, L. & Sullivan, K. E. Cytokine-induced monocyte characteristics in SLE. J. Biomed. Biotechnol. 2010, 507475 (2010).

    PubMed  PubMed Central  Google Scholar 

  56. Kanno, T. et al. BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones. Nat. Struct. Mol. Biol. 21, 1047–1057 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wei, S., Sun, Y. & Sha, H. Therapeutic targeting of BET protein BRD4 delays murine lupus. Int. Immunopharmacol. 29, 314–319 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Wu, L. & Belasco, J. G. Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. Mol. Cell 29, 1–7 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Dai, Y. et al. Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus 16, 939–946 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Dai, Y. et al. Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients. Rheumatol. Int. 29, 749–754 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Costa-Reis, P. et al. The role of microRNAs and human epidermal growth factor receptor 2 in proliferative lupus nephritis. Arthritis Rheumatol. 67, 2415–2426 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Carlsen, A. L. et al. Circulating microRNA expression profiles associated with systemic lupus erythematosus. Arthritis Rheum. 65, 1324–1334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yan, S., Yim, L. Y., Lu, L., Lau, C. S. & Chan, V. S. MicroRNA regulation in systemic lupus erythematosus pathogenesis. Immune Netw. 14, 138–148 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liu, Y. et al. MicroRNA-30a promotes B cell hyperactivity in patients with systemic lupus erythematosus by direct interaction with Lyn. Arthritis Rheum. 65, 1603–1611 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Pan, W. et al. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J. Immunol. 184, 6773–6781 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Xiao, C. et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat. Immunol. 9, 405–414 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kang, S. G. et al. MicroRNAs of the miR-17 approximately 92 family are critical regulators of TFH differentiation. Nat. Immunol. 14, 849–857 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Thai, T. H. et al. Deletion of microRNA-155 reduces autoantibody responses and alleviates lupus-like disease in the Faslpr mouse. Proc. Natl Acad. Sci. USA 110, 20194–20199 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stagakis, E. et al. Identification of novel microRNA signatures linked to human lupus disease activity and pathogenesis: miR-21 regulates aberrant T cell responses through regulation of PDCD4 expression. Ann. Rheum. Dis. 70, 1496–1506 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Hennessy, E. J. & Moore, K. J. Using microRNA as an alternative treatment for hyperlipidemia and cardiovascular disease: cardio-miRs in the pipeline. J. Cardiovasc. Pharmacol. 62, 247–254 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kirou, K. A. et al. Coordinate overexpression of interferon-α-induced genes in systemic lupus erythematosus. Arthritis Rheum. 50, 3958–3967 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Sharma, S. et al. Widely divergent transcriptional patterns between SLE patients of different ancestral backgrounds in sorted immune cell populations. J. Autoimmun. 60, 51–58 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Juang, Y. T. et al. A systemic lupus erythematosus gene expression array in disease diagnosis and classification: a preliminary report. Lupus 20, 243–249 (2011).

    Article  PubMed  Google Scholar 

  76. Grammatikos, A. P. et al. A T cell gene expression panel for the diagnosis and monitoring of disease activity in patients with systemic lupus erythematosus. Clin. Immunol. 150, 192–200 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Bradley, S. J., Suarez-Fueyo, A., Moss, D. R., Kyttaris, V. C. & Tsokos, G. C. T cell transcriptomes describe patient subtypes in systemic lupus erythematosus. PLoS ONE 10, e0141171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Banchereau, R. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165, 551–565 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gaipl, U. S. et al. Cooperation between C1q and DNase I in the clearance of necrotic cell-derived chromatin. Arthritis Rheum. 50, 640–649 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Janko, C. et al. CRP/anti-CRP antibodies assembly on the surfaces of cell remnants switches their phagocytic clearance toward inflammation. Front. Immunol. 2, 70 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wilber, A., O'Connor, T. P., Lu, M. L., Karimi, A. & Schneider, M. C. Dnase1l3 deficiency in lupus-prone MRL and NZB/W F1 mice. Clin. Exp. Immunol. 134, 46–52 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Al-Mayouf, S. M. et al. Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat. Genet. 43, 1186–1188 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Belot, A. et al. Protein kinase Cδ deficiency causes Mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation. Arthritis Rheum. 65, 2161–2171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dieker, J. et al. Enhanced activation of dendritic cells by autologous apoptotic microvesicles in MRL/lpr mice. Arthritis Res. Ther. 17, 103 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Honda, K. et al. Spatiotemporal regulation of MyD88–IRF-7 signalling for robust type-I interferon induction. Nature 434, 1035–1040 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Barton, G. M., Kagan, J. C. & Medzhitov, R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat. Immunol. 7, 49–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Savarese, E. et al. Requirement of Toll-like receptor 7 for pristane-induced production of autoantibodies and development of murine lupus nephritis. Arthritis Rheum. 58, 1107–1115 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Pawar, R. D. et al. Inhibition of Toll-like receptor-7 (TLR-7) or TLR-7 plus TLR-9 attenuates glomerulonephritis and lung injury in experimental lupus. J. Am. Soc. Nephrol. 18, 1721–1731 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Pawar, R. D. et al. Toll-like receptor-7 modulates immune complex glomerulonephritis. J. Am. Soc. Nephrol. 17, 141–149 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Subramanian, S. et al. A TLR7 translocation accelerates systemic autoimmunity in murine lupus. Proc. Natl Acad. Sci. USA 103, 9970–9975 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ramirez-Ortiz, Z. G. et al. The receptor TREML4 amplifies TLR7-mediated signaling during antiviral responses and autoimmunity. Nat. Immunol. 16, 495–504 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Papadimitraki, E. D. et al. Expansion of Toll-like receptor 9-expressing B cells in active systemic lupus erythematosus: implications for the induction and maintenance of the autoimmune process. Arthritis Rheum. 54, 3601–3611 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Christensen, S. R. et al. Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus. J. Exp. Med. 202, 321–331 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fukui, R. et al. Unc93B1 restricts systemic lethal inflammation by orchestrating Toll-like receptor 7 and 9 trafficking. Immunity 35, 69–81 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schlee, M. & Hartmann, G. Discriminating self from non-self in nucleic acid sensing. Nat. Rev. Immunol. 16, 566–580 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Molineros, J. E. et al. Admixture mapping in lupus identifies multiple functional variants within IFIH1 associated with apoptosis, inflammation, and autoantibody production. PLoS Genet. 9, e1003222 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Choubey, D. Interferon-inducible Ifi200-family genes as modifiers of lupus susceptibility. Immunol. Lett. 147, 10–17 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Crow, Y. J. & Manel, N. Aicardi–Goutières syndrome and the type I interferonopathies. Nat. Rev. Immunol. 15, 429–440 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Cuadrado, E. et al. Aicardi–Goutières syndrome harbours abundant systemic and brain-reactive autoantibodies. Ann. Rheum. Dis. 74, 1931–1939 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Munroe, M. E. et al. Altered type II interferon precedes autoantibody accrual and elevated type I interferon activity prior to systemic lupus erythematosus classification. Ann. Rheum. Dis. 75, 2014–2021 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Lu, R. et al. Dysregulation of innate and adaptive serum mediators precedes systemic lupus erythematosus classification and improves prognostic accuracy of autoantibodies. J. Autoimmun. 74, 182–193 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Weckerle, C. E. et al. Large-scale analysis of tumor necrosis factor α levels in systemic lupus erythematosus. Arthritis Rheum. 64, 2947–2952 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yarilina, A., Park-Min, K. H., Antoniv, T., Hu, X. & Ivashkiv, L. B. TNF activates an IRF1-dependent autocrine loop leading to sustained expression of chemokines and STAT1-dependent type I interferon-response genes. Nat. Immunol. 9, 378–387 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Liu, Z. & Davidson, A. IFNα inducible models of murine SLE. Front. Immunol. 4, 306 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Castellano, G. et al. Local synthesis of interferon-α in lupus nephritis is associated with type I interferons signature and LMP7 induction in renal tubular epithelial cells. Arthritis Res. Ther. 17, 72 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Farkas, L., Beiske, K., Lund-Johansen, F., Brandtzaeg, P. & Jahnsen, F. L. Plasmacytoid dendritic cells (natural interferon-α/β-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am. J. Pathol. 159, 237–243 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fairhurst, A. M. et al. Systemic IFN-α drives kidney nephritis in B6.Sle123 mice. Eur. J. Immunol. 38, 1948–1960 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu, Z. et al. Interferon-α accelerates murine systemic lupus erythematosus in a T cell-dependent manner. Arthritis Rheum. 63, 219–229 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rudloff, I. et al. Brief report: interleukin-38 exerts antiinflammatory functions and is associated with disease activity in systemic lupus erythematosus. Arthritis Rheumatol. 67, 3219–3225 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Wang, D., Drenker, M., Eiz-Vesper, B., Werfel, T. & Wittmann, M. Evidence for a pathogenetic role of interleukin-18 in cutaneous lupus erythematosus. Arthritis Rheum. 58, 3205–3215 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Talaat, R. M., Mohamed, S. F., Bassyouni, I. H. & Raouf, A. A. TH1/TH2/TH17/TReg cytokine imbalance in systemic lupus erythematosus (SLE) patients: correlation with disease activity. Cytokine 72, 146–153 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Kyttaris, V. C., Juang, Y. T., Tenbrock, K., Weinstein, A. & Tsokos, G. C. Cyclic adenosine 5′-monophosphate response element modulator is responsible for the decreased expression of c-fos and activator protein-1 binding in T cells from patients with systemic lupus erythematosus. J. Immunol. 173, 3557–3563 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Solomou, E. E., Juang, Y. T., Gourley, M. F., Kammer, G. M. & Tsokos, G. C. Molecular basis of deficient IL-2 production in T cells from patients with systemic lupus erythematosus. J. Immunol. 166, 4216–4222 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Kyttaris, V. C., Kampagianni, O. & Tsokos, G. C. Treatment with anti-interleukin 23 antibody ameliorates disease in lupus-prone mice. Biomed. Res. Int. 2013, 861028 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pers, J. O. et al. BAFF overexpression is associated with autoantibody production in autoimmune diseases. Ann. NY Acad. Sci. 1050, 34–39 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Stohl, W. et al. BAFF overexpression and accelerated glomerular disease in mice with an incomplete genetic predisposition to systemic lupus erythematosus. Arthritis Rheum. 52, 2080–2091 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Liu, Z. & Davidson, A. BAFF and selection of autoreactive B cells. Trends Immunol. 32, 388–394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Carter, L. M., Isenberg, D. A. & Ehrenstein, M. R. Elevated serum BAFF levels are associated with rising anti-double-stranded DNA antibody levels and disease flare following B cell depletion therapy in systemic lupus erythematosus. Arthritis Rheum. 65, 2672–2679 (2013).

    CAS  PubMed  Google Scholar 

  121. Ledford, H. After half-century's wait, approval paves path for new lupus drugs. Nat. Med. 17, 400 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Furie, R. et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 63, 3918–3930 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Navarra, S. V. et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377, 721–731 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Jin, O. et al. Systemic lupus erythematosus patients have increased number of circulating plasmacytoid dendritic cells, but decreased myeloid dendritic cells with deficient CD83 expression. Lupus 17, 654–662 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Batteux, F., Palmer, P., Daeron, M., Weill, B. & Lebon, P. FcγRII (CD32)-dependent induction of interferon-α by serum from patients with lupus erythematosus. Eur. Cytokine Netw. 10, 509–514 (1999).

    CAS  PubMed  Google Scholar 

  126. Mozaffarian, N., Wiedeman, A. E. & Stevens, A. M. Active systemic lupus erythematosus is associated with failure of antigen-presenting cells to express programmed death ligand-1. Rheumatology (Oxford) 47, 1335–1341 (2008).

    Article  CAS  Google Scholar 

  127. Leonard, D. et al. Activated T cells enhance interferon-α production by plasmacytoid dendritic cells stimulated with RNA-containing immune complexes. Ann. Rheum. Dis. 75, 1728–1734 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Celhar, T. et al. RNA sensing by conventional dendritic cells is central to the development of lupus nephritis. Proc. Natl Acad. Sci. USA 112, E6195–E6204 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wu, S. A. et al. Impaired phagocytosis and susceptibility to infection in pediatric-onset systemic lupus erythematosus. Lupus 22, 279–288 (2013).

    Article  PubMed  Google Scholar 

  130. Bengtsson, A. A. et al. Low production of reactive oxygen species in granulocytes is associated with organ damage in systemic lupus erythematosus. Arthritis Res. Ther. 16, R120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. De Ravin, S. S. et al. Chronic granulomatous disease as a risk factor for autoimmune disease. J. Allergy Clin. Immunol. 122, 1097–1103 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Magnani, A. et al. Inflammatory manifestations in a single-center cohort of patients with chronic granulomatous disease. J. Allergy Clin. Immunol. 134, 655–662 (2014).

    Article  PubMed  Google Scholar 

  133. Campbell, A. M., Kashgarian, M. & Shlomchik, M. J. NADPH oxidase inhibits the pathogenesis of systemic lupus erythematosus. Sci. Transl Med. 4, 157ra141 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kelkka, T. et al. Reactive oxygen species deficiency induces autoimmunity with type 1 interferon signature. Antioxid. Redox Signal. 21, 2231–2245 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lood, C. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 22, 146–153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sanford, A. N., Suriano, A. R., Herche, D., Dietzmann, K. & Sullivan, K. E. Abnormal apoptosis in chronic granulomatous disease and autoantibody production characteristic of lupus. Rheumatology (Oxford) 45, 178–181 (2006).

    Article  CAS  Google Scholar 

  137. Villanueva, E. et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J. Immunol. 187, 538–552 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Smith, C. K. & Kaplan, M. J. The role of neutrophils in the pathogenesis of systemic lupus erythematosus. Curr. Opin. Rheumatol. 27, 448–453 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl Med. 3, 73ra20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl Med. 3, 73ra19 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  141. O'Gorman, W. E. et al. Single-cell systems-level analysis of human Toll-like receptor activation defines a chemokine signature in patients with systemic lupus erythematosus. J. Allergy Clin. Immunol. 136, 1326–1336 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hill, G. S. et al. Predictive power of the second renal biopsy in lupus nephritis: significance of macrophages. Kidney Int. 59, 304–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Asanuma, Y. et al. Premature coronary-artery atherosclerosis in systemic lupus erythematosus. N. Engl. J. Med. 349, 2407–2415 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Li, J., Liu, C. H., Xu, D. L. & Gao, B. Significance of CD163-positive macrophages in proliferative glomerulonephritis. Am. J. Med. Sci. 350, 387–392 (2015).

    Article  PubMed  Google Scholar 

  145. Masek-Hammerman, K. et al. Monoclonal antibody against macrophage colony-stimulating factor suppresses circulating monocytes and tissue macrophage function but does not alter cell infiltration/activation in cutaneous lesions or clinical outcomes in patients with cutaneous lupus erythematosus. Clin. Exp. Immunol. 183, 258–270 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Chen, Y., Cuda, C. & Morel, L. Genetic determination of T cell help in loss of tolerance to nuclear antigens. J. Immunol. 174, 7692–7702 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Chavele, K. M. & Ehrenstein, M. R. Regulatory T-cells in systemic lupus erythematosus and rheumatoid arthritis. FEBS Lett. 585, 3603–3610 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Juang, Y. T. et al. Systemic lupus erythematosus serum IgG increases CREM binding to the IL-2 promoter and suppresses IL-2 production through CaMKIV. J. Clin. Invest. 115, 996–1005 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Enyedy, E. J. et al. Fc ε receptor type I γ chain replaces the deficient T cell receptor ζ chain in T cells of patients with systemic lupus erythematosus. Arthritis Rheum. 44, 1114–1121 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Liossis, S. N., Ding, X. Z., Dennis, G. J. & Tsokos, G. C. Altered pattern of TCR/CD3-mediated protein-tyrosyl phosphorylation in T cells from patients with systemic lupus erythematosus. Deficient expression of the T cell receptor ζ chain. J. Clin. Invest. 101, 1448–1457 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Fernandez, D. R. et al. Activation of mammalian target of rapamycin controls the loss of TCRζ in lupus T cells through HRES-1/Rab4-regulated lysosomal degradation. J. Immunol. 182, 2063–2073 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Crispin, J. C. et al. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J. Immunol. 181, 8761–8766 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Liu, Y. et al. Increased expression of TLR2 in CD4+ T cells from SLE patients enhances immune reactivity and promotes IL-17 expression through histone modifications. Eur. J. Immunol. 45, 2683–2693 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Apostolidis, S. A., Crispin, J. C. & Tsokos, G. C. IL-17-producing T cells in lupus nephritis. Lupus 20, 120–124 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Crispin, J. C. & Tsokos, G. C. Human TCR-αβ+ CD4 CD8 T cells can derive from CD8+ T cells and display an inflammatory effector phenotype. J. Immunol. 183, 4675–4681 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Shivakumar, S., Tsokos, G. C. & Datta, S. K. T cell receptor α/β expressing double-negative (CD4/CD8) and CD4+ T helper cells in humans augment the production of pathogenic anti-DNA autoantibodies associated with lupus nephritis. J. Immunol. 143, 103–112 (1989).

    CAS  PubMed  Google Scholar 

  157. Mandik-Nayak, L. et al. MRL-lpr/lpr mice exhibit a defect in maintaining developmental arrest and follicular exclusion of anti-double-stranded DNA B cells. J. Exp. Med. 189, 1799–1814 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sinai, P. et al. T/B-cell interactions are more transient in response to weak stimuli in SLE-prone mice. Eur. J. Immunol. 44, 3522–3531 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mietzner, B. et al. Autoreactive IgG memory antibodies in patients with systemic lupus erythematosus arise from nonreactive and polyreactive precursors. Proc. Natl Acad. Sci. USA 105, 9727–9732 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Keszei, M. et al. Expansion of an osteopontin-expressing T follicular helper cell subset correlates with autoimmunity in B6.Sle1b mice and is suppressed by the H1-isoform of the Slamf6 receptor. FASEB J. 27, 3123–3131 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Yang, X. et al. T follicular helper cells mediate expansion of regulatory B cells via IL-21 in lupus-prone MRL/lpr mice. PLoS ONE 8, e62855 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Choi, J. Y. et al. Circulating follicular helper-like T cells in systemic lupus erythematosus: association with disease activity. Arthritis Rheumatol. 67, 988–999 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Szabo, K., Papp, G., Szanto, A., Tarr, T. & Zeher, M. A comprehensive investigation on the distribution of circulating follicular T helper cells and B cell subsets in primary Sjögren's syndrome and systemic lupus erythematosus. Clin. Exp. Immunol. (2015).

  164. Le Coz, C. et al. Circulating TFH subset distribution is strongly affected in lupus patients with an active disease. PLoS ONE 8, e75319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Liarski, V. M. et al. Cell distance mapping identifies functional T follicular helper cells in inflamed human renal tissue. Sci. Transl Med. 6, 230ra46 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Simpson, N. et al. Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum. 62, 234–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Jacquemin, C. et al. OX40 ligand contributes to human lupus pathogenesis by promoting T follicular helper response. Immunity 42, 1159–1170 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. von Spee-Mayer, C. et al. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann. Rheum. Dis. (2015).

  169. Dörner, T., Jacobi, A. M., Lee, J. & Lipsky, P. E. Abnormalities of B cell subsets in patients with systemic lupus erythematosus. J. Immunol. Methods 363, 187–197 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Guerrier, T., Youinou, P., Pers, J. O. & Jamin, C. TLR9 drives the development of transitional B cells towards the marginal zone pathway and promotes autoimmunity. J. Autoimmun. 39, 173–179 (2012).

    Article  CAS  PubMed  Google Scholar 

  171. Thien, M. et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 20, 785–798 (2004).

    Article  CAS  PubMed  Google Scholar 

  172. Lesley, R. et al. Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Immunity 20, 441–453 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Mackay, F. et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med. 190, 1697–1710 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    Article  CAS  PubMed  Google Scholar 

  175. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  176. Odendahl, M. et al. Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J. Immunol. 165, 5970–5979 (2000).

    Article  CAS  PubMed  Google Scholar 

  177. Gao, N. et al. Impaired suppressive capacity of activation-induced regulatory B cells in systemic lupus erythematosus. Arthritis Rheumatol. 66, 2849–2861 (2014).

    Article  CAS  PubMed  Google Scholar 

  178. Pillai, S., Mattoo, H. & Cariappa, A. B cells and autoimmunity. Curr. Opin. Immunol. 23, 721–731 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Koscec, M. et al. Autoantibodies to ribosomal P proteins penetrate into live hepatocytes and cause cellular dysfunction in culture. J. Immunol. 159, 2033–2041 (1997).

    CAS  PubMed  Google Scholar 

  180. Hung, T. et al. The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression. Science 350, 455–459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kaur, K. et al. High affinity antibodies against influenza characterize the plasmablast response in SLE patients after vaccination. PLoS ONE 10, e0125618 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Dema, B. et al. Autoreactive IgE is prevalent in systemic lupus erythematosus and is associated with increased disease activity and nephritis. PLoS ONE 9, e90424 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Henault, J. et al. Self-reactive IgE exacerbates interferon responses associated with autoimmunity. Nat. Immunol. 17, 196–203 (2016).

    Article  CAS  PubMed  Google Scholar 

  184. Liphaus, B. L., Jesus, A. A., Silva, C. A., Coutinho, A. & Carneiro-Sampaio, M. Increased IgE serum levels are unrelated to allergic and parasitic diseases in patients with juvenile systemic lupus erythematosus. Clinics (São Paulo) 67, 1275–1280 (2012).

    Article  Google Scholar 

  185. Charles, N., Hardwick, D., Daugas, E., Illei, G. G. & Rivera, J. Basophils and the T helper 2 environment can promote the development of lupus nephritis. Nat. Med. 16, 701–707 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Charles, N. et al. Lyn kinase controls basophil GATA-3 transcription factor expression and induction of TH2 cell differentiation. Immunity 30, 533–543 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Dema, B. et al. Immunoglobulin E plays an immunoregulatory role in lupus. J. Exp. Med. 211, 2159–2168 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ge, Y. et al. Cgnz1 allele confers kidney resistance to damage preventing progression of immune complex-mediated acute lupus glomerulonephritis. J. Exp. Med. 210, 2387–2401 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Watkins, A. A. et al. IRF5 deficiency ameliorates lupus but promotes atherosclerosis and metabolic dysfunction in a mouse model of lupus-associated atherosclerosis. J. Immunol. 194, 1467–1479 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Cervera, R. et al. Morbidity and mortality in systemic lupus erythematosus during a 5-year period. A multicenter prospective study of 1,000 patients. European Working Party on Systemic Lupus Erythematosus. Medicine (Baltimore) 78, 167–175 (1999).

    Article  CAS  Google Scholar 

  191. Flower, C., Hennis, A., Hambleton, I. R. & Nicholson, G. Lupus nephritis in an Afro-Caribbean population: renal indices and clinical outcomes. Lupus 15, 689–694 (2006).

    Article  CAS  PubMed  Google Scholar 

  192. Chung, S. A. et al. Lupus nephritis susceptibility loci in women with systemic lupus erythematosus. J. Am. Soc. Nephrol. 25, 2859–2870 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Matsuda, M. et al. Gene expression of PDGF and PDGF receptor in various forms of glomerulonephritis. Am. J. Nephrol. 17, 25–31 (1997).

    Article  CAS  PubMed  Google Scholar 

  194. Ostendorf, T. et al. Antagonism of PDGF-D by human antibody CR002 prevents renal scarring in experimental glomerulonephritis. J. Am. Soc. Nephrol. 17, 1054–1062 (2006).

    Article  CAS  PubMed  Google Scholar 

  195. Ichii, O. et al. Decreased miR-26a expression correlates with the progression of podocyte injury in autoimmune glomerulonephritis. PLoS ONE 9, e110383 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Flur, K. et al. Viral RNA induces type I interferon-dependent cytokine release and cell death in mesangial cells via melanoma-differentiation-associated gene-5: implications for viral infection-associated glomerulonephritis. Am. J. Pathol. 175, 2014–2022 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Ichinose, K. et al. Cutting edge: calcium/calmodulin-dependent protein kinase type IV is essential for mesangial cell proliferation and lupus nephritis. J. Immunol. 187, 5500–5504 (2011).

    Article  CAS  PubMed  Google Scholar 

  198. Ichinose, K. et al. Lupus nephritis IgG induction of calcium/calmodulin-dependent kinase type IV expression in podocytes and alteration of their function. Arthritis Rheumatol. 68, 944–952 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Ichinose, K., Juang, Y. T., Crispin, J. C., Kis-Toth, K. & Tsokos, G. C. Suppression of autoimmunity and organ pathology in lupus-prone mice upon inhibition of calcium/calmodulin-dependent protein kinase type IV. Arthritis Rheum. 63, 523–529 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Tshilela, K. A. et al. Glomerular cytokine expression in murine lupus nephritis. Clin. Exp. Nephrol. 20, 23–29 (2016).

    Article  CAS  PubMed  Google Scholar 

  201. Espinosa, A. et al. Loss of the lupus autoantigen Ro52/Trim21 induces tissue inflammation and systemic autoimmunity by disregulating the IL-23–TH17 pathway. J. Exp. Med. 206, 1661–1671 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Oke, V. et al. High Ro52 expression in spontaneous and UV-induced cutaneous inflammation. J. Invest. Dermatol. 129, 2000–2010 (2009).

    Article  CAS  PubMed  Google Scholar 

  203. Fabini, G., Rutjes, S. A., Zimmermann, C., Pruijn, G. J. & Steiner, G. Analysis of the molecular composition of Ro ribonucleoprotein complexes: identification of novel Y RNA-binding proteins. Eur. J. Biochem. 267, 2778–2789 (2000).

    Article  CAS  PubMed  Google Scholar 

  204. Ho, R. C. et al. Genetic variants that are associated with neuropsychiatric systemic lupus erythematosus. J. Rheumatol. 43, 541–551 (2016).

    Article  PubMed  Google Scholar 

  205. Namjou, B. et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun. 12, 270–279 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Jacob, A. et al. Inhibition of C5a receptor alleviates experimental CNS lupus. J. Neuroimmunol. 221, 46–52 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Jacob, A. et al. C5a alters blood–brain barrier integrity in experimental lupus. FASEB J. 24, 1682–1688 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Ho, R. C. et al. A meta-analysis of serum and cerebrospinal fluid autoantibodies in neuropsychiatric systemic lupus erythematosus. Autoimmun. Rev. 15, 124–138 (2016).

    Article  CAS  PubMed  Google Scholar 

  209. Wen, J. et al. Neuropsychiatric disease in murine lupus is dependent on the TWEAK/Fn14 pathway. J. Autoimmun. 43, 44–54 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Pondman, K. W., Stoop, J. W., Cormane, R. H. & Hannema, A. J. Abnormal C1 in a patient with systemic lupus erythematosus. J. Immunol. 101, 811 (1968).

    Google Scholar 

  211. Kallel-Sellami, M. et al. Pediatric systemic lupus erythematosus with C1q deficiency. Ann. NY Acad. Sci. 1108, 193–196 (2007).

    Article  CAS  PubMed  Google Scholar 

  212. Wu, Y. L., Brookshire, B. P., Verani, R. R., Arnett, F. C. & Yu, C. Y. Clinical presentations and molecular basis of complement C1r deficiency in a male African-American patient with systemic lupus erythematosus. Lupus 20, 1126–1134 (2011).

    Article  CAS  PubMed  Google Scholar 

  213. Suzuki, Y., Ogura, Y., Otsubo, O., Akagi, K. & Fujita, T. Selective deficiency of C1s associated with a systemic lupus erythematosus-like syndrome. Report of a case. Arthritis Rheum. 35, 576–579 (1992).

    Article  CAS  PubMed  Google Scholar 

  214. Kemp, M. E., Atkinson, J. P., Skanes, V. M., Levine, R. P. & Chaplin, D. D. Deletion of C4A genes in patients with systemic lupus erythematosus. Arthritis Rheum. 30, 1015–1022 (1987).

    Article  CAS  PubMed  Google Scholar 

  215. Wahl, R. et al. C2 deficiency and a lupus erythematosus-like illness: family re-evaluation. Ann. Intern. Med. 90, 717–718 (1979).

    Article  CAS  PubMed  Google Scholar 

  216. Pussell, B. A., Bourke, E., Nayef, M., Morris, S. & Peters, D. K. Complement deficiency and nephritis: a report of a family. Lancet 1, 675–677 (1980).

    CAS  PubMed  Google Scholar 

  217. Battersby, A. C., Cale, A. M., Goldblatt, D. & Gennery, A. R. Clinical manifestations of disease in X-linked carriers of chronic granulomatous disease. J. Clin. Immunol. 33, 1276–1284 (2013).

    Article  CAS  PubMed  Google Scholar 

  218. Klar, A. et al. Prolidase deficiency: it looks like systemic lupus erythematosus but it is not. Eur. J. Pediatr. 169, 727–732 (2010).

    Article  PubMed  Google Scholar 

  219. Urushihara, M. et al. Sisters with α-mannosidosis and systemic lupus erythematosus. Eur. J. Pediatr. 163, 192–195 (2004).

    Article  PubMed  Google Scholar 

  220. Lee-Kirsch, M. A. et al. Familial chilblain lupus, a monogenic form of cutaneous lupus erythematosus, maps to chromosome 3p. Am. J. Hum. Genet. 79, 731–737 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Rice, G. et al. Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi–Goutières syndrome. Am. J. Hum. Genet. 80, 811–815 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Yasutomo, K. et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat. Genet. 28, 313–314 (2001).

    Article  CAS  PubMed  Google Scholar 

  223. Ramantani, G. et al. Aicardi–Goutières syndrome and systemic lupus erythematosus (SLE) in a 12-year-old boy with SAMHD1 mutations. J. Child Neurol. 26, 1425–1428 (2011).

    Article  PubMed  Google Scholar 

  224. Briggs, T. A. et al. Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat. Genet. 43, 127–131 (2011).

    Article  CAS  PubMed  Google Scholar 

  225. Crow, Y. J. et al. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am. J. Med. Genet. A 167A, 296–312 (2015).

    Article  CAS  PubMed  Google Scholar 

  226. Rice, G. I. et al. Mutations in ADAR1 cause Aicardi–Goutières syndrome associated with a type I interferon signature. Nat. Genet. 44, 1243–1248 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Jang, M. A. et al. Mutations in DDX58, which encodes RIG-I, cause atypical Singleton–Merten syndrome. Am. J. Hum. Genet. 96, 266–274 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Zhang, X. et al. Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature 517, 89–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  230. Brehm, A. et al. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J. Clin. Invest. 125, 4196–4211 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Wu, J. et al. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J. Clin. Invest. 98, 1107–1113 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Xiang, N., Li, X. M., Wang, G. S., Tao, J. H. & Li, X. P. Association of FAS gene polymorphisms with systemic lupus erythematosus: a meta-analysis. Mol. Biol. Rep. 40, 407–415 (2013).

    Article  CAS  PubMed  Google Scholar 

  233. Rieux-Laucat, F. et al. Mutations in FAS associated with human lymphoproliferative syndrome and autoimmunity. Science 268, 1347–1349 (1995).

    Article  CAS  PubMed  Google Scholar 

  234. Bader-Meunier, B. et al. Are RASopathies new monogenic predisposing conditions to the development of systemic lupus erythematosus? Case report and systematic review of the literature. Semin. Arthritis Rheum. 43, 217–219 (2013).

    Article  PubMed  Google Scholar 

  235. Chen, K. et al. Autoimmunity due to RAG deficiency and estimated disease incidence in RAG1/2 mutations. J. Allergy Clin. Immunol. 133, 880–882. e810 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Walter, J. E. et al. Impaired receptor editing and heterozygous RAG2 mutation in a patient with systemic lupus erythematosus and erosive arthritis. J. Allergy Clin. Immunol. 135, 272–273 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K.E.S. and P.C.R. reviewed and edited the manuscript before submission. G.C.T., M.S.L., and P.C.R. researched data for the article, wrote substantial sections of the manuscript, contributed substantially to discussions of the content, and reviewed the final draft.

Corresponding author

Correspondence to Kathleen E. Sullivan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsokos, G., Lo, M., Reis, P. et al. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol 12, 716–730 (2016). https://doi.org/10.1038/nrrheum.2016.186

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.186

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing