Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis

Key Points

  • The incidence of obesity-related glomerulopathy (ORG) is increasing in parallel with the worldwide obesity epidemic

  • Pathologic features of ORG include glomerulomegaly and focal segmental glomerulosclerosis (FSGS), particularly the perihilar variant; the degree of foot process effacement in ORG is usually less than in primary FSGS

  • Subnephrotic proteinuria is the most common clinical presentation of ORG; some patients have nephrotic-range proteinuria and progressive loss of renal function but full nephrotic syndrome is highly unusual

  • Major renal physiologic responses to obesity include increases in glomerular filtration rate, renal plasma flow, filtration fraction and tubular reabsorption of sodium

  • Adipokines and ectopic lipid accumulation in the kidney promote maladaptive responses of renal cells to the mechanical forces of hyperfiltration, leading to podocyte depletion, proteinuria, FSGS and interstitial fibrosis

  • Therapeutic interventions include renin–angiotensin–aldosterone inhibition and weight loss; novel strategies involve administration of small molecules that specifically modulate deleterious pathways of fatty acid and cholesterol metabolism

Abstract

The prevalence of obesity-related glomerulopathy is increasing in parallel with the worldwide obesity epidemic. Glomerular hypertrophy and adaptive focal segmental glomerulosclerosis define the condition pathologically. The glomerulus enlarges in response to obesity-induced increases in glomerular filtration rate, renal plasma flow, filtration fraction and tubular sodium reabsorption. Normal insulin/phosphatidylinositol 3-kinase/Akt and mTOR signalling are critical for podocyte hypertrophy and adaptation. Adipokines and ectopic lipid accumulation in the kidney promote insulin resistance of podocytes and maladaptive responses to cope with the mechanical forces of renal hyperfiltration. Although most patients have stable or slowly progressive proteinuria, up to one-third develop progressive renal failure and end-stage renal disease. Renin–angiotensin–aldosterone blockade is effective in the short-term but weight loss by hypocaloric diet or bariatric surgery has induced more consistent and dramatic antiproteinuric effects and reversal of hyperfiltration. Altered fatty acid and cholesterol metabolism are increasingly recognized as key mediators of renal lipid accumulation, inflammation, oxidative stress and fibrosis. Newer therapies directed to lipid metabolism, including SREBP antagonists, PPARα agonists, FXR and TGR5 agonists, and LXR agonists, hold therapeutic promise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathologic features of obesity-related glomerulopathy (ORG).
Figure 2: Haemodynamic alterations in obesity.
Figure 3: Potential role of adipokines in the development of obesity-related glomerulopathy.
Figure 4: The insulin/ PI3K/Akt/ mTOR pathway.
Figure 5: Fatty acid and triglyceride metabolism in obesity-related glomerulopathy.
Figure 6: Cholesterol metabolism in obesity-related glomerulopathy.

Similar content being viewed by others

References

  1. Coresh, J. et al. Prevalence of chronic kidney disease in the United States. JAMA 298, 2038–2047 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Farag, Y. M. & Gaballa, M. R. Diabesity: an overview of a rising epidemic. Nephrol. Dial. Transplant. 26, 28–35 (2011).

    Article  PubMed  Google Scholar 

  3. Zammit, A. R., Katz, M. J., Derby, C., Bitzer, M. & Lipton, R. B. Chronic kidney disease in non-diabetic older adults: associated roles of the metabolic syndrome, inflammation, and insulin resistance. PLoS ONE 10, e0139369 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stenvinkel, P., Zoccali, C. & Ikizler, T. A. Obesity in CKD — what should nephrologists know? J. Am. Soc. Nephrol. 24, 1727–1736 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wickman, C. & Kramer, H. Obesity and kidney disease: potential mechanisms. Semin. Nephrol. 33, 14–22 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Guebre-Egziabher, F. et al. Ectopic lipid accumulation: a potential cause for metabolic disturbances and a contributor to the alteration of kidney function. Biochimie 95, 1971–1979 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Nolan, E., O'Meara, Y. M. & Godson, C. Lipid mediators of inflammation in obesity-related glomerulopathy. Nephrol. Dial. Transplant. 28 (Suppl. 4), iv22–iv29 (2013).

    CAS  PubMed  Google Scholar 

  8. de Vries, A. P. et al. Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol. 2, 417–426 (2014). This review discusses the role of ectopic lipid accumulation in maladaptive changes of glomerular cells in response to the haemodynamic forces of hyperfiltration and CKD.

    Article  CAS  PubMed  Google Scholar 

  9. GBD 2013 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386, 2287–2323 (2015).

  10. Ogden, C. L., Carroll, M. D., Kit, B. K. & Flegal, K. M. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 311, 806–814 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, Y., Beydoun, M. A., Liang, L., Caballero, B. & Kumanyika, S. K. Will all Americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic. Obesity (Silver Spring) 16, 2323–2330 (2008).

    Article  Google Scholar 

  12. Li, Q., Blume, S. W., Huang, J. C., Hammer, M. & Ganz, M. L. Prevalence and healthcare costs of obesity-related comorbidities: evidence from an electronic medical records system in the United States. J. Med. Econ. 18, 1020–1028 (2015).

    Article  PubMed  Google Scholar 

  13. Cohen, A. H. Massive obesity and the kidney. A morphologic and statistical study. Am. J. Pathol. 81, 117–130 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Weisinger, J. R., Kempson, R. L., Eldridge, F. L. & Swenson, R. S. The nephrotic syndrome: a complication of massive obesity. Ann. Intern. Med. 81, 440–447 (1974).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, H. M. et al. Obesity-related glomerulopathy in China: a case series of 90 patients. Am. J. Kidney Dis. 52, 58–65 (2008).

    Article  PubMed  Google Scholar 

  16. Kambham, N., Markowitz, G. S., Valeri, A. M., Lin, J. & D'Agati, V. D. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 59, 1498–1509 (2001). This study provided the first detailed clinical–pathologic analysis of ORG as contrasted with primary FSGS and demonstrates the rising prevalence of ORG diagnosed by kidney biopsy.

    Article  CAS  PubMed  Google Scholar 

  17. Praga, M. et al. Clinical features and long-term outcome of obesity-associated focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 16, 1790–1798 (2001). This comprehensive clinical study describes the presenting clinical features and outcomes of ORG in a large Spanish cohort.

    Article  CAS  PubMed  Google Scholar 

  18. Hughson, M. D., Hoy, W. E., Douglas-Denton, R. N., Zimanyi, M. A. & Bertram, J. F. Towards a definition of glomerulomegaly: clinical-pathological and methodological considerations. Nephrol. Dial. Transplant. 26, 2202–2208 (2011).

    Article  PubMed  Google Scholar 

  19. D'Agati, V. D., Kaskel, F. J. & Falk, R. J. Focal segmental glomerulosclerosis. N. Engl. J. Med. 365, 2398–2411 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. D'Agati, V. D., Fogo, A. B., Bruijn, J. A. & Jennette, J. C. Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am. J. Kidney Dis. 43, 368–382 (2004).

    Article  PubMed  Google Scholar 

  21. Chagnac, A. et al. Glomerular hemodynamics in severe obesity. Am. J. Physiol. Renal Physiol. 278, F817–F822 (2000). This human study shows that obesity-related glomerular hyperfiltration is mainly the result of an increase in transcapillary hydraulic pressure difference, mostly due to afferent arteriolar dilation.

    Article  CAS  PubMed  Google Scholar 

  22. Chen, H. M. et al. Podocyte lesions in patients with obesity-related glomerulopathy. Am. J. Kidney Dis. 48, 772–779 (2006).

    Article  PubMed  Google Scholar 

  23. Wharram, B. L. et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J. Am. Soc. Nephrol. 16, 2941–2952 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Wiggins, J. E. et al. Podocyte hypertrophy, 'adaptation,' and 'decompensation' associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction. J. Am. Soc. Nephrol. 16, 2953–2966 (2005).

    Article  PubMed  Google Scholar 

  25. Fukuda, A. et al. Growth-dependent podocyte failure causes glomerulosclerosis. J. Am. Soc. Nephrol. 23, 1351–1363 (2012). This experimental study shows that the mTOR pathway is important in the adaptive growth of the glomerulus in obesity and that FSGS can develop when the rate of podocyte hypertrophy is lower than the rate of glomerular hypertrophy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kriz, W., Hosser, H., Hahnel, B., Gretz, N. & Provoost, A. P. From segmental glomerulosclerosis to total nephron degeneration and interstitial fibrosis: a histopathological study in rat models and human glomerulopathies. Nephrol. Dial. Transplant. 13, 2781–2798 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Nagata, M. & Kriz, W. Glomerular damage after uninephrectomy in young rats. II. Mechanical stress on podocytes as a pathway to sclerosis. Kidney Int. 42, 148–160 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Tsuboi, N. et al. Low glomerular density with glomerulomegaly in obesity-related glomerulopathy. Clin. J. Am. Soc. Nephrol. 7, 735–741 (2012).

    Article  PubMed  Google Scholar 

  29. Hoy, W. E. et al. A stereological study of glomerular number and volume: preliminary findings in a multiracial study of kidneys at autopsy. Kidney Int. 63, S31–S37 (2003).

    Article  Google Scholar 

  30. Hughson, M., Farris, A. B. 3rd, Douglas-Denton, R., Hoy, W. E. & Bertram, J. F. Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int. 63, 2113–2122 (2003).

    Article  PubMed  Google Scholar 

  31. Luyckx, V. A. & Brenner, B. M. Birth weight, malnutrition and kidney-associated outcomes — a global concern. Nat. Rev. Nephrol. 11, 135–149 (2015).

    Article  PubMed  Google Scholar 

  32. Manalich, R., Reyes, L., Herrera, M., Melendi, C. & Fundora, I. Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int. 58, 770–773 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Bobulescu, I. A. et al. Triglycerides in the human kidney cortex: relationship with body size. PLoS ONE 9, e101285 (2014). This human study is the first to show that obesity, as reflected by BMI, is associated with increased triglyceride accumulation in the kidney, predominantly in tubular cells.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wu, Y. et al. Obesity-related glomerulopathy: insights from gene expression profiles of the glomeruli derived from renal biopsy samples. Endocrinology 147, 44–50 (2006). This study shows increased expression of multiple genes that regulate insulin function, lipid metabolism, inflammation and fibrogenesis in kidney biopsy samples from patients with ORG. Notably, it identified SREBP-1, which mediates fatty acid and triglyceride synthesis.

    Article  CAS  PubMed  Google Scholar 

  35. D'Agati, V. D. Pathobiology of focal segmental glomerulosclerosis: new developments. Curr. Opin. Nephrol. Hypertens. 21, 243–250 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. D'Agati, V. D. The spectrum of focal segmental glomerulosclerosis: new insights. Curr. Opin. Nephrol. Hypertens. 17, 271–281 (2008).

    Article  PubMed  Google Scholar 

  37. Bhathena, D. B., Julian, B. A., McMorrow, R. G. & Baehler, R. W. Focal sclerosis of hypertrophied glomeruli in solitary functioning kidneys of humans. Am. J. Kidney Dis. 5, 226–232 (1985).

    Article  CAS  PubMed  Google Scholar 

  38. Hodgin, J. B., Rasoulpour, M., Markowitz, G. S. & D'Agati, V. D. Very low birth weight is a risk factor for secondary focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 4, 71–76 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Deegens, J. K. et al. Podocyte foot process effacement as a diagnostic tool in focal segmental glomerulosclerosis. Kidney Int. 74, 1568–1576 (2008).

    Article  PubMed  Google Scholar 

  40. Ichikawa, I., Ma, J., Motojima, M. & Matsusaka, T. Podocyte damage damages podocytes: autonomous vicious cycle that drives local spread of glomerular sclerosis. Curr. Opin. Nephrol. Hypertens. 14, 205–210 (2005).

    Article  PubMed  Google Scholar 

  41. D'Agati, V. Podocyte injury can be catching. J. Am. Soc. Nephrol. 22, 1181–1183 (2011).

    Article  PubMed  Google Scholar 

  42. Bonnet, F. et al. Excessive body weight as a new independent risk factor for clinical and pathological progression in primary IgA nephritis. Am. J. Kidney Dis. 37, 720–727 (2001). This study was among the first to show that elevated BMI is a risk factor for clinical and pathologic progression of a glomerular disease other than ORG.

    Article  CAS  PubMed  Google Scholar 

  43. Hsu, C. Y., McCulloch, C. E., Iribarren, C., Darbinian, J. & Go, A. S. Body mass index and risk for end-stage renal disease. Ann. Intern. Med. 144, 21–28 (2006). This large historical cohort study of over 320,000 adults demonstrated that higher BMI at baseline is an independent risk factor for subsequent ESRD in multivariable analyses after adjustment for age, sex, race, education level, smoking status, cardiac disease, serum cholesterol, urinalysis proteinuria, hematuria, serum creatinine level, baseline blood pressure level and presence of diabetes mellitus.

    Article  PubMed  Google Scholar 

  44. Sharma, S. G. et al. The modern spectrum of renal biopsy findings in patients with diabetes. Clin. J. Am. Soc. Nephrol. 8, 1718–1724 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Serra, A. et al. Renal injury in the extremely obese patients with normal renal function. Kidney Int. 73, 947–955 (2008). Using protocol biopsies in patients undergoing bariatric surgery for morbid obesity, this study demostrated the presence of early pathologic abnormalities in patients lacking clinically detectable renal disease.

    Article  CAS  PubMed  Google Scholar 

  46. Goumenos, D. S. et al. Early histological changes in the kidney of people with morbid obesity. Nephrol. Dial. Transplant. 24, 3732–3738 (2009).

    Article  PubMed  Google Scholar 

  47. D'Agati, V. D. & Markowitz, G. S Supersized kidneys: lessons from the preclinical obese kidney. Kidney Int. 73, 909–910 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Pehlivan, E. et al. Identifying the determinants of microalbuminuria in obese patients in primary care units: the effects of blood pressure, random plasma glucose and other risk factors. J. Endocrinol. Invest. 39, 73–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Hashimoto, Y. et al. Metabolically healthy obesity and risk of incident CKD. Clin. J. Am. Soc. Nephrol. 10, 578–583 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin, W. Y. et al. Central obesity and albuminuria: both cross-sectional and longitudinal studies in Chinese. PLoS ONE 7, e47960 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tsuboi, N. et al. Clinical features and long-term renal outcomes of Japanese patients with obesity-related glomerulopathy. Clin. Exp. Nephrol. 17, 379–385 (2013).

    Article  PubMed  Google Scholar 

  52. Chen, H. M. et al. Evaluation of metabolic risk marker in obesity-related glomerulopathy. J. Ren. Nutr. 21, 309–315 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Praga, M. et al. Nephrotic proteinuria without hypoalbuminemia: clinical characteristics and response to angiotensin-converting enzyme inhibition. Am. J. Kidney Dis. 17, 330–338 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. Praga, M. et al. Absence of hypoalbuminemia despite massive proteinuria in focal segmental glomerulosclerosis secondary to hyperfiltration. Am. J. Kidney Dis. 33, 52–58 (1999). This study showed that patients with focal segmental glomerulosclerosis secondary to hyperfiltration (including ORG) do not develop hypoalbuminemia even in the presence of nephrotic-range proteinuria.

    Article  CAS  PubMed  Google Scholar 

  55. Sethi, S., Zand, L., Nasr, S. H., Glassock, R. J. & Fervenza, F. C. Focal and segmental glomerulosclerosis: clinical and kidney biopsy correlations. Clin. Kidney J. 7, 531–537 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sethi, S., Glassock, R. J. & Fervenza, F. C. Focal segmental glomerulosclerosis: towards a better understanding for the practicing nephrologist. Nephrol. Dial. Transplant. 30, 375–384 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Shen, W. W. et al. Obesity-related glomerulopathy: body mass index and proteinuria. Clin. J. Am. Soc. Nephrol. 5, 1401–1409 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nangaku, M. et al. In a type 2 diabetic nephropathy rat model, the improvement of obesity by a low calorie diet reduces oxidative/carbonyl stress and prevents diabetic nephropathy. Nephrol. Dial. Transplant. 20, 2661–2669 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Chander, P. N. et al. Nephropathy in Zucker diabetic fat rat is associated with oxidative and nitrosative stress: prevention by chronic therapy with a peroxynitrite scavenger ebselen. J. Am. Soc. Nephrol. 15, 2391–2403 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Kawasaki, Y. et al. Two children with obesity-related glomerulopathy identified in a school urinary screening program. Pediatr. Int. 56, 115–118 (2014).

    Article  PubMed  Google Scholar 

  61. Novick, A. C., Gephardt, G., Guz, B., Steinmuller, D. & Tubbs, R. R. Long-term follow-up after partial removal of a solitary kidney. N. Engl. J. Med. 325, 1058–1062 (1991).

    Article  CAS  PubMed  Google Scholar 

  62. Bosma, R. J., van der Heide, J. J., Oosterop, E. J., de Jong, P. E. & Navis, G. Body mass index is associated with altered renal hemodynamics in non-obese healthy subjects. Kidney Int. 65, 259–265 (2004).

    Article  PubMed  Google Scholar 

  63. Praga, M. et al. Influence of obesity on the appearance of proteinuria and renal insufficiency after unilateral nephrectomy. Kidney Int. 58, 2111–2118 (2000). This study was the first to report detrimental effects of obesity in patients with renal mass reduction.

    Article  CAS  PubMed  Google Scholar 

  64. Gonzalez, E. et al. Factors influencing the progression of renal damage in patients with unilateral renal agenesis and remnant kidney. Kidney Int. 68, 263–270 (2005).

    Article  PubMed  Google Scholar 

  65. Whincup, P. H. et al. Birth weight and risk of type 2 diabetes: a systematic review. JAMA 300, 2886–2897 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. White, S. L. et al. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am. J. Kidney Dis. 54, 248–261 (2009).

    Article  PubMed  Google Scholar 

  67. de Jong, F., Monuteaux, M. C., van Elburg, R. M., Gillman, M. W. & Belfort, M. B. Systematic review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension 59, 226–234 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Mu, M. et al. Birth weight and subsequent blood pressure: a meta-analysis. Arch. Cardiovasc. Dis. 105, 99–113 (2012).

    Article  PubMed  Google Scholar 

  69. Vikse, B. E., Irgens, L. M., Leivestad, T., Hallan, S. & Iversen, B. M. Low birth weight increases risk for end-stage renal disease. J. Am. Soc. Nephrol. 19, 151–157 (2008). This important cohort study shows that low birth weight and intrauterine growth restriction increase the risk of ESRD.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Abitbol, C. L. et al. Obesity and preterm birth: additive risks in the progression of kidney disease in children. Pediatr. Nephrol. 24, 1363–1370 (2009).

    Article  PubMed  Google Scholar 

  71. Barker, D. J., Osmond, C., Forsen, T. J., Kajantie, E. & Eriksson, J. G. Trajectories of growth among children who have coronary events as adults. N. Engl. J. Med. 353, 1802–1809 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Andersen, L. G. et al. Birth weight, childhood body mass index and risk of coronary heart disease in adults: combined historical cohort studies. PLoS ONE 5, e14126 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Caballero, B. A nutrition paradox — underweight and obesity in developing countries. N. Engl. J. Med. 352, 1514–1516 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Mallamaci, F. et al. ACE inhibition is renoprotective among obese patients with proteinuria. J. Am. Soc. Nephrol. 22, 1122–1128 (2011). This post hoc analysis of the REIN trial shows that obesity predicts a higher risk of renal events but ramipril treatment can abolish this excess risk.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Garg, R. & Adler, G. K. Aldosterone and the mineralocorticoid receptor: risk factors for cardiometabolic disorders. Curr. Hypertens. Rep. 17, 52 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Bomback, A. S., Muskala, P., Bald, E., Chwatko, G. & Nowicki, M. Low-dose spironolactone, added to long-term ACE inhibitor therapy, reduces blood pressure and urinary albumin excretion in obese patients with hypertensive target organ damage. Clin. Nephrol. 72, 449–456 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Friedman, A. N., Chambers, M., Kamendulis, L. M. & Temmerman, J. Short-term changes after a weight reduction intervention in advanced diabetic nephropathy. Clin. J. Am. Soc. Nephrol. 8, 1892–1898 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Saiki, A. et al. Effect of weight loss using formula diet on renal function in obese patients with diabetic nephropathy. Int. J. Obes. (Lond.) 29, 1115–1120 (2005).

    Article  CAS  Google Scholar 

  79. Nicholson, A. S. et al. Toward improved management of NIDDM: a randomized, controlled, pilot intervention using a lowfat, vegetarian diet. Prev. Med. 29, 87–91 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Morales, E., Valero, M. A., Leon, M., Hernandez, E. & Praga, M. Beneficial effects of weight loss in overweight patients with chronic proteinuric nephropathies. Am. J. Kidney Dis. 41, 319–327 (2003).

    Article  PubMed  Google Scholar 

  81. Straznicky, N. E. et al. Exercise augments weight loss induced improvement in renal function in obese metabolic syndrome individuals. J. Hypertens. 29, 553–564 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Navaneethan, S. D. et al. Weight loss interventions in chronic kidney disease: a systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 4, 1565–1574 (2009). This systematic review and meta-analysis reportes that in patients with CKD, surgical and non-surgical weight loss interventions significantly reduce proteinuria and blood pressure and seem to prevent further decline in renal function.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Afshinnia, F., Wilt, T. J., Duval, S., Esmaeili, A. & Ibrahim, H. N. Weight loss and proteinuria: systematic review of clinical trials and comparative cohorts. Nephrol. Dial. Transplant. 25, 1173–1183 (2010).

    Article  PubMed  Google Scholar 

  84. Bolignano, D. & Zoccali, C. Effects of weight loss on renal function in obese CKD patients: a systematic review. Nephrol. Dial. Transplant. 28 (Suppl. 4), iv82–iv98 (2013).

    Article  PubMed  Google Scholar 

  85. Praga, M. et al. Effects of body-weight loss and captopril treatment on proteinuria associated with obesity. Nephron 70, 35–41 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Patil, M. R., Mishra, A., Jain, N., Gutch, M. & Tewari, R. Weight loss for reduction of proteinuria in diabetic nephropathy: comparison with angiotensin-converting enzyme inhibitor therapy. Indian J. Nephrol. 23, 108–113 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dixon, J. B. et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA 299, 316–323 (2008).

    CAS  PubMed  Google Scholar 

  88. Schauer, P. R. et al. Bariatric surgery versus intensive medical therapy for diabetes — 3-year outcomes. N. Engl. J. Med. 370, 2002–2013 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chagnac, A. et al. The effects of weight loss on renal function in patients with severe obesity. J. Am. Soc. Nephrol. 14, 1480–1486 (2003). This study shows that weight loss ameliorates obesity-related glomerular hyperfiltration, demonstrating the cause–effect relationship between obesity and hyperfiltration.

    Article  PubMed  Google Scholar 

  90. Agrawal, V. et al. The effect of weight loss after bariatric surgery on albuminuria. Clin. Nephrol. 70, 194–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Navaneethan, S. D. et al. Urinary albumin excretion, HMW adiponectin, and insulin sensitivity in type 2 diabetic patients undergoing bariatric surgery. Obes. Surg. 20, 308–315 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  92. MacLaughlin, H. L., Hall, W. L., Patel, A. G. & Macdougall, I. C. Laparoscopic sleeve gastrectomy is a novel and effective treatment for obesity in patients with chronic kidney disease. Obes. Surg. 22, 119–123 (2012).

    Article  PubMed  Google Scholar 

  93. Neff, K. J. et al. The effect of bariatric surgery on renal function and disease: a focus on outcomes and inflammation. Nephrol. Dial. Transplant. 28 (Suppl. 4), iv73–iv82 (2013).

    PubMed  Google Scholar 

  94. Reid, T. J. et al. The effect of bariatric surgery on renal function. Surg. Obes. Relat. Dis. 10, 808–813 (2014).

    Article  PubMed  Google Scholar 

  95. Serra, A. et al. Long-term normal renal function after drastic weight reduction in patients with obesity-related glomerulopathy. Obes. Facts 8, 188–199 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Saleh, F., Kim, S. J., Okrainec, A. & Jackson, T. D. Bariatric surgery in patients with reduced kidney function: an analysis of short-term outcomes. Surg. Obes. Relat. Dis. 11, 828–835 (2015).

    Article  PubMed  Google Scholar 

  97. MacLaughlin, H. L. et al. Weight loss, adipokines, and quality of life after sleeve gastrectomy in obese patients with stages 3–4 CKD: a randomized controlled pilot study. Am. J. Kidney Dis. 64, 660–663 (2014).

    Article  PubMed  Google Scholar 

  98. Huan, Y., Tomaszewski, J. E. & Cohen, D. L. Resolution of nephrotic syndrome after successful bariatric surgery in patient with biopsy-proven FSGS. Clin. Nephrol. 71, 69–73 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Fowler, S. M. et al. Obesity-related focal and segmental glomerulosclerosis: normalization of proteinuria in an adolescent after bariatric surgery. Pediatr. Nephrol. 24, 851–855 (2009).

    Article  PubMed  Google Scholar 

  100. Lieske, J. C. et al. Kidney stones are common after bariatric surgery. Kidney Int. 87, 839–845 (2015).

    Article  PubMed  Google Scholar 

  101. Turgeon, N. A. et al. The impact of renal function on outcomes of bariatric surgery. J. Am. Soc. Nephrol. 23, 885–894 (2012).

    Article  PubMed  Google Scholar 

  102. Brochner-Mortensen, J., Rickers, H. & Balslev, I. Renal function and body composition before and after intestinal bypass operation in obese patients. Scand. J. Clin. Lab. Invest. 40, 695–702 (1980).

    Article  CAS  PubMed  Google Scholar 

  103. Ribstein, J., du Cailar, G. & Mimran, A. Combined renal effects of overweight and hypertension. Hypertension 26, 610–615 (1995).

    Article  CAS  PubMed  Google Scholar 

  104. Scaglione, R. et al. Central obesity and hypertension: pathophysiologic role of renal haemodynamics and function. Int. J. Obes. Relat. Metab. Disord. 19, 403–409 (1995).

    CAS  PubMed  Google Scholar 

  105. Anastasio, P. et al. Glomerular filtration rate in severely overweight normotensive humans. Am. J. Kidney Dis. 35, 1144–1148 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Pecly, I. M. D., Genelhu, V. & Francischetti, E. A. Renal functional reserve in obesity hypertension. Int. J. Clin. Pract. 60, 1198–1203 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Chagnac, A. et al. Obesity-induced glomerular hyperfiltration: its involvement in the pathogenesis of tubular sodium reabsorption. Nephrol. Dial. Transplant. 23, 3946–3952 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Wuerzner, G. et al. Marked association between obesity and glomerular hyperfiltration: a cross-sectional study in an African population. Am. J. Kidney Dis. 56, 303–312 (2010).

    Article  PubMed  Google Scholar 

  109. Deibert, P. et al. Acute effect of a soy protein-rich meal-replacement application on renal parameters in patients with the metabolic syndrome. Asia Pac. J. Clin. Nutr. 20, 527–534 (2011).

    CAS  PubMed  Google Scholar 

  110. Ahmed, S. B., Fisher, N. D., Stevanovic, R. & Hollenberg, N. K. Body mass index and angiotensin-dependent control of the renal circulation in healthy humans. Hypertension 46, 1316–1320 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Porter, L. E. & Hollenberg, N. K. Obesity, salt intake, and renal perfusion in healthy humans. Hypertension 32, 144–148 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Reisin, E., Messerli, F. G., Ventura, H. O. & Frohlich, E. D. Renal haemodynamic studies in obesity hypertension. J. Hypertens. 5, 397–400 (1987).

    CAS  PubMed  Google Scholar 

  113. Must, A. et al. The disease burden associated with overweight and obesity. JAMA 282, 1523–1529 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Strazzullo, P. et al. Altered renal sodium handling in men with abdominal adiposity: a link to hypertension. J. Hypertens. 19, 2157–2164 (2001). This investigation shows that increased abdominal adiposity is associated with an enhanced rate of proximal tubular sodium reabsorption, which might have a role in the pathogenesis of glomerular hyperfiltration.

    Article  CAS  PubMed  Google Scholar 

  115. Barbato, A. et al. Metabolic syndrome and renal sodium handling in three ethnic groups living in England. Diabetologia 47, 40–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Bickel, C. A., Verbalis, J. G., Knepper, M. A. & Ecelbarger, C. A. Increased renal Na-K-ATPase, NCC, and β-ENaC abundance in obese Zucker rats. Am. J. Physiol. Renal Physiol. 281, F639–F648 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Shah, S. & Hussain, T. Enhanced angiotensin II-induced activation of Na+, K+-ATPase in the proximal tubules of obese Zucker rats. Clin. Exp. Hypertens. 28, 29–40 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Brenner, B. M., Lawler, E. V. & Mackenzie, H. S. The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int. 49, 1774–1777 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. Bank, N. & Aynedjian, H. S. Progressive increases in luminal glucose stimulate proximal sodium absorption in normal and diabetic rats. J. Clin. Invest. 86, 309–316 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Vallon, V., Blantz, R. C. & Thomson, S. Glomerular hyperfiltration and the salt paradox in early [corrected] type 1 diabetes mellitus: a tubulo-centric view. J. Am. Soc. Nephrol. 14, 530–537 (2003).

    Article  PubMed  Google Scholar 

  121. Vallon, V., Richter, K., Blantz, R. C., Thomson, S. & Osswald, H. Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J. Am. Soc. Nephrol. 10, 2569–2576 (1999). Using an experimental diabetic model this study demonstrates that an increase in proximal tubular reabsorption of sodium leads to increased GFR by deactivation of tubuloglomerular feedback.

    CAS  PubMed  Google Scholar 

  122. Cappuccio, F. P., Strazzullo, P., Siani, A. & Trevisan, M. Increased proximal sodium reabsorption is associated with increased cardiovascular risk in men. J. Hypertens. 14, 909–914 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Zingerman, B. et al. Effect of acetazolamide on obesity-induced glomerular hyperfiltration: a randomized controlled trial. PLoS ONE 10, e0137163 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Engeli, S. et al. Weight loss and the renin–angiotensin–aldosterone system. Hypertension 45, 356–362 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Tuck, M. L., Sowers, J., Dornfeld, L., Kledzik, G. & Maxwell, M. The effect of weight reduction on blood pressure, plasma renin activity, and plasma aldosterone levels in obese patients. N. Engl. J. Med. 304, 930–933 (1981).

    Article  CAS  PubMed  Google Scholar 

  126. Cooper, R. et al. ACE, angiotensinogen and obesity: a potential pathway leading to hypertension. J. Hum. Hypertens. 11, 107–111 (1997).

    Article  CAS  PubMed  Google Scholar 

  127. Bochud, M. et al. Plasma aldosterone is independently associated with the metabolic syndrome. Hypertension 48, 239–245 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Rossi, G. P. et al. Body mass index predicts plasma aldosterone concentrations in overweight-obese primary hypertensive patients. J. Clin. Endocrinol. Metab. 93, 2566–2571 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Schorr, U., Blaschke, K., Turan, S., Distler, A. & Sharma, A. M. Relationship between angiotensinogen, leptin and blood pressure levels in young normotensive men. J. Hypertens. 16, 1475–1480 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Achard, V., Boullu-Ciocca, S., Desbriere, R., Nguyen, G. & Grino, M. Renin receptor expression in human adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R274–R282 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Ehrhart-Bornstein, M., Arakelyan, K., Krug, A. W., Scherbaum, W. A. & Bornstein, S. R. Fat cells may be the obesity–hypertension link: human adipogenic factors stimulate aldosterone secretion from adrenocortical cells. Endocr. Res. 30, 865–870 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Goodfriend, T. L. & Calhoun, D. A. Resistant hypertension, obesity, sleep apnea, and aldosterone: theory and therapy. Hypertension 43, 518–524 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Toke, A. & Meyer, T. W. Hemodynamic effects of angiotensin II in the kidney. Contrib. Nephrol. 135, 34–46 (2001).

    Article  CAS  Google Scholar 

  134. Arima, S. et al. Nongenomic vascular action of aldosterone in the glomerular microcirculation. J. Am. Soc. Nephrol. 14, 2255–2263 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Ribstein, J., Du Cailar, G., Fesler, P. & Mimran, A. Relative glomerular hyperfiltration in primary aldosteronism. J. Am. Soc. Nephrol. 16, 1320–1325 (2005).

    Article  PubMed  Google Scholar 

  136. Kennedy, C. R. & Burns, K. D. Angiotensin II as a mediator of renal tubular transport. Contrib. Nephrol. 135, 47–62 (2001).

    Article  CAS  Google Scholar 

  137. Kawarazaki, W. et al. Angiotensin II- and salt-induced kidney injury through Rac1-mediated mineralocorticoid receptor activation. J. Am. Soc. Nephrol. 23, 997–1007 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Granger, J. P. et al. Role of nitric oxide in modulating renal function and arterial pressure during chronic aldosterone excess. Am. J. Physiol. 276, R197–R202 (1999).

    CAS  PubMed  Google Scholar 

  139. Hall, J. E., Granger, J. P., Smith, M. J. Jr & Premen, A. J. Role of renal hemodynamics and arterial pressure in aldosterone 'escape'. Hypertension 6, I183–I192 (1984).

    Article  CAS  PubMed  Google Scholar 

  140. Vaz, M. et al. Regional sympathetic nervous activity and oxygen consumption in obese normotensive human subjects. Circulation 96, 3423–3429 (1997).

    Article  CAS  PubMed  Google Scholar 

  141. Davy, K. P. & Orr, J. S. Sympathetic nervous system behavior in human obesity. Neurosci. Biobehav. Rev. 33, 116–124 (2009).

    Article  PubMed  Google Scholar 

  142. Esler, M. et al. Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension 48, 787–796 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Hall, J. E. et al. Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J. Biol. Chem. 285, 17271–17276 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Young, C. N., Morgan, D. A., Butler, S. D., Mark, A. L. & Davisson, R. L. The brain subfornical organ mediates leptin-induced increases in renal sympathetic activity but not its metabolic effects. Hypertension 61, 737–744 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Nasrallah, M. P. & Ziyadeh, F. N. Overview of the physiology and pathophysiology of leptin with special emphasis on its role in the kidney. Semin. Nephrol. 33, 54–65 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Simonds, S. E. et al. Leptin mediates the increase in blood pressure associated with obesity. Cell 159, 1404–1416 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Greenfield, J. R. et al. Modulation of blood pressure by central melanocortinergic pathways. N. Engl. J. Med. 360, 44–52 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Tanida, M. et al. Effects of adiponectin on the renal sympathetic nerve activity and blood pressure in rats. Exp. Biol. Med. (Maywood) 232, 390–397 (2007).

    CAS  Google Scholar 

  149. Kinebuchi, S. et al. Short-term use of continuous positive airway pressure ameliorates glomerular hyperfiltration in patients with obstructive sleep apnoea syndrome. Clin. Sci. (Lond.) 107, 317–322 (2004).

    Article  Google Scholar 

  150. Juncos, L. A. & Ito, S. Disparate effects of insulin on isolated rabbit afferent and efferent arterioles. J. Clin. Invest. 92, 1981–1985 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Tucker, B. J. & Blantz, R. C. Effects of glomerular filtration dynamics on the glomerular permeability coefficient. Am. J. Physiol. 240, F245–F254 (1981).

    CAS  PubMed  Google Scholar 

  152. Hayashi, K. et al. Effects of insulin on rat renal microvessels: studies in the isolated perfused hydronephrotic kidney. Kidney Int. 51, 1507–1513 (1997).

    Article  CAS  PubMed  Google Scholar 

  153. Song, J. et al. Regulation of blood pressure, the epithelial sodium channel (ENaC), and other key renal sodium transporters by chronic insulin infusion in rats. Am. J. Physiol. Renal Physiol. 290, F1055–F1064 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Gesek, F. A. & Schoolwerth, A. C. Hormonal interactions with the proximal Na+-H+ exchanger. Am. J. Physiol. 258, F514–F521 (1990).

    CAS  PubMed  Google Scholar 

  155. Stenvinkel, P., Bolinder, J. & Alvestrand, A. Effects of insulin on renal haemodynamics and the proximal and distal tubular sodium handling in healthy subjects. Diabetologia 35, 1042–1048 (1992).

    Article  CAS  PubMed  Google Scholar 

  156. Sarafidis, P. A. & Bakris, G. L. The antinatriuretic effect of insulin: an unappreciated mechanism for hypertension associated with insulin resistance? Am. J. Nephrol. 27, 44–54 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Ogna, A. et al. Association between obesity and glomerular hyperfiltration: the confounding effect of smoking and sodium and protein intakes. Eur. J. Nutr. 55, 1089–1097 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. King, A. J. & Levey, A. S. Dietary protein and renal function. J. Am. Soc. Nephrol. 3, 1723–1737 (1993).

    CAS  PubMed  Google Scholar 

  159. Lew, S. W. & Bosch, J. P. Effect of diet on creatinine clearance and excretion in young and elderly healthy subjects and in patients with renal disease. J. Am. Soc. Nephrol. 2, 856–865 (1991).

    CAS  PubMed  Google Scholar 

  160. Friedman, A. N. et al. Independent influence of dietary protein on markers of kidney function and disease in obesity. Kidney Int. 78, 693–697 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Chen, J. et al. The metabolic syndrome and chronic kidney disease in U.S. adults. Ann. Intern. Med. 140, 167–174 (2004).

    Article  PubMed  Google Scholar 

  162. Valensi, P. et al. Microalbuminuria in obese patients with or without hypertension. Int. J. Obes. Relat. Metab. Disord. 20, 574–579 (1996).

    CAS  PubMed  Google Scholar 

  163. Wennmann, D. O., Hsu, H.-H. & Pavenstadt, H. The renin–angiotensin–aldosterone system in podocytes. Semin. Nephrol. 32, 377–384 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Yano, Y. et al. Differential impacts of adiponectin on low-grade albuminuria between obese and nonobese persons without diabetes. J. Clin. Hypertens. (Greenwich) 9, 775–782 (2007).

    Article  CAS  Google Scholar 

  165. Sharma, K. et al. Adiponectin regulates albuminuria and podocyte function in mice. J. Clin. Invest. 118, 1645–1656 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Brenner, B. M. & Troy, J. L. Postglomerular vascular protein concentration: evidence for a causal role in governing fluid reabsorption and glomerulotublar balance by the renal proximal tubule. J. Clin. Invest. 50, 336–349 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ott, C. E., Haas, J. A., Cuche, J. L. & Knox, F. G. Effect of increased peritubule protein concentration on proximal tubule reabsorption in the presence and absence of extracellular volume expansion. J. Clin. Invest. 55, 612–620 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ichikawa, I., Hoyer, J. R., Seiler, M. W. & Brenner, B. M. Mechanism of glomerulotubular balance in the setting of heterogeneous glomerular injury. Preservation of a close functional linkage between individual nephrons and surrounding microvasculature. J. Clin. Invest. 69, 185–198 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Weinbaum, S., Duan, Y., Satlin, L. M., Wang, T. & Weinstein, A. M. Mechanotransduction in the renal tubule. Am. J. Physiol. Renal Physiol. 299, F1220–F1236 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kriz, W. & Lemley, K. V. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J. Am. Soc. Nephrol. 26, 258–269 (2015). This article reviews studies (most of which were performed in the authors' laboratory) that demonstrate how mechanical forces associated with glomerular hypertension and hyperfiltration result in glomerular enlargement and podocyte detachment, leading to FSGS.

    Article  CAS  PubMed  Google Scholar 

  171. Kriz, W., Elger, M., Mundel, P. & Lemley, K. V. Structure-stabilizing forces in the glomerular tuft. J. Am. Soc. Nephrol. 5, 1731–1739 (1995).

    CAS  PubMed  Google Scholar 

  172. Pereira, S. V. et al. Increased urine podocyte-associated messenger RNAs in severe obesity are evidence of podocyte injury. Obesity (Silver Spring) 23, 1643–1649 (2015).

    Article  CAS  Google Scholar 

  173. Henegar, J. R., Bigler, S. A., Henegar, L. K., Tyagi, S. C. & Hall, J. E. Functional and structural changes in the kidney in the early stages of obesity. J. Am. Soc. Nephrol. 12, 1211–1217 (2001).

    CAS  PubMed  Google Scholar 

  174. Tobar, A. et al. Proximal tubular hypertrophy and enlarged glomerular and proximal tubular urinary space in obese subjects with proteinuria. PLoS ONE 8, e75547 (2013). This study demonstrates that glomerular hyperfiltration in obese patients with proteinuria is associated with proximal tubular epithelial hypertrophy and increased glomerular and tubular urinary space volume. These findings suggest that the expanded glomerular and tubular urinary space is a direct consequence of glomerular hyperfiltration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ouchi, N., Parker, J. L., Lugus, J. J. & Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11, 85–97 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Cao, Y. Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat. Rev. Drug Discov. 9, 107–115 (2010).

    Article  CAS  PubMed  Google Scholar 

  177. Kahn, C. R. Can we nip obesity in its vascular bud? Science 322, 542–543 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Virtue, S. & Vidal-Puig, A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome — an allostatic perspective. Biochim. Biophys. Acta 1801, 338–349 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Briffa, J. F., McAinch, A. J., Poronnik, P. & Hryciw, D. H. Adipokines as a link between obesity and chronic kidney disease. Am. J. Physiol. Renal Physiol. 305, F1629–F1636 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. Maisonpierre, P. C. et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55–60 (1997).

    Article  CAS  PubMed  Google Scholar 

  181. Schlondorff, D. & Banas, B. The mesangial cell revisited: no cell is an island. J. Am. Soc. Nephrol. 20, 1179–1187 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. Lindahl, P., Johansson, B. R., Leveen, P. & Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242–245 (1997).

    Article  CAS  PubMed  Google Scholar 

  183. Singh, A. K. et al. Vascular factors altered in glucose-treated mesangial cells and diabetic glomeruli. Changes in vascular factors impair endothelial cell growth and matrix. Lab. Invest. 84, 597–606 (2004).

    Article  CAS  PubMed  Google Scholar 

  184. Khairoun, M. et al. Early systemic microvascular damage in pigs with atherogenic diabetes mellitus coincides with renal angiopoietin dysbalance. PLoS ONE 10, e0121555 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kumar Vr, S. et al. Cathepsin S cleavage of protease-activated receptor-2 on endothelial cells promotes microvascular diabetes complications. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2015020208, (2015).

  186. Nielsen, R. et al. Endocytosis provides a major alternative pathway for lysosomal biogenesis in kidney proximal tubular cells. Proc. Natl Acad. Sci. USA 104, 5407–5412 (2007).

    Article  CAS  PubMed  Google Scholar 

  187. Yaddanapudi, S. et al. CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival. J. Clin. Invest. 121, 3965–3980 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Faul, C. et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med. 14, 931–938 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Sever, S. et al. Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. J. Clin. Invest. 117, 2095–2104 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Pinto-Sietsma, S. J. et al. A central body fat distribution is related to renal function impairment, even in lean subjects. Am. J. Kidney Dis. 41, 733–741 (2003).

    Article  PubMed  Google Scholar 

  191. Elsayed, E. F. et al. Waist-to-hip ratio, body mass index, and subsequent kidney disease and death. Am. J. Kidney Dis. 52, 29–38 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Fox, C. S. et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116, 39–48 (2007).

    Article  PubMed  Google Scholar 

  193. Einstein, F. H. et al. Differential responses of visceral and subcutaneous fat depots to nutrients. Diabetes 54, 672–678 (2005).

    Article  CAS  PubMed  Google Scholar 

  194. Kurella, M., Lo, J. C. & Chertow, G. M. Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults. J. Am. Soc. Nephrol. 16, 2134–2140 (2005).

    Article  PubMed  Google Scholar 

  195. Young, J. A. et al. Association of visceral and subcutaneous adiposity with kidney function. Clin. J. Am. Soc. Nephrol. 3, 1786–1791 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  196. de Vries, A. P. & Rabelink, T. J. A possible role of cystatin C in adipose tissue homeostasis may impact kidney function estimation in metabolic syndrome. Nephrol. Dial. Transplant. 28, 1628–1630 (2013).

    Article  PubMed  Google Scholar 

  197. Despres, J. P. & Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 444, 881–887 (2006).

    Article  CAS  PubMed  Google Scholar 

  198. Stefan, N. & Haring, H. U. The role of hepatokines in metabolism. Nat. Rev. Endocrinol. 9, 144–152 (2013).

    Article  CAS  PubMed  Google Scholar 

  199. Musso, G. et al. Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis. PLoS Med. 11, e1001680 (2014). This meta-analysis reviews the impact of ectopic (liver) fat on CKD.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Hammer, S. et al. Metabolic imaging of human kidney triglyceride content: reproducibility of proton magnetic resonance spectroscopy. PLoS ONE 8, e62209 (2013). This human feasibility study is the first to non-invasively image kidney fat as a biomarker of fatty kidney.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Jonker, J. T.d. H. et al. Imaging fatty kidney using proton MR spectroscopy: validation by porcine kidney biopsies. Nephrol. Dial. Transplant. 30, iii393–iii419 (2015).

    Article  Google Scholar 

  202. Berfield, A. K., Andress, D. L. & Abrass, C. K. IGF-1-induced lipid accumulation impairs mesangial cell migration and contractile function. Kidney Int. 62, 1229–1237 (2002).

    Article  CAS  PubMed  Google Scholar 

  203. Ruan, X. Z., Varghese, Z., Powis, S. H. & Moorhead, J. F. Dysregulation of LDL receptor under the influence of inflammatory cytokines: a new pathway for foam cell formation. Kidney Int. 60, 1716–1725 (2001).

    Article  CAS  PubMed  Google Scholar 

  204. van Zonneveld, A. J. & Rabelink, T. J. Mesangial cells defy LDL receptor paradigm. Kidney Int. 60, 2037–2038 (2001).

    Article  CAS  PubMed  Google Scholar 

  205. Li, Z. et al. Increased glomerular filtration rate in early metabolic syndrome is associated with renal adiposity and microvascular proliferation. Am. J. Physiol. Renal Physiol. 301, F1078–F1087 (2011). This experimental study is the first to link renal triglycerides to functional and microvascular hyperfiltration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Chung, J. J. et al. Albumin-associated free fatty acids induce macropinocytosis in podocytes. J. Clin. Invest. 125, 2307–2316 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Clement, L. C. et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat. Med. 17, 117–122 (2011).

    Article  CAS  PubMed  Google Scholar 

  208. Ruan, X. Z., Varghese, Z. & Moorhead, J. F. An update on the lipid nephrotoxicity hypothesis. Nat. Rev. Nephrol. 5, 713–721 (2009). This is an important review of the updated Moorhead hypothesis in nephrology.

    Article  CAS  PubMed  Google Scholar 

  209. Sun, Y. B. et al. Smad3 deficiency protects mice from obesity-induced podocyte injury that precedes insulin resistance. Kidney Int. 88, 286–298 (2015).

    Article  CAS  PubMed  Google Scholar 

  210. Lin, H. M. et al. Transforming growth factor-β/Smad3 signaling regulates insulin gene transcription and pancreatic islet β-cell function. J. Biol. Chem. 284, 12246–12257 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Yadav, H. et al. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab. 14, 67–79 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Kang, H. M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37–46 (2015). This important study concludes that tubular fat is a consequence of diminished fatty acid oxidation and has a role in the development of kidney fibrosis.

    Article  CAS  PubMed  Google Scholar 

  213. Nieth, H. & Schollmeyer, P. Substrate-utilization of the human kidney. Nature 209, 1244–1245 (1966).

    Article  CAS  PubMed  Google Scholar 

  214. Wirthensohn, G. & Guder, W. G. Renal lipid metabolism. Miner. Electrolyte Metab. 9, 203–211 (1983).

    CAS  PubMed  Google Scholar 

  215. Stadler, K., Goldberg, I. J. & Susztak, K. The evolving understanding of the contribution of lipid metabolism to diabetic kidney disease. Curr. Diab. Rep. 15, 40 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Shulman, G. I. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N. Engl. J. Med. 371, 1131–1141 (2014).

    Article  CAS  PubMed  Google Scholar 

  217. Reaven, G. M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37, 1595–1607 (1988).

    Article  CAS  PubMed  Google Scholar 

  218. Oterdoom, L. H. et al. Fasting insulin modifies the relation between age and renal function. Nephrol. Dial. Transplant. 22, 1587–1592 (2007).

    Article  CAS  PubMed  Google Scholar 

  219. Tomaszewski, M. et al. Glomerular hyperfiltration: a new marker of metabolic risk. Kidney Int. 71, 816–821 (2007).

    Article  CAS  PubMed  Google Scholar 

  220. ter Maaten, J. C. et al. Insulin's acute effects on glomerular filtration rate correlate with insulin sensitivity whereas insulin's acute effects on proximal tubular sodium reabsorption correlation with salt sensitivity in normal subjects. Nephrol. Dial. Transplant. 14, 2357–2363 (1999).

    Article  CAS  PubMed  Google Scholar 

  221. Hale, L. J. & Coward, R. J. Insulin signalling to the kidney in health and disease. Clin. Sci. (Lond.) 124, 351–370 (2013).

    Article  CAS  Google Scholar 

  222. Lennon, R. et al. Saturated fatty acids induce insulin resistance in human podocytes: implications for diabetic nephropathy. Nephrol. Dial. Transplant. 24, 3288–3296 (2009).

    Article  CAS  PubMed  Google Scholar 

  223. Sieber, J. et al. Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am. J. Physiol. Renal Physiol. 299, F821–F829 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Welsh, G. I. et al. Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab. 12, 329–340 (2010). This study shows the critical importance of insulin signalling for normal podocyte function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Canaud, G. et al. AKT2 is essential to maintain podocyte viability and function during chronic kidney disease. Nat. Med. 19, 1288–1296 (2013). This study shows the importance of Akt2, a downstream pathway of insulin signalling, in CKD with ORG-like features.

    Article  CAS  PubMed  Google Scholar 

  226. Hale, L. J. et al. Insulin directly stimulates VEGF-A production in the glomerular podocyte. Am. J. Physiol. Renal Physiol. 305, F182–F188 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Godel, M. et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J. Clin. Invest. 121, 2197–2209 (2011). This study demonstrates the important role of mTOR in diabetic nephropathy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Inoki, K. et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J. Clin. Invest. 121, 2181–2196 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Tiwari, S. et al. Deletion of the insulin receptor in the proximal tubule promotes hyperglycemia. J. Am. Soc. Nephrol. 24, 1209–1214 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Meyer, C., Dostou, J., Nadkarni, V. & Gerich, J. Effects of physiological hyperinsulinemia on systemic, renal, and hepatic substrate metabolism. Am. J. Physiol. 275, F915–F921 (1998).

    CAS  PubMed  Google Scholar 

  232. Mandel, L. J. Metabolic substrates, cellular energy production, and the regulation of proximal tubular transport. Annu. Rev. Physiol. 47, 85–101 (1985).

    Article  CAS  PubMed  Google Scholar 

  233. Gerich, J. E. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet. Med. 27, 136–142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Marsenic, O. Glucose control by the kidney: an emerging target in diabetes. Am. J. Kidney Dis. 53, 875–883 (2009).

    Article  CAS  PubMed  Google Scholar 

  235. Mima, A. et al. Glomerular-specific protein kinase C-β-induced insulin receptor substrate-1 dysfunction and insulin resistance in rat models of diabetes and obesity. Kidney Int. 79, 883–896 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Brown, M. S. & Goldstein, J. L. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc. Natl Acad. Sci. USA 96, 11041–11048 (1999).

    Article  CAS  PubMed  Google Scholar 

  237. Horton, J. D. Sterol regulatory element-binding proteins: transcriptional activators of lipid synthesis. Biochem. Soc. Trans. 30, 1091–1095 (2002).

    Article  CAS  PubMed  Google Scholar 

  238. Anderson, R. G. Joe Goldstein and Mike Brown: from cholesterol homeostasis to new paradigms in membrane biology. Trends Cell Biol. 13, 534–539 (2003).

    Article  CAS  PubMed  Google Scholar 

  239. Horton, J. D. et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc. Natl Acad. Sci. USA 100, 12027–12032 (2003).

    Article  CAS  PubMed  Google Scholar 

  240. Radhakrishnan, A., Sun, L. P., Kwon, H. J., Brown, M. S. & Goldstein, J. L. Direct binding of cholesterol to the purified membrane region of SCAP: mechanism for a sterol-sensing domain. Mol. Cell 15, 259–268 (2004).

    Article  CAS  PubMed  Google Scholar 

  241. Engelking, L. J. et al. Schoenheimer effect explained — feedback regulation of cholesterol synthesis in mice mediated by Insig proteins. J. Clin. Invest. 115, 2489–2498 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Brown, M. S., Ye, J. & Goldstein, J. L. HDL miR-ed down by SREBP introns. Science 328, 1495–1496 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Moon, Y. A. et al. The Scap/SREBP pathway is essential for developing diabetic fatty liver and carbohydrate-induced hypertriglyceridemia in animals. Cell Metab. 15, 240–246 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Sun, L., Halaihel, N., Zhang, W., Rogers, T. & Levi, M. Role of sterol regulatory element-binding protein 1 in regulation of renal lipid metabolism and glomerulosclerosis in diabetes mellitus. J. Biol. Chem. 277, 18919–18927 (2002).

    Article  CAS  PubMed  Google Scholar 

  245. Ruan, X. Z. et al. Regulation of lipoprotein trafficking in the kidney: role of inflammatory mediators and transcription factors. Biochem. Soc. Trans. 32, 88–91 (2004).

    Article  CAS  PubMed  Google Scholar 

  246. Wang, Z. et al. Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes. Diabetes 54, 2328–2335 (2005).

    Article  CAS  PubMed  Google Scholar 

  247. Jiang, T. et al. Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway. J. Biol. Chem. 280, 32317–32325 (2005).

    Article  CAS  PubMed  Google Scholar 

  248. Jiang, T., Liebman, S. E., Lucia, M. S., Li, J. & Levi, M. Role of altered renal lipid metabolism and the sterol regulatory element binding proteins in the pathogenesis of age-related renal disease. Kidney Int. 68, 2608–2620 (2005).

    Article  CAS  PubMed  Google Scholar 

  249. Jiang, T., Liebman, S. E., Lucia, M. S., Phillips, C. L. & Levi, M. Calorie restriction modulates renal expression of sterol regulatory element binding proteins, lipid accumulation, and age-related renal disease. J. Am. Soc. Nephrol. 16, 2385–2394 (2005).

    Article  CAS  PubMed  Google Scholar 

  250. Saito, K. et al. Lipid accumulation and transforming growth factor-β upregulation in the kidneys of rats administered angiotensin II. Hypertension 46, 1180–1185 (2005).

    Article  CAS  PubMed  Google Scholar 

  251. Proctor, G. et al. Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes. Diabetes 55, 2502–2509 (2006).

    Article  CAS  PubMed  Google Scholar 

  252. Kume, S. et al. Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet. J. Am. Soc. Nephrol. 18, 2715–2723 (2007).

    Article  CAS  PubMed  Google Scholar 

  253. Buga, G. M. et al. D-4F reduces EO6 immunoreactivity, SREBP-1c mRNA levels, and renal inflammation in LDL receptor-null mice fed a Western diet. J. Lipid Res. 49, 192–205 (2008).

    Article  CAS  PubMed  Google Scholar 

  254. Jun, H. et al. In vivo and in vitro effects of SREBP-1 on diabetic renal tubular lipid accumulation and RNAi-mediated gene silencing study. Histochem. Cell Biol. 131, 327–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  255. Deji, N. et al. Structural and functional changes in the kidneys of high-fat diet-induced obese mice. Am. J. Physiol. Renal Physiol. 296, F118–F126 (2009).

    Article  CAS  PubMed  Google Scholar 

  256. Chin, H. J. et al. Omacor®, n-3 polyunsaturated fatty acid, attenuated albuminuria and renal dysfunction with decrease of SREBP-1 expression and triglyceride amount in the kidney of type II diabetic animals. Nephrol. Dial. Transplant. 25, 1450–1457 (2010).

    Article  CAS  PubMed  Google Scholar 

  257. Wang, T. N. et al. SREBP-1 mediates angiotensin II-induced TGF-β1 upregulation and glomerular fibrosis. J. Am. Soc. Nephrol. 26, 1839–1854 (2015).

    Article  CAS  PubMed  Google Scholar 

  258. Chen, G. et al. SREBP-1 is a novel mediator of TGFβ1 signaling in mesangial cells. J. Mol. Cell. Biol. 6, 516–530 (2014).

    Article  CAS  PubMed  Google Scholar 

  259. Uttarwar, L., Gao, B., Ingram, A. J. & Krepinsky, J. C. SREBP-1 activation by glucose mediates TGF-β upregulation in mesangial cells. Am. J. Physiol. Renal Physiol. 302, F329–F341 (2012).

    Article  CAS  PubMed  Google Scholar 

  260. Hao, J. et al. PI3K/Akt pathway mediates high glucose-induced lipogenesis and extracellular matrix accumulation in HKC cells through regulation of SREBP-1 and TGF-β1. Histochem. Cell Biol. 135, 173–181 (2011).

    Article  CAS  PubMed  Google Scholar 

  261. Hao, J. et al. IFN-γ induces lipogenesis in mouse mesangial cells via the JAK2/STAT1 pathway. Am. J. Physiol. Cell Physiol. 304, C760–C767 (2013).

    Article  CAS  PubMed  Google Scholar 

  262. Zhang, Y. J. et al. HMGB1/SREBP-1 mediated IFN-gamma-induced lipid deposition in mouse mesangial cells. Zhongguo Ying Yong Sheng Li Xue Za Zhi 29, 6–10 (in Chinese) (2013).

    PubMed  Google Scholar 

  263. Hao, J. et al. Phospho-mTOR: a novel target in regulation of renal lipid metabolism abnormality of diabetes. Exp. Cell Res. 319, 2296–2306 (2013).

    Article  CAS  PubMed  Google Scholar 

  264. Wang, H. et al. Co-regulation of SREBP-1 and mTOR ameliorates lipid accumulation in kidney of diabetic mice. Exp. Cell Res. 336, 76–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  265. Liu, W. et al. Phospho-GSK-3β is involved in the high-glucose-mediated lipid deposition in renal tubular cells in diabetes. Int. J. Biochem. Cell Biol. 45, 2066–2075 (2013).

    Article  CAS  PubMed  Google Scholar 

  266. Hao, J. et al. PTEN ameliorates high glucose-induced lipid deposits through regulating SREBP-1/FASN/ACC pathway in renal proximal tubular cells. Exp. Cell Res. 317, 1629–1639 (2011).

    Article  CAS  PubMed  Google Scholar 

  267. Jiang, T. et al. Farnesoid X receptor modulates renal lipid metabolism, fibrosis, and diabetic nephropathy. Diabetes 56, 2485–2493 (2007). This study is the first to show regulation and beneficial effects of FXR in the diabetic kidney.

    Article  CAS  PubMed  Google Scholar 

  268. Wang, X. X. et al. The farnesoid X receptor modulates renal lipid metabolism and diet-induced renal inflammation, fibrosis, and proteinuria. Am. J. Physiol. Renal Physiol. 297, F1587–F1596 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Wang, X. X. et al. Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Diabetes 59, 2916–2927 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Hu, Z., Ren, L., Wang, C., Liu, B. & Song, G. Effect of chenodeoxycholic acid on fibrosis, inflammation and oxidative stress in kidney in high-fructose-fed Wistar rats. Kidney Blood Press. Res. 36, 85–97 (2012).

    Article  CAS  PubMed  Google Scholar 

  271. Wang, X. X. et al. Vitamin D receptor agonist doxercalciferol modulates dietary fat-induced renal disease and renal lipid metabolism. Am. J. Physiol. Renal Physiol. 300, F801–F810 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Herman-Edelstein, M., Scherzer, P., Tobar, A., Levi, M. & Gafter, U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J. Lipid Res. 55, 561–572 (2014). This study shows regulation of nuclear receptors, transcription factors, and lipid metabolism pathways in human diabetic nephropathy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Tanaka, Y. et al. Fenofibrate, a PPARα agonist, has renoprotective effects in mice by enhancing renal lipolysis. Kidney Int. 79, 871–882 (2011).

    Article  CAS  PubMed  Google Scholar 

  274. Hong, Y. A. et al. Fenofibrate improves renal lipotoxicity through activation of AMPK-PGC-1α in db/db mice. PLoS ONE 9, e96147 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Li, L., Emmett, N., Mann, D. & Zhao, X. Fenofibrate attenuates tubulointerstitial fibrosis and inflammation through suppression of nuclear factor-κB and transforming growth factor-β1/Smad3 in diabetic nephropathy. Exp. Biol. Med. (Maywood) 235, 383–391 (2010).

    Article  CAS  Google Scholar 

  276. Kouroumichakis, I. et al. Fibrates: therapeutic potential for diabetic nephropathy? Eur. J. Intern. Med. 23, 309–316 (2012).

    Article  CAS  PubMed  Google Scholar 

  277. Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet 357, 905–910 (2001).

  278. Ansquer, J. C. et al. Fenofibrate reduces progression to microalbuminuria over 3 years in a placebo-controlled study in type 2 diabetes: results from the Diabetes Atherosclerosis Intervention Study (DAIS). Am. J. Kidney Dis. 45, 485–493 (2005).

    Article  CAS  PubMed  Google Scholar 

  279. Keech, A. et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366, 1849–1861 (2005).

    Article  CAS  PubMed  Google Scholar 

  280. Davis, T. M. et al. Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia 54, 280–290 (2011).

    Article  CAS  PubMed  Google Scholar 

  281. Group, A. S. et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med. 362, 1563–1574 (2010).

    Article  Google Scholar 

  282. Kim, D. et al. Metformin decreases high-fat diet-induced renal injury by regulating the expression of adipokines and the renal AMP-activated protein kinase/acetyl-CoA carboxylase pathway in mice. Int. J. Mol. Med. 32, 1293–1302 (2013).

    Article  CAS  PubMed  Google Scholar 

  283. Decleves, A. E. et al. Regulation of lipid accumulation by AMP-activated kinase [corrected] in high fat diet-induced kidney injury. Kidney Int. 85, 611–623 (2014).

    Article  CAS  PubMed  Google Scholar 

  284. Wang, X. X. et al. G protein-coupled bile acid receptor TGR5 activation inhibits kidney disease in obesity and diabetes. J. Am. Soc. Nephrol. 27, 1362–1378 (2016). This study was the first to show regulation of TGR5 in human ORG and diabetic nephropathy.

    Article  CAS  PubMed  Google Scholar 

  285. Zhang, Y. et al. Dysregulation of low-density lipoprotein receptor contributes to podocyte injuries in diabetic nephropathy. Am. J. Physiol. Endocrinol. Metab. 308, E1140–E1148 (2015).

    Article  CAS  PubMed  Google Scholar 

  286. Lhotak, S. et al. ER stress contributes to renal proximal tubule injury by increasing SREBP-2-mediated lipid accumulation and apoptotic cell death. Am. J. Physiol. Renal Physiol. 303, F266–F278 (2012).

    Article  CAS  PubMed  Google Scholar 

  287. Yuan, Y. et al. Advanced glycation end products (AGEs) increase human mesangial foam cell formation by increasing Golgi SCAP glycosylation in vitro. Am. J. Physiol. Renal Physiol. 301, F236–F243 (2011).

    Article  CAS  PubMed  Google Scholar 

  288. Huang, W., Tang, L., Cai, Y., Zheng, Y. & Zhang, L. Effect and mechanism of the Ang-(1-7) on human mesangial cells injury induced by low density lipoprotein. Biochem. Biophys. Res. Commun. 450, 1051–1057 (2014).

    Article  CAS  PubMed  Google Scholar 

  289. Zheng, Y. et al. Anti-inflammatory effects of Ang-(1-7) in ameliorating HFD-induced renal injury through LDLr–SREBP2–SCAP pathway. PLoS ONE 10, e0136187 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Gotoh, K. et al. Effects of hydrophilic statins on renal tubular lipid accumulation in diet-induced obese mice. Obes. Res. Clin. Pract. 7, e342–e352 (2013).

    Article  PubMed  Google Scholar 

  291. Calkin, A. C. & Tontonoz, P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat. Rev. Mol. Cell Biol. 13, 213–224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Hong, C. & Tontonoz, P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat. Rev. Drug Discov. 13, 433–444 (2014).

    Article  CAS  PubMed  Google Scholar 

  293. Kratzer, A. et al. Synthetic LXR agonist attenuates plaque formation in apoE−/− mice without inducing liver steatosis and hypertriglyceridemia. J. Lipid Res. 50, 312–326 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Wu, J. et al. Liver X receptor-α mediates cholesterol efflux in glomerular mesangial cells. Am. J. Physiol. Renal Physiol. 287, F886–F895 (2004).

    Article  CAS  PubMed  Google Scholar 

  295. Merscher-Gomez, S. et al. Cyclodextrin protects podocytes in diabetic kidney disease. Diabetes 62, 3817–3827 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Tang, C., Kanter, J. E., Bornfeldt, K. E., Leboeuf, R. C. & Oram, J. F. Diabetes reduces the cholesterol exporter ABCA1 in mouse macrophages and kidneys. J. Lipid Res. 51, 1719–1728 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Wang, Y., Moser, A. H., Shigenaga, J. K., Grunfeld, C. & Feingold, K. R. Downregulation of liver X receptor-α in mouse kidney and HK-2 proximal tubular cells by LPS and cytokines. J. Lipid Res. 46, 2377–2387 (2005).

    Article  CAS  PubMed  Google Scholar 

  298. Tachibana, H. et al. Activation of liver X receptor inhibits osteopontin and ameliorates diabetic nephropathy. J. Am. Soc. Nephrol. 23, 1835–1846 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Kiss, E. et al. Lipid droplet accumulation is associated with an increase in hyperglycemia-induced renal damage: prevention by liver X receptors. Am. J. Pathol. 182, 727–741 (2013).

    Article  CAS  PubMed  Google Scholar 

  300. Patel, M. et al. Liver X receptors preserve renal glomerular integrity under normoglycaemia and in diabetes in mice. Diabetologia 57, 435–446 (2014).

    Article  CAS  PubMed  Google Scholar 

  301. Morello, F. et al. Liver X receptors α and β regulate renin expression In vivo. J. Clin. Invest. 115, 1913–1922 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Kuipers, I. et al. Activation of liver X receptor-α reduces activation of the renal and cardiac renin–angiotensin–aldosterone system. Lab. Invest. 90, 630–636 (2010).

    Article  CAS  PubMed  Google Scholar 

  303. Soodvilai, S., Jia, Z., Fongsupa, S., Chatsudthipong, V. & Yang, T. Liver X receptor agonists decrease ENaC-mediated sodium transport in collecting duct cells. Am. J. Physiol. Renal Physiol. 303, F1610–F1616 (2012).

    Article  CAS  PubMed  Google Scholar 

  304. Raksaseri, P., Chatsudthipong, V., Muanprasat, C. & Soodvilai, S. Activation of liver X receptors reduces CFTR-mediated Cl transport in kidney collecting duct cells. Am. J. Physiol. Renal Physiol. 305, F583–F591 (2013).

    Article  CAS  PubMed  Google Scholar 

  305. Berthoux, F., Mariat, C. & Maillard, N. Overweight/obesity revisited as a predictive risk factor in primary IgA nephropathy. Nephrol. Dial. Transplant. 28 (Suppl. 4), iv160–iv166 (2013).

    CAS  PubMed  Google Scholar 

  306. Delanaye, P., Mariat, C., Cavalier, E. & Krzesinski, J.-M. Errors induced by indexing glomerular filtration rate for body surface area: reductio ad absurdum. Nephrol. Dial. Transplant. 24, 3593–3596 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work is supported by the Dutch Kidney Foundation (IP11.56, A.P.V.), the Instituto de Salud Carlos III (PI13/00342, Fondos FEDER and Redinren E.P.) and the Fundacion Cajacanarias, project DIAB05 (E.P.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data, discussed the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Vivette D. D'Agati.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information S1

Animal models of exogenous obesity (PDF 140 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D'Agati, V., Chagnac, A., de Vries, A. et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol 12, 453–471 (2016). https://doi.org/10.1038/nrneph.2016.75

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.75

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing