Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolomics for clinical use and research in chronic kidney disease

Key Points

  • The human metabolome reflects genetic variability, intrinsic biochemical processes, environmental challenges and complex interactions of all these factors

  • Metabolomics is instrumental in discovering specific biomarkers in diseases with systemic effects such as chronic kidney disease (CKD)

  • Metabolomics analysis can detect CKD-relevant biomarkers in tissues, plasma, serum and urine samples

  • Most metabolite biomarkers of CKD are markers of glomerular filtration, markers of tubular function or metabolites that reflect a decline in mitochondrial function, alterations in the urea cycle or amino acid metabolism

  • As CKD stage increases, the metabolic biomarker signatures of different renal diseases tends to become more similar and less dependent on the underlying renal disease

  • Metabolic biomarkers seen in the later stages of CKD reflect a loss of glomerular filtration, tubular function and a decline in kidney metabolism and endocrine function

Abstract

Chronic kidney disease (CKD) has a high prevalence in the general population and is associated with high mortality; a need therefore exists for better biomarkers for diagnosis, monitoring of disease progression and therapy stratification. Moreover, very sensitive biomarkers are needed in drug development and clinical research to increase understanding of the efficacy and safety of potential and existing therapies. Metabolomics analyses can identify and quantify all metabolites present in a given sample, covering hundreds to thousands of metabolites. Sample preparation for metabolomics requires a very fast arrest of biochemical processes. Present key technologies for metabolomics are mass spectrometry and proton nuclear magnetic resonance spectroscopy, which require sophisticated biostatistic and bioinformatic data analyses. The use of metabolomics has been instrumental in identifying new biomarkers of CKD such as acylcarnitines, glycerolipids, dimethylarginines and metabolites of tryptophan, the citric acid cycle and the urea cycle. Biomarkers such as c-mannosyl tryptophan and pseudouridine have better performance in CKD stratification than does creatinine. Future challenges in metabolomics analyses are prospective studies and deconvolution of CKD biomarkers from those of other diseases such as metabolic syndrome, diabetes mellitus, inflammatory conditions, stress and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Essential elements of analytics with mass spectrometry (MS) for metabolomics.
Figure 2: Data presentation and common biostatistical approaches in metabolomics.

Similar content being viewed by others

References

  1. Zhang, Q. L. & Rothenbacher, D. Prevalence of chronic kidney disease in population-based studies: systematic review. BMC Public Health 8, 117 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jha, V., Wang, A. Y. & Wang, H. The impact of CKD identification in large countries: the burden of illness. Nephrol. Dial. Transplant. 27 (Suppl. 3), iii32–iii38 (2012).

    PubMed  Google Scholar 

  3. Stevens, P. E., Levin, A. & Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med. 158, 825–830 (2013).

    Article  PubMed  Google Scholar 

  4. KDIGO. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 3, 4 (2013). Guidelines for the diagnosis and treatment of CKD that are used wordwide in clinical practice and research.

  5. Ferguson, T. W., Komenda, P. & Tangri, N. Cystatin C as a biomarker for estimating glomerular filtration rate. Curr. Opin. Nephrol. Hypertens. 24, 295–300 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Bokenkamp, A., van Wijk, J. A., Lentze, M. J. & Stoffel-Wagner, B. Effect of corticosteroid therapy on serum cystatin C and beta2-microglobulin concentrations. Clin. Chem. 48, 1123–1126 (2002).

    CAS  PubMed  Google Scholar 

  7. Knight, E. L. et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 65, 1416–1421 (2004). Analysis of factors other than renal function that influence levels of serum cystatin C in patients with CKD.

    Article  CAS  PubMed  Google Scholar 

  8. Fricker, M., Wiesli, P., Brandle, M., Schwegler, B. & Schmid, C. Impact of thyroid dysfunction on serum cystatin C. Kidney Int. 63, 1944–1947 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Wan, Z. et al. Combining serum cystatin C with total bilirubin improves short-term mortality prediction in patients with HBV-related acute-on-chronic liver failure. PLoS ONE 10, e0116968 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ichikawa, D. et al. Utility of urinary tubular markers for monitoring chronic tubulointerstitial injury after ischemia-reperfusion. Nephrology (Carlton) http://dx.doi.org/10.1111/nep.12998 (2017).

  11. Foster, M. C. et al. Urinary biomarkers and risk of ESRD in the Atherosclerosis Risk in Communities Study. Clin. J. Am. Soc. Nephrol. 10, 1956–1963 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Peralta, C. A. et al. Associations of urinary levels of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) with kidney function decline in the Multi-Ethnic Study of Atherosclerosis (MESA). Am. J. Kidney Dis. 60, 904–911 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Levin, A., Lancashire, W. & Fassett, R. G. Targets, trends, excesses, and deficiencies: refocusing clinical investigation to improve patient outcomes. Kidney Int. 83, 1001–1009 (2013).

    Article  PubMed  Google Scholar 

  14. Tweeddale, H., Notley-McRobb, L. & Ferenci, T. Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (“metabolome”) analysis. J. Bacteriol. 180, 5109–5116 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nicholson, J. K., Lindon, J. C. & Holmes, E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29, 1181–1189 (1999). The concept of metabolomic research for biomedicine.

    Article  CAS  PubMed  Google Scholar 

  16. Su, L. J. et al. The use of metabolomics in population-based research. Adv. Nutr. 5, 785–788 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Griffin, J. L. The Cinderella story of metabolic profiling: does metabolomics get to go to the functional genomics ball? Phil. Trans. R. Soc. B 361, 147–161 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Lindon, J. C. & Nicholson, J. K. The emergent role of metabolic phenotyping in dynamic patient stratification. Expert Opin. Drug Metab. Toxicol. 10, 915–919 (2014). An explanation of the concept and use of metabolomic phenotyping in human cohorts.

    Article  CAS  PubMed  Google Scholar 

  19. Fahy, E., Sud, M., Cotter, D. & Subramaniam, S. LIPID MAPS online tools for lipid research. Nucleic Acids Res. 35, W606–W612 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wishart, D. S. et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 37, D603–D610 (2009). Overview of the Human Metabolome Database, which provides a versatile resource for metabolite function and characteristics.

    Article  CAS  PubMed  Google Scholar 

  21. Zamboni, N., Saghatelian, A. & Patti, G. J. Defining the metabolome: size, flux, and regulation. Mol. Cell 58, 699–706 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang, D. et al. An integrated plasma and urinary metabonomic study using UHPLC-MS: intervention effects of Epimedium koreanum on 'Kidney-Yang Deficiency syndrome' rats. J. Pharm. Biomed. Anal. 76, 200–206 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Yousri, N. A. et al. A systems view of type 2 diabetes-associated metabolic perturbations in saliva, blood and urine at different timescales of glycaemic control. Diabetologia 58, 1855–1867 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krug, S. et al. The dynamic range of the human metabolome revealed by challenges. FASEB J. 26, 2607–2619 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Floegel, A. et al. Reliability of serum metabolite concentrations over a 4-month period using a targeted metabolomic approach. PLoS ONE 6, e21103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yousri, N. A. et al. Long term conservation of human metabolic phenotypes and link to heritability. Metabolomics 10, 1005–1017 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mook-Kanamori, D. O. et al. Type 2 diabetes is associated with postprandial amino acid measures. Arch. Biochem. Biophys. 589, 138–144 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Jacobs, S. et al. Evaluation of various biomarkers as potential mediators of the association between coffee consumption and incident type 2 diabetes in the EPIC-Potsdam Study. Am. J. Clin. Nutr. 100, 891–900 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Xu, T. et al. Effects of smoking and smoking cessation on human serum metabolite profile: results from the KORA cohort study. BMC Med. 11, 60 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lankinen, M. et al. Metabolomic analysis of plasma metabolites that may mediate effects of rye bread on satiety and weight maintenance in postmenopausal women. J. Nutr. 141, 31–36 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Jaremek, M. et al. Alcohol-induced metabolomic differences in humans. Transl Psychiatry 3, e276 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu, Z. et al. Human serum metabolic profiles are age dependent. Aging Cell 11, 960–967 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Menni, C. et al. Metabolomic markers reveal novel pathways of ageing and early development in human populations. Int. J. Epidemiol. 42, 1111–1119 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Asher, G. & Sassone-Corsi, P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 161, 84–92 (2015).

    CAS  PubMed  Google Scholar 

  35. Guo, L. et al. Plasma metabolomic profiles enhance precision medicine for volunteers of normal health. Proc. Natl Acad. Sci. USA 112, E4901–E4910 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Heinzmann, S. S. et al. Stability and robustness of human metabolic phenotypes in response to sequential food challenges. J. Proteome Res. 11, 643–655 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Hyotylainen, T. Novel methodologies in metabolic profiling with a focus on molecular diagnostic applications. Expert Rev. Mol. Diagn. 12, 527–538 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Whitfield, P. D., German, A. J. & Noble, P. J. Metabolomics: an emerging post-genomic tool for nutrition. Br. J. Nutr. 92, 549–555 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Gebregiworgis, T. & Powers, R. Application of NMR metabolomics to search for human disease biomarkers. Comb. Chem. High Throughput Screen. 15, 595–610 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Artati, A., Prehn, C., Möller, G. & Adamski, J. in Genetics Meets Metabolomics: From Experiment to Systems Biology (ed. Suhre, K.) 13–38 (Springer, 2012). Discussion of study design and tools used for metabolomics analyses in human populations.

    Book  Google Scholar 

  41. Baldwin, M. A. Mass spectrometers for the analysis of biomolecules. Methods Enzymol. 402, 3–48 (2005). Summary of the principles of mass spectrometry.

    Article  CAS  PubMed  Google Scholar 

  42. Hopfgartner, G. et al. Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules and macromolecules. J. Mass Spectrom. 39, 845–855 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Khamis, M. M., Adamko, D. J. & El-Aneed, A. Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Mass Spectrom. Rev. 36, 115–134 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Campbell, J. L. & Le Blanc, J. C. Using high-resolution quadrupole TOF technology in DMPK analyses. Bioanalysis 4, 487–500 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Evans, A. M., DeHaven, C. D., Barrett, T., Mitchell, M. & Milgram, E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal. Chem. 81, 6656–6667 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Cacciatore, S. & Loda, M. Innovation in metabolomics to improve personalized healthcare. Ann. NY Acad. Sci. 1346, 57–62 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Nicolardi, S., Bogdanov, B., Deelder, A. M., Palmblad, M. & van der Burgt, Y. E. Developments in FTICR-MS and its potential for body fluid signatures. Int. J. Mol. Sci. 16, 27133–27144 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Suhre, K. et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 477, 54–60 (2011). Study of the impact of the human genome on the metabolome and functional annotation of the genome.

    Article  CAS  PubMed  Google Scholar 

  49. Hirayama, A. et al. Metabolic profiling reveals new serum biomarkers for differentiating diabetic nephropathy. Anal. Bioanal. Chem. 404, 3101–3109 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Tsutsui, H. et al. Biomarker discovery in biological specimens (plasma, hair, liver and kidney) of diabetic mice based upon metabolite profiling using ultra-performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry. Clin. Chim. Acta 412, 861–872 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Krumsiek, J. et al. Mining the unknown: a systems approach to metabolite identification combining genetic and metabolic information. PLoS Genet. 8, e1003005 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Psychogios, N. et al. The human serum metabolome. PLoS ONE 6, e16957 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bouatra, S. et al. The human urine metabolome. PLoS ONE 8, e73076 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Klepacki, J., Klawitter, J., Klawitter, J., Thurman, J. M. & Christians, U. A high-performance liquid chromatography — tandem mass spectrometry — based targeted metabolomics kidney dysfunction marker panel in human urine. Clin. Chim. Acta 446, 43–53 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rhee, E. P. Metabolomics and renal disease. Curr. Opin. Nephrol. Hypertens. 24, 371–379 (2015). General review on metabolomics applied to renal disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, A., Sun, H., Qiu, S. & Wang, X. Metabolomics insights into pathophysiological mechanisms of nephrology. Int. Urol. Nephrol. 46, 1025–1030 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Schena, F. P. Biomarkers and personalized therapy in chronic kidney diseases. Expert Opin. Investig. Drugs 23, 1051–1054 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Bartel, J., Krumsiek, J. & Theis, F. J. Statistical methods for the analysis of high-throughput metabolomics data. Comput. Struct. Biotechnol. J. 4, e201301009 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Issaq, H. J., Van, Q. N., Waybright, T. J., Muschik, G. M. & Veenstra, T. D. Analytical and statistical approaches to metabolomics research. J. Sep. Sci. 32, 2183–2199 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Armitage, E. G., Godzien, J., Alonso-Herranz, V., Lopez-Gonzalvez, A. & Barbas, C. Missing value imputation strategies for metabolomics data. Electrophoresis 36, 3050–3060 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Succop, P. A., Clark, S., Chen, M. & Galke, W. Imputation of data values that are less than a detection limit. J. Occup. Environ. Hyg. 1, 436–441 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Berk, M., Ebbels, T. & Montana, G. A statistical framework for biomarker discovery in metabolomic time course data. Bioinformatics 27, 1979–1985 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wartenberg, D. & Northridge, M. Defining exposure in case-control studies: a new approach. Am. J. Epidemiol. 133, 1058–1071 (1991).

    Article  CAS  PubMed  Google Scholar 

  64. Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621 (1952).

    Article  Google Scholar 

  65. Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947).

    Article  Google Scholar 

  66. Xia, J., Broadhurst, D. I., Wilson, M. & Wishart, D. S. Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics 9, 280–299 (2013). An introduction to metabolites as biomarkers.

    Article  CAS  PubMed  Google Scholar 

  67. Lopez-Giacoman, S. & Madero, M. Biomarkers in chronic kidney disease, from kidney function to kidney damage. World J. Nephrol. 4, 57–73 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Fassett, R. G. et al. Biomarkers in chronic kidney disease: a review. Kidney Int. 80, 806–821 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Breit, M. & Weinberger, K. M. Metabolic biomarkers for chronic kidney disease. Arch. Biochem. Biophys. 589, 62–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, Z. H. et al. Metabolomic signatures of chronic kidney disease of diverse etiologies in the rats and humans. J. Proteome Res. 15, 3802–3812 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Fleck, C. et al. Serum concentrations of asymmetric (ADMA) and symmetric (SDMA) dimethylarginine in renal failure patients. Kidney Int. Suppl. 78, S14–S18 (2001). Study showing that the levels of biomarkers of endothelial dysfunction are increased in CKD.

    Article  CAS  PubMed  Google Scholar 

  72. Wahbi, N. et al. Dimethylarginines in chronic renal failure. J. Clin. Pathol. 54, 470–473 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vallance, P., Leone, A., Calver, A., Collier, J. & Moncada, S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339, 572–575 (1992).

    Article  CAS  PubMed  Google Scholar 

  74. Raptis, V., Kapoulas, S. & Grekas, D. Role of asymmetrical dimethylarginine in the progression of renal disease. Nephrology (Carlton) 18, 11–21 (2013).

    Article  CAS  Google Scholar 

  75. Notsu, Y., Yano, S., Shibata, H., Nagai, A. & Nabika, T. Plasma arginine/ADMA ratio as a sensitive risk marker for atherosclerosis: Shimane CoHRE study. Atherosclerosis 239, 61–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Neri, M. et al. A meta-analysis of biomarkers related to oxidative stress and nitric oxide pathway in migraine. Cephalalgia 35, 931–937 (2015).

    Article  PubMed  Google Scholar 

  77. Trgo, G. et al. Association of asymmetric dimethylarginine with acute pancreatitis-induced hyperglycemia. Pancreas 45, 694–699 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Aydemir, O., Ozcan, B., Yucel, H., Yagmur Bas, A. & Demirel, N. Asymmetric dimethylarginine and L-arginine levels in neonatal sepsis and septic shock. J. Matern. Fetal Neonatal Med. 28, 977–982 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Tomlinson, J. A. et al. Reduced renal methylarginine metabolism protects against progressive kidney damage. J. Am. Soc. Nephrol. 26, 3045–3059 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wurtman, R. J., Larin, F., Axelrod, J., Shein, H. M. & Rosasco, K. Formation of melatonin and 5-hydroxyindole acetic acid from 14C-tryptophan by rat pineal glands in organ culture. Nature 217, 953–954 (1968).

    Article  CAS  PubMed  Google Scholar 

  81. Udenfriend, S., Weissbach, H. & Bogdanski, D. F. Increase in tissue serotonin following administration of its precursor 5-hydroxytryptophan. J. Biol. Chem. 224, 803–810 (1957).

    CAS  PubMed  Google Scholar 

  82. Hankes, L. V., Brown, R. R. & Schmaeler, M. Metabolism of isomers of 3-hydroxykynureninec14 to quinolinic acid, niacin metabolites and carbon dioxide. Proc. Soc. Exp. Biol. Med. 121, 253–259 (1966).

    Article  CAS  PubMed  Google Scholar 

  83. Saito, K. et al. Mechanism of increases in L-kynurenine and quinolinic acid in renal insufficiency. Am. J. Physiol. Renal Physiol. 279, F565–F572 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Schefold, J. C. et al. Increased indoleamine 2,3-dioxygenase (IDO) activity and elevated serum levels of tryptophan catabolites in patients with chronic kidney disease: a possible link between chronic inflammation and uraemic symptoms. Nephrol. Dial. Transplant. 24, 1901–1908 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Streja, E. et al. Niacin and progression of CKD. Am. J. Kidney Dis. 65, 785–798 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Bryan, G. T. Quantitative studies on the urinary excretion of indoxyl sulfate (indican) in man following administration of L-tryptophan and acetyl-L-tryptophan. Am. J. Clin. Nutr. 19, 105–112 (1966).

    Article  CAS  PubMed  Google Scholar 

  87. Niwa, T. Uremic toxicity of indoxyl sulfate. Nagoya J. Med. Sci. 72, 1–11 (2010).

    CAS  PubMed  Google Scholar 

  88. Sudar-Milovanovic, E. et al. Hormonal regulation of nitric oxide (NO) in cardio-metabolic diseases. Curr. Pharm. Des. http://dx.doi.org/10.2174/1381612823666170124124855 (2017).

  89. Persichini, T. et al. Cross-talk between NO synthase isoforms in neuro-inflammation: possible implications in HIV-associated neurocognitive disorders. Curr. Med. Chem. 23, 2706–2714 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Ghimire, K., Altmann, H. M., Straub, A. & Isenberg, J. S. Nitric oxide: what's new to NO? Am. J. Physiol. Cell Physiol. http://dx.doi.org/10.1152/ajpcell.00315.2016 (2016).

  91. Erkens, R. et al. Modulation of local and systemic heterocellular communication by mechanical forces: a role of eNOS. Antioxid. Redox Signal. http://dx.doi.org/10.1089/ars.2016.6904 (2016).

  92. Leiper, J. & Vallance, P. Biological significance of endogenous methylarginines that inhibit nitric oxide synthases. Cardiovasc. Res. 43, 542–548 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Baylis, C. Nitric oxide deficiency in chronic kidney disease. Am. J. Physiol. Renal Physiol. 294, F1–F9 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Popolo, A., Adesso, S., Pinto, A., Autore, G. & Marzocco, S. L-Arginine and its metabolites in kidney and cardiovascular disease. Amino Acids 46, 2271–2286 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Pegg, A. E. The function of spermine. IUBMB Life 66, 8–18 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Ramani, D., De Bandt, J. P. & Cynober, L. Aliphatic polyamines in physiology and diseases. Clin. Nutr. 33, 14–22 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Saito, A., Takagi, T., Chung, T. G. & Ohta, K. Serum levels of polyamines in patients with chronic renal failure. Kidney Int. Suppl. 16, S234–S237 (1983).

    CAS  PubMed  Google Scholar 

  98. Goek, O. N. et al. Metabolites associate with kidney function decline and incident chronic kidney disease in the general population. Nephrol. Dial. Transplant. 28, 2131–2138 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Rroji, M. et al. Association of advanced age with concentrations of uraemic toxins in CKD. J. Nephrol. 29, 81–91 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Shah, V. O. et al. Plasma metabolomic profiles in different stages of CKD. Clin. J. Am. Soc. Nephrol. 8, 363–370 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Duranton, F. et al. Plasma and urinary amino acid metabolomic profiling in patients with different levels of kidney function. Clin. J. Am. Soc. Nephrol. 9, 37–45 (2014). A comparison of plasma and urinary biomarkers in patients with kidney dysfunction.

    Article  CAS  PubMed  Google Scholar 

  102. Liu, J. et al. 1H NMR-based metabonomic analysis of serum and urine in a nonhuman primate model of diabetic nephropathy. Mol. Biosyst. 9, 2645–2652 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Choi, J. Y. et al. Dialysis modality-dependent changes in serum metabolites: accumulation of inosine and hypoxanthine in patients on haemodialysis. Nephrol. Dial. Transplant. 26, 1304–1313 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Abbiss, H. et al. Development of a non-targeted metabolomics method to investigate urine in a rat model of polycystic kidney disease. Nephrology (Carlton) 17, 104–110 (2012).

    Article  CAS  Google Scholar 

  105. Riehle, R. D., Cornea, S. & Degterev, A. Role of phosphatidylinositol 3,4,5-trisphosphate in cell signaling. Adv. Exp. Med. Biol. 991, 105–139 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Wakelam, M. J., Pettitt, T. R. & Postle, A. D. Lipidomic analysis of signaling pathways. Methods Enzymol. 432, 233–246 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Serhan, C. N., Haeggstrom, J. Z. & Leslie, C. C. Lipid mediator networks in cell signaling: update and impact of cytokines. FASEB J. 10, 1147–1158 (1996).

    Article  CAS  PubMed  Google Scholar 

  108. Chaurasia, B. & Summers, S. A. Ceramides — lipotoxic inducers of metabolic disorders. Trends Endocrinol. Metab. 26, 538–550 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Dennis, E. A. & Norris, P. C. Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol. 15, 511–523 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wurtz, P. et al. Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation 131, 774–785 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang-Sattler, R. et al. Novel biomarkers for pre-diabetes identified by metabolomics. Mol. Syst. Biol. 8, 615 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vouk, K. et al. Discovery of phosphatidylcholines and sphingomyelins as biomarkers for ovarian endometriosis. Hum. Reprod. 27, 2955–2965 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Albrecht, E. et al. Metabolite profiling reveals new insights into the regulation of serum urate in humans. Metabolomics 10, 141–151 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Goek, O. N. et al. Serum metabolite concentrations and decreased GFR in the general population. Am. J. Kidney Dis. 60, 197–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Fahy, E. et al. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 50 (Suppl.), S9–S14 (2009). An explanation of lipid nomenclature.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pearson, D. J. & Tubbs, P. K. Acetyl-carnitine in heart and liver. Nature 202, 91 (1964).

    Article  CAS  PubMed  Google Scholar 

  117. Guder, W. G. & Wagner, S. The role of the kidney in carnitine metabolism. J. Clin. Chem. Clin. Biochem. 28, 347–350 (1990).

    CAS  PubMed  Google Scholar 

  118. Bernard, A., Rigault, C., Mazue, F., Le Borgne, F. & Demarquoy, J. L-Carnitine supplementation and physical exercise restore age-associated decline in some mitochondrial functions in the rat. J. Gerontol. A Biol. Sci. Med. Sci. 63, 1027–1033 (2008).

    Article  PubMed  Google Scholar 

  119. Pescosolido, N., Imperatrice, B. & Karavitis, P. The aging eye and the role of L-carnitine and its derivatives. Drugs R. D. 9 (Suppl. 1), 3–14 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Zambrano, S. et al. The renoprotective effect of L-carnitine in hypertensive rats is mediated by modulation of oxidative stress-related gene expression. Eur. J. Nutr. 52, 1649–1659 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Bremer, J. Carnitine as a fatty acid carrier in intermediary metabolism. Nature 196, 993–994 (1962).

    Article  CAS  PubMed  Google Scholar 

  122. Pande, S. V. A mitochondrial carnitine acylcarnitine translocase system. Proc. Natl Acad. Sci. USA 72, 883–887 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ferrara, F., Bertelli, A. & Falchi, M. Evaluation of carnitine, acetylcarnitine and isovalerylcarnitine on immune function and apoptosis. Drugs Exp. Clin. Res. 31, 109–114 (2005).

    CAS  PubMed  Google Scholar 

  124. Mutomba, M. C. et al. Regulation of the activity of caspases by L-carnitine and palmitoylcarnitine. FEBS Lett. 478, 19–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Roe, C. R. et al. Isolated isobutyryl-CoA dehydrogenase deficiency: an unrecognized defect in human valine metabolism. Mol. Genet. Metab. 65, 264–271 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Miller, W. L. Steroid hormone synthesis in mitochondria. Mol. Cell. Endocrinol. 379, 62–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Prehn, C., Möller, G. & Adamski, J. Recent advances in 17beta-hydroxysteroid dehydrogenases. J. Steroid Biochem. Mol. Biol. 114, 72–77 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Labrie, F. Intracrinology in action: importance of extragonadal sex steroid biosynthesis and inactivation in peripheral tissues in both women and men. J. Steroid Biochem. Mol. Biol. 145, 131–132 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Chapman, K. E. et al. Changing glucocorticoid action: 11beta-hydroxysteroid dehydrogenase type 1 in acute and chronic inflammation. J. Steroid Biochem. Mol. Biol. 137, 82–92 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hardy, M. P. et al. Stress hormone and male reproductive function. Cell Tissue Res. 322, 147–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Morton, N. M. et al. Improved lipid and lipoprotein profile, hepatic insulin sensitivity, and glucose tolerance in 11beta-hydroxysteroid dehydrogenase type 1 null mice. J. Biol. Chem. 276, 41293–41300 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Draper, N. & Stewart, P. M. 11beta-hydroxysteroid dehydrogenase and the pre-receptor regulation of corticosteroid hormone action. J. Endocrinol. 186, 251–271 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Kotelevtsev, Y. et al. 11β-hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid-inducible responses and resist hyperglycemia on obesity or stress. Proc. Natl Acad. Sci. USA 94, 14924–14929 (1997). This key review describes the impact of oxidative stress in CKD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. You, Y. H., Quach, T., Saito, R., Pham, J. & Sharma, K. Metabolomics reveals a key role for fumarate in mediating the effects of NADPH oxidase 4 in diabetic kidney disease. J. Am. Soc. Nephrol. 27, 466–481 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Li, M. et al. GC/TOFMS analysis of metabolites in serum and urine reveals metabolic perturbation of TCA cycle in db/db mice involved in diabetic nephropathy. Am. J. Physiol. Renal Physiol. 304, F1317–F1324 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Hasselwander, O. & Young, I. S. Oxidative stress in chronic renal failure. Free Radic. Res. 29, 1–11 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. Himmelfarb, J., Stenvinkel, P., Ikizler, T. A. & Hakim, R. M. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 62, 1524–1538 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Chen, H. et al. Metabolomics insights into activated redox signaling and lipid metabolism dysfunction in chronic kidney disease progression. Redox Biol. 10, 168–178 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Mashima, R., Nakanishi-Ueda, T. & Yamamoto, Y. Simultaneous determination of methionine sulfoxide and methionine in blood plasma using gas chromatography-mass spectrometry. Anal. Biochem. 313, 28–33 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Breier, M. et al. Targeted metabolomics identifies reliable and stable metabolites in human serum and plasma samples. PLoS ONE 9, e89728 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Simic-Ogrizovic, S. et al. Markers of oxidative stress after renal transplantation. Transpl. Int. 11 (Suppl. 1), S125–S129 (1998).

    Article  PubMed  Google Scholar 

  142. Fonseca, I. et al. Oxidative stress in kidney transplantation: malondialdehyde is an early predictive marker of graft dysfunction. Transplantation 97, 1058–1065 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Akanuma, H., Ogawa, K., Lee, Y. & Akanuma, Y. Reduced levels of plasma 1,5-anhydroglucitol in diabetic patients. J. Biochem. 90, 157–162 (1981).

    Article  CAS  PubMed  Google Scholar 

  144. Kametani, S., Hashimoto, Y., Yamanouchi, T., Akanuma, Y. & Akanuma, H. Reduced renal reabsorption of 1,5-anhydro-D-glucitol in diabetic rats and mice. J. Biochem. 102, 1599–1607 (1987).

    Article  CAS  PubMed  Google Scholar 

  145. Yu, B. et al. Serum metabolomic profiling and incident CKD among African Americans. Clin. J. Am. Soc. Nephrol. 9, 1410–1417 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Dooms-Goossens, A., Degreef, H., Vanhee, J., Kerkhofs, L. & Chrispeels, M. T. Chlorocresol and chloracetamide: allergens in medications, glues, and cosmetics. Contact Dermatitis 7, 51–52 (1981).

    Article  CAS  PubMed  Google Scholar 

  147. Sanders, J. M. et al. Carcinogenesis studies of cresols in rats and mice. Toxicology 257, 33–39 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Ford, S. M., Hook, J. B. & Bond, J. T. The effects of butylated hydroxyanisole and butylated hydroxytoluene on renal function in the rat. I. Effects on fluid and electrolyte excretion. Food Cosmet Toxicol. 18, 15–20 (1980).

    Article  CAS  PubMed  Google Scholar 

  149. De Smet, R. et al. Toxicity of free p-cresol: a prospective and cross-sectional analysis. Clin. Chem. 49, 470–478 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Lin, H. H., Huang, C. C., Lin, T. Y. & Lin, C. Y. p-Cresol mediates autophagic cell death in renal proximal tubular cells. Toxicol. Lett. 234, 20–29 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Brocca, A., Virzi, G. M., de Cal, M., Cantaluppi, V. & Ronco, C. Cytotoxic effects of p-cresol in renal epithelial tubular cells. Blood Purif. 36, 219–225 (2013).

    Article  PubMed  Google Scholar 

  152. Adamski, J. Genome-wide association studies with metabolomics. Genome Med. 4, 34 (2012). An introduction to metabolomics for genome-wide association studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sekula, P. et al. A metabolome-wide association study of kidney function and disease in the general population. J. Am. Soc. Nephrol. 27, 1175–1188 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Levey, A. S. et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 150, 604–612 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Rhee, E. P. et al. A combined epidemiologic and metabolomic approach improves CKD prediction. J. Am. Soc. Nephrol. 24, 1330–1338 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gao, X. et al. Systematic variations associated with renal disease uncovered by parallel metabolomics of urine and serum. BMC Syst. Biol. 6 (Suppl. 1), S14 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Mutsaers, H. A. et al. Optimized metabolomic approach to identify uremic solutes in plasma of stage 3–4 chronic kidney disease patients. PLoS ONE 8, e71199 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hao, X. et al. Distinct metabolic profile of primary focal segmental glomerulosclerosis revealed by NMR-based metabolomics. PLoS ONE 8, e78531 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Posada-Ayala, M. et al. Identification of a urine metabolomic signature in patients with advanced-stage chronic kidney disease. Kidney Int. 85, 103–111 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Pena, M. J. et al. Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with Type 2 diabetes mellitus. Diabet. Med. 31, 1138–1147 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Sharma, K. et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J. Am. Soc. Nephrol. 24, 1901–1912 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. van der Kloet, F. M. et al. Discovery of early-stage biomarkers for diabetic kidney disease using ms-based metabolomics (FinnDiane study). Metabolomics 8, 109–119 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Lee, J. et al. Changes in serum metabolites with the stage of chronic kidney disease: comparison of diabetes and non-diabetes. Clin. Chim. Acta 459, 123–131 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Gao, Y. et al. Identifying early urinary metabolic changes with long-term environmental exposure to cadmium by mass-spectrometry-based metabolomics. Environ. Sci. Technol. 48, 6409–6418 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Uehara, T. et al. Identification of metabolomic biomarkers for drug-induced acute kidney injury in rats. J. Appl. Toxicol. 34, 1087–1095 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Sun, X. et al. Metabonomics evaluation of urine from rats administered with phorate under long-term and low-level exposure by ultra-performance liquid chromatography-mass spectrometry. J. Appl. Toxicol. 34, 176–183 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Zinellu, A. et al. Impact of cholesterol lowering treatment on plasma kynurenine and tryptophan concentrations in chronic kidney disease: relationship with oxidative stress improvement. Nutr. Metab. Cardiovasc. Dis. 25, 153–159 (2015). Study showing that amelioration of both oxidative and inflammation status after cholesterol-lowering treatment in CKD might be mediated by restoration of antioxidant taurine concentrations during therapy.

    Article  CAS  PubMed  Google Scholar 

  168. Vanhaelen, M., Vanhaelen-Fastre, R., But, P. & Vanherweghem, J. L. Identification of aristolochic acid in Chinese herbs. Lancet 343, 174 (1994).

    Article  CAS  PubMed  Google Scholar 

  169. Zhao, Y. Y. et al. Urinary metabolomics and biomarkers of aristolochic acid nephrotoxicity by UPLC-QTOF/HDMS. Bioanalysis 7, 685–700 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Zhao, Y. Y. et al. Metabolomics analysis reveals the association between lipid abnormalities and oxidative stress, inflammation, fibrosis, and Nrf2 dysfunction in aristolochic acid-induced nephropathy. Sci. Rep. 5, 12936 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhang, X. et al. Plasma metabolic profiling analysis of nephrotoxicity induced by acyclovir using metabonomics coupled with multivariate data analysis. J. Pharm. Biomed. Anal. 97, 151–156 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Hanna, M. H. et al. Urinary metabolomic markers of aminoglycoside nephrotoxicity in newborn rats. Pediatr. Res. 73, 585–591 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wei, Q., Xiao, X., Fogle, P. & Dong, Z. Changes in metabolic profiles during acute kidney injury and recovery following ischemia/reperfusion. PLoS ONE 9, e106647 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhao, X., Chen, J., Ye, L. & Xu, G. Serum metabolomics study of the acute graft rejection in human renal transplantation based on liquid chromatography-mass spectrometry. J. Proteome Res. 13, 2659–2667 (2014).

    Article  CAS  PubMed  Google Scholar 

  175. Wettersten, H. I. et al. Grade-dependent metabolic reprogramming in kidney cancer revealed by combined proteomics and metabolomics analysis. Cancer Res. 75, 2541–2552 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Floegel, A. et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 62, 639–648 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Felig, P., Wahren, J., Sherwin, R. & Palaiologos, G. Amino acid and protein metabolism in diabetes mellitus. Arch. Intern. Med. 137, 507–513 (1977).

    Article  CAS  PubMed  Google Scholar 

  178. Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Rhee, E. P. et al. Metabolomics of chronic kidney disease progression: a case-control analysis in the chronic renal insufficiency cohort study. Am. J. Nephrol. 43, 366–374 (2016).

    Article  CAS  PubMed  Google Scholar 

  180. Kimura, T. et al. Identification of biomarkers for development of end-stage kidney disease in chronic kidney disease by metabolomic profiling. Sci. Rep. 6, 26138 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kobayashi, T. et al. A metabolomics-based approach for predicting stages of chronic kidney disease. Biochem. Biophys. Res. Commun. 445, 412–416 (2014).

    Article  CAS  PubMed  Google Scholar 

  182. Nkuipou-Kenfack, E. et al. Assessment of metabolomic and proteomic biomarkers in detection and prognosis of progression of renal function in chronic kidney disease. PLoS ONE 9, e96955 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Mussap, M., Antonucci, R., Noto, A. & Fanos, V. The role of metabolomics in neonatal and pediatric laboratory medicine. Clin. Chim. Acta 426, 127–138 (2013).

    Article  CAS  PubMed  Google Scholar 

  184. Yin, P., Lehmann, R. & Xu, G. Effects of pre-analytical processes on blood samples used in metabolomics studies. Anal. Bioanal. Chem. 407, 4879–4892 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Bernini, P. et al. Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. J. Biomol. NMR 49, 231–243 (2011).

    Article  CAS  PubMed  Google Scholar 

  186. Anton, G. et al. Pre-analytical sample quality: metabolite ratios as an intrinsic marker for prolonged room temperature exposure of serum samples. PLoS ONE 10, e0121495 (2015). Analysis of the impact of pre-analytical sample handling on metabolomic fingerprinting.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Herberth, G. et al. Endogenous metabolites and inflammasome activity in early childhood and links to respiratory diseases. J. Allergy Clin. Immunol. 136, 495–497 (2015).

    Article  CAS  PubMed  Google Scholar 

  188. Viswan, A., Sharma, R. K., Azim, A. & Sinha, N. NMR-based metabolic snapshot from minibronchoalveolar lavage fluid: an approach to unfold human respiratory metabolomics. J. Proteome Res. 15, 302–310 (2016).

    Article  CAS  PubMed  Google Scholar 

  189. Tsentalovich, Y. P. et al. Metabolomic composition of normal aged and cataractous human lenses. Exp. Eye Res. 134, 15–23 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Courant, F., Antignac, J. P., Monteau, F. & Le Bizec, B. Metabolomics as a potential new approach for investigating human reproductive disorders. J. Proteome Res. 12, 2914–2920 (2013).

    Article  CAS  PubMed  Google Scholar 

  191. Lutz, U., Lutz, R. W. & Lutz, W. K. Metabolic profiling of glucuronides in human urine by LC-MS/MS and partial least-squares discriminant analysis for classification and prediction of gender. Anal. Chem. 78, 4564–4571 (2006).

    Article  CAS  PubMed  Google Scholar 

  192. Fonville, J. M., Richards, S. E., Barton, R. H., Boulange, C. L. & Ebbbels, T. M. D. The evolution of partial least square models and related chemometric approaches in metabonomics and metabolite phenotyping. J. Chemom. 24, 636–649 (2010).

    Article  CAS  Google Scholar 

  193. Trygg, J. & Wold, S. Orthogonal projections to latent structures (OPLS). J. Chemom. 16, 119–128 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors' work is supported by Innovative Medicines Initiative Joint Undertaking under Grant agreement number 115439 (StemBANCC), and number 115317 (DIRECT), the German Federal Ministry of Education and Research (BMBF) to the German Center Diabetes Research (DZD e.V.) grant to J.A. and the Deutsche Forschungsgemeinschaft (DFG) number Ho 1665/5-1, Ho 1665/5-2 and Ho 1665/5-3 to B.H. The authors would like to express their gratitude for critical reading of the manuscript to Dr. Cornelia Prehn and Dr. Alexander Cecil at Helmholtz Zentrum München, Genome Analysis Center, Neuherberg, Germany.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article, discussed the content, wrote the text and revised or edited the manuscript before submission.

Corresponding author

Correspondence to Jerzy Adamski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (figure)

Overview of the most important metabolites and pathways that are altered in CKD. (PDF 1558 kb)

Supplementary information S2 (table)

Molecules, pathways and their relevance in chronic kidney disease (PDF 165 kb)

PowerPoint slides

Glossary

Uraemic toxins

Solutes that are excreted by the healthy kidney but accumulate and contribute to uraemia in patients with CKD.

Metabolic fingerprint

A snapshot of the metabolites present in sample under specific conditions.

Mass spectrometry

An analytical method by which ionised molecules are detected according to their mass-to-charge ratio.

Proton nuclear magnetic resonance spectroscopy

An analytical method that analyses the absorption and re-emission of energy of proton nuclei in a strong magnetic field.

Tandem mass spectrometers

A mass spectrometer apparatus consisting of two quadrupole mass spectrometers connected by a single quadrupole.

Quadrupole linear ion trap (Q-TRAP)–MS

A mass spectrometer equipped with a quadrupole that is used to trap charged molecules.

Quadrupole time-of-flight (Q-TOF)–MS

A mass spectrometer that determines the mass-to-charge ratio of molecules based on their flight time in the apparatus.

Orbitrap

A mass analyser that converts frequency signals from trapped ions to mass spectrum using the Fourier transform.

Derivatization steps

Chemical modification of molecules to increases their ability to ionize before mass analyses.

Isotope dilution

An approach to determine the concentration of substances by comparison with a stable isotope-labelled added internal standard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hocher, B., Adamski, J. Metabolomics for clinical use and research in chronic kidney disease. Nat Rev Nephrol 13, 269–284 (2017). https://doi.org/10.1038/nrneph.2017.30

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.30

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research