Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Insights into kidney diseases from genome-wide association studies

Key Points

  • Genome-wide association studies (GWAS) have successfully identified common genetic variants associated with the chronic kidney disease (CKD)-defining traits estimated glomerular filtration rate (eGFR) and urinary albumin-to-creatinine ratio, and with specific CKD aetiologies such as IgA nephropathy and membranous nephropathy (MN)

  • Common risk variants of large effect can be identified in GWAS of <100 individuals in MN, whereas eGFR-defined CKD is heterogeneous and population-based studies require >20,000 individuals to detect associated loci of small effect

  • GWAS might help to identify pathophysiological mechanisms shared by kidney diseases currently thought of as distinct diseases, and ultimately contribute to disease reclassification

  • Loci associated with CKD-defining traits and specific CKD aetiologies do not overlap; however, some eGFR-associated genes overlap with monogenic kidney diseases genes, supporting the theory that variant function and frequency modulate the severity of the phenotype associated with risk alleles

  • Emerging follow-up projects based on the identification of eGFR-associated genes from GWAS support the notion that loci identified in population-based screens can also be important in advanced kidney disease and provide insights into underlying mechanisms

  • Collaborations across disciplines are vital to translate GWAS findings into mechanistic understandings and into the clinic

Abstract

Over the past decade, genome-wide association studies (GWAS) have considerably improved our understanding of the genetic basis of kidney function and disease. Population-based studies, used to investigate traits that define chronic kidney disease (CKD), have identified >50 genomic regions in which common genetic variants associate with estimated glomerular filtration rate or urinary albumin-to-creatinine ratio. Case–control studies, used to study specific CKD aetiologies, have yielded risk loci for specific kidney diseases such as IgA nephropathy and membranous nephropathy. In this Review, we summarize important findings from GWAS and clinical and experimental follow-up studies. We also compare risk allele frequency, effect sizes, and specificity in GWAS of CKD-defining traits and GWAS of specific CKD aetiologies and the implications for study design. Genomic regions identified in GWAS of CKD-defining traits can contain causal genes for monogenic kidney diseases. Population-based research on kidney function traits can therefore generate insights into more severe forms of kidney diseases. Experimental follow-up studies have begun to identify causal genes and variants, which are potential therapeutic targets, and suggest mechanisms underlying the high allele frequency of causal variants. GWAS are thus a useful approach to advance knowledge in nephrology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conceptual framework of genome-wide association studies (GWAS) in nephrology.
Figure 2: Minor allele frequency (MAF) and effect size for genetic variants associated with kidney disease.
Figure 3: Overlap of GWAS and monogenic kidney disease genes.

Similar content being viewed by others

References

  1. Eckardt, K.-U. et al. Evolving importance of kidney disease: from subspecialty to global health burden. Lancet 382, 158–169 (2013).

    Article  PubMed  Google Scholar 

  2. International Society of Nephrology. KDIGO Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. Suppl. 3, 1–150 (2013).

  3. Matsushita, K. et al. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol. 3, 514–525 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gansevoort, R. T. et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet 382, 339–352 (2013).

    Article  PubMed  Google Scholar 

  5. Levin, A., Lancashire, W. & Fassett, R. G. Targets, trends, excesses, and deficiencies: refocusing clinical investigation to improve patient outcomes. Kidney Int. 83, 1001–1009 (2013).

    Article  PubMed  Google Scholar 

  6. O'Seaghdha, C. M. & Fox, C. S. Genome-wide association studies of chronic kidney disease: what have we learned? Nat. Rev. Nephrol. 8, 89–99 (2012).

    Article  CAS  Google Scholar 

  7. Jiang, S., Chuang, P. Y., Liu, Z. H. & He, J. C. The primary glomerulonephritides: a systems biology approach. Nat. Rev. Nephrol. 9, 500–512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahlqvist, E., van Zuydam, N. R., Groop, L. C. & McCarthy, M. I. The genetics of diabetic complications. Nat. Rev. Nephrol. 11, 277–287 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Mohan, C. & Putterman, C. Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis. Nat. Rev. Nephrol. 11, 329–341 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. McKnight, A. J., McKay, G. J. & Maxwell, A. P. Genetic and epigenetic risk factors for diabetic kidney disease. Adv. Chron. Kidney Dis. 21, 287–296 (2014).

    Article  Google Scholar 

  11. Kruzel-Davila, E., Wasser, W. G., Aviram, S. & Skorecki, K. APOL1 nephropathy: from gene to mechanisms of kidney injury. Nephrol. Dial. Transplant. 31, 349–358 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Li, Y. & Kottgen, A. Genetic investigations of kidney disease: core curriculum 2013. Am. J. Kidney Dis. 61, 832–844 (2013).

    Article  PubMed  Google Scholar 

  13. Kottgen, A. Genome-wide association studies in nephrology research. Am. J. Kidney Dis. 56, 743–758 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Boger, C. A. & Heid, I. M. Chronic kidney disease: novel insights from genome-wide association studies. Kidney Blood Press Res. 34, 225–234 (2011).

    Article  PubMed  Google Scholar 

  15. Kottgen, A. et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet. 41, 712–717 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kottgen, A. et al. New loci associated with kidney function and chronic kidney disease. Nat. Genet. 42, 376–384 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Okada, Y. et al. Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nat. Genet. 44, 904–909 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sveinbjornsson, G. et al. Rare mutations associating with serum creatinine and chronic kidney disease. Hum. Mol. Genet. 23, 6935–6943 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Pattaro, C. et al. Genetic associations at 53 loci highlight cell types and biologic pathways for kidney function. Nat. Commun. 7, 10023 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boger, C. A. et al. CUBN is a gene locus for albuminuria. J. Am. Soc. Nephrol. 22, 555–570 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Amsellem, S. et al. Cubilin is essential for albumin reabsorption in the renal proximal tubule. J. Am. Soc. Nephrol. 21, 1859–1867 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boger, C. A. et al. Association of eGFR-related loci identified by GWAS with incident CKD and ESRD. PLoS Genet. 7, e1002292 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reznichenko, A. et al. UMOD as a susceptibility gene for end-stage renal disease. BMC Med. Genet. 13, 78 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O'Seaghdha, C. M., Yang, Q., Wu, H., Hwang, S. J. & Fox, C. S. Performance of a genetic risk score for CKD stage 3 in the general population. Am. J. Kidney Dis. 59, 19–24 (2012).

    Article  PubMed  Google Scholar 

  25. Olden, M. et al. Overlap between common genetic polymorphisms underpinning kidney traits and cardiovascular disease phenotypes: the CKDGen consortium. Am. J. Kidney Dis. 61, 889–898 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. McMahon, G. M., O'Seaghdha, C. M., Hwang, S. J., Meigs, J. B. & Fox, C. S. The association of a single-nucleotide polymorphism in CUBN and the risk of albuminuria and cardiovascular disease. Nephrol. Dial. Transplant. 29, 342–347 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Kottgen, A. et al. Association of estimated glomerular filtration rate and urinary uromodulin concentrations with rare variants identified by UMOD gene region sequencing. PLoS ONE 7, e38311 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ledo, N. et al. Functional genomic annotation of genetic risk loci highlights inflammation and epithelial biology networks in CKD. J. Am. Soc. Nephrol. 26, 692–714 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Kottgen, A. et al. Uromodulin levels associate with a common UMOD variant and risk for incident CKD. J. Am. Soc. Nephrol. 21, 337–344 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ahluwalia, T. S., Lindholm, E., Groop, L. & Melander, O. Uromodulin gene variant is associated with type 2 diabetic nephropathy. J. Hypertens. 29, 1731–1734 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Deshmukh, H. A., Palmer, C. N., Morris, A. D. & Colhoun, H. M. Investigation of known estimated glomerular filtration rate loci in patients with type 2 diabetes. Diabet. Med. 30, 1230–1235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Trudu, M. et al. Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat. Med. 19, 1655–1660 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Padmanabhan, S. et al. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet. 6, e1001177 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Han, J. et al. Common variants of the UMOD promoter associated with blood pressure in a community-based Chinese cohort. Hypertens. Res. 35, 769–774 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Yeo, N. C. et al. Shroom3 contributes to the maintenance of the glomerular filtration barrier integrity. Genome Res. 25, 57–65 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Khalili, H. et al. Developmental origins for kidney disease due to Shroom3 deficiency. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2015060621.

  37. Kiryluk, K. & Novak, J. The genetics and immunobiology of IgA nephropathy. J. Clin. Invest. 124, 2325–2332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kiryluk, K., Novak, J. & Gharavi, A. G. Pathogenesis of immunoglobulin A nephropathy: recent insight from genetic studies. Annu. Rev. Med. 64, 339–356 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Kiryluk, K. et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat. Genet. 46, 1187–1196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, M. et al. Identification of new susceptibility loci for IgA nephropathy in Han Chinese. Nat. Commun. 6, 7270 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Gharavi, A. G. et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat. Genet. 43, 321–327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kiryluk, K. et al. Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet. 8, e1002765 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou, X. J. et al. Cumulative effects of variants identified by genome-wide association studies in IgA nephropathy. Sci. Rep. 4, 4904 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou, X. J. et al. Brief report: identification of MTMR3 as a novel susceptibility gene for lupus nephritis in northern Han Chinese by shared-gene analysis with IgA nephropathy. Arthritis Rheumatol. 66, 2842–2848 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stanescu, H. C. et al. Risk HLA-DQA1 and PLA(2)R1 alleles in idiopathic membranous nephropathy. N. Engl. J. Med. 364, 616–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Gbadegesin, R. A. et al. HLA-DQA1 and PLCG2 are candidate risk loci for childhood-onset steroid-sensitive nephrotic syndrome. J. Am. Soc. Nephrol. 26, 1701–1710 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Bullich, G. et al. HLA-DQA1 and PLA2R1 polymorphisms and risk of idiopathic membranous nephropathy. Clin. J. Am. Soc. Nephrol. 9, 335–343 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Coenen, M. J. et al. Phospholipase A2 receptor (PLA2R1) sequence variants in idiopathic membranous nephropathy. J. Am. Soc. Nephrol. 24, 677–683 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kanigicherla, D. et al. Anti-PLA2R antibodies measured by ELISA predict long-term outcome in a prevalent population of patients with idiopathic membranous nephropathy. Kidney Int. 83, 940–948 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Lv, J. et al. Interaction between PLA2R1 and HLA-DQA1 variants associates with anti-PLA2R antibodies and membranous nephropathy. J. Am. Soc. Nephrol. 24, 1323–1329 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Saeed, M., Beggs, M. L., Walker, P. D. & Larsen, C. P. PLA2R-associated membranous glomerulopathy is modulated by common variants in PLA2R1 and HLA-DQA1 genes. Genes Immun. 15, 556–561 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Kopp, J. B. et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat. Genet. 40, 1175–1184 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kao, W. H. et al. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat. Genet. 40, 1185–1192 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Shlush, L. I. et al. Admixture mapping of end stage kidney disease genetic susceptibility using estimated mutual information ancestry informative markers. BMC Med. Genom. 3, 47 (2010).

    Article  Google Scholar 

  55. Tzur, S. et al. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum. Genet. 128, 345–350 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Freedman, B. I. & Skorecki, K. Gene-gene and gene-environment interactions in apolipoprotein L1 gene-associated nephropathy. Clin. J. Am. Soc. Nephrol. 9, 2006–2013 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kopp, J. B. et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J. Am. Soc. Nephrol. 22, 2129–2137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Larsen, C. P., Beggs, M. L., Saeed, M. & Walker, P. D. Apolipoprotein L1 risk variants associate with systemic lupus erythematosus-associated collapsing glomerulopathy. J. Am. Soc. Nephrol. 24, 722–725 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Papeta, N. et al. APOL1 variants increase risk for FSGS and HIVAN but not IgA nephropathy. J. Am. Soc. Nephrol. 22, 1991–1996 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Parsa, A. et al. APOL1 risk variants, race, and progression of chronic kidney disease. N. Engl. J. Med. 369, 2183–2196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Iyengar, S. K. et al. Genome-wide association and trans-ethnic meta-analysis for advanced diabetic kidney disease: family investigation of nephropathy and diabetes (FIND). PLoS Genet. 11, e1005352 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kopp, J. B. et al. Clinical features and histology of apolipoprotein L1-associated nephropathy in the FSGS clinical trial. J. Am. Soc. Nephrol. 26, 1443–1448 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Limou, S. et al. Sequencing rare and common APOL1 coding variants to determine kidney disease risk. Kidney Int. 88, 754–763 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Thomson, R. et al. Evolution of the primate trypanolytic factor APOL1. Proc. Natl Acad. Sci. USA 111, E2130–E2139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Anderson, B. R. et al. In vivo modeling implicates APOL1 in nephropathy: evidence for dominant negative effects and epistasis under anemic stress. PLoS Genet. 11, e1005349 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Monajemi, H., Fontijn, R. D., Pannekoek, H. & Horrevoets, A. J. The apolipoprotein L gene cluster has emerged recently in evolution and is expressed in human vascular tissue. Genomics 79, 539–546 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Manolio, T. A. Genomewide association studies and assessment of the risk of disease. N. Engl. J. Med. 363, 166–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Wang, K. et al. Interpretation of association signals and identification of causal variants from genome-wide association studies. Am. J. Hum. Genet. 86, 730–742 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

  71. Gudbjartsson, D. F. et al. Association of variants at UMOD with chronic kidney disease and kidney stones-role of age and comorbid diseases. PLoS Genet. 6, e1001039 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tomas, N. M. et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N. Engl. J. Med. 371, 2277–2287 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Freedman, B. I. et al. Polymorphisms in the non-muscle myosin heavy chain 9 gene (MYH9) are strongly associated with end-stage renal disease historically attributed to hypertension in African Americans. Kidney Int. 75, 736–745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lipkowitz, M. S. et al. Apolipoprotein L1 gene variants associate with hypertension-attributed nephropathy and the rate of kidney function decline in African Americans. Kidney Int. 83, 114–120 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Feldman, H. I. The Chronic Renal Insufficiency Cohort (CRIC) study: design and methods. J. Am. Soc. Nephrol. 14, 148S–153S (2003).

    Article  Google Scholar 

  76. Eckardt, K. U. et al. The German Chronic Kidney Disease (GCKD) study: design and methods. Nephrol. Dial. Transplant. 27, 1454–1460 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Wuttke, M., Schaefer, F., Wong, C. S. & Kottgen, A. Genome-wide association studies in nephrology: using known associations for data checks. Am. J. Kidney Dis. 65, 217–222 (2015).

    Article  PubMed  Google Scholar 

  78. Sandholm, N. et al. New susceptibility loci associated with kidney disease in type 1 diabetes. PLoS Genet. 8, e1002921 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chambers, J. C. et al. Genetic loci influencing kidney function and chronic kidney disease. Nat. Genet. 42, 373–375 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pattaro, C. et al. Genome-wide association and functional follow-up reveals new loci for kidney function. PLoS Genet. 8, e1002584 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Gorski, M. et al. Genome-wide association study of kidney function decline in individuals of European descent. Kidney Int. 87, 1017–1029 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Feehally, J. et al. HLA has strongest association with IgA nephropathy in genome-wide analysis. J. Am. Soc. Nephrol. 21, 1791–1797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yu, X. Q. et al. A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy. Nat. Genet. 44, 178–182 (2012).

    Article  CAS  Google Scholar 

  84. Zhu, L. et al. Variants in complement factor H and complement factor H-related protein genes, CFHR3 and CFHR1, affect complement activation in IgA nephropathy. J. Am. Soc. Nephrol. 26, 1195–1204 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of M.W. and A.K. is supported by the German Research Foundation (KO 3598/2-1, CRC 1140, and Heisenberg professorship KO 3598/4-1) and by the Else-Kroener Forschungskolleg NAKSYS. We thank Dr Krzysztof Kiryluk from Columbia University in New York, USA, for providing information about GWAS of IgAN and for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed the article's content and wrote and/or edited the manuscript before submission.

Corresponding author

Correspondence to Anna Köttgen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Supplementary information

Supplementary information

Supplementary information S1 (table) (XLSX 20 kb)

Related links

Related links

DATABASES

OMIM

261100

153640

UK Biobank

The German National Cohort

US Precision Medicine Initiative

Glossary

Linkage disequilibrium

Co-occurrence of alleles at different loci at frequencies that are higher than those expected by the simple product of their individual frequencies. Linkage disequilibrium can be exploited for gene mapping.

Index SNP

Single-nucleotide polymorphism (SNP) with the lowest P value in a trait-associated genomic region.

Exome chip

DNA microarray with probes for single-nucleotide polymorphisms in the coding part of the genome, with a focus on coding variants (non-synonymous, splice and stop).

Admixture mapping approach

Gene-mapping method based on differences in allele frequency and disease prevalence between two parental populations from which the admixed population arose.

Minor allele frequency

Frequency of the least common allele in a given population.

Purifying selection

Selective removal of deleterious alleles by evolutionary natural selection.

Expression quantitative trait loci

Genomic loci that are associated with variation in mRNA expression levels.

eQTL maps

Tissue-specific lists of the location and identity of single-nucleotide polymorphism and their associated transcript(s).

Highly parallel sequencing

High-throughput technique to sequence millions of short DNA fragments in parallel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wuttke, M., Köttgen, A. Insights into kidney diseases from genome-wide association studies. Nat Rev Nephrol 12, 549–562 (2016). https://doi.org/10.1038/nrneph.2016.107

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing