Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vascular access in haemodialysis: strengthening the Achilles' heel

Abstract

Despite all the progress achieved since Scribner first introduced the arteriovenous (AV) shunt in 1960 and Cimino and Brescia introduced the native AV fistula in 1962, we have continued to face a conundrum in vascular access for dialysis, in that dialysis vascular access is at the same time both the 'lifeline' and the 'Achilles' heel' of haemodialysis. Indeed, findings from a multitude of published articles in this area, unfortunately mainly observational studies, reflect both our frustration and our limited knowledge in this area. Despite improved understanding of the pathophysiology of stenosis and thrombosis of the vascular access, we have unfortunately not been very successful in translating these advances into either improved therapies or a superior process of care. As a result, we continue to face an epidemic of arteriovenous fistula (AVF) maturation failure, a proliferation of relatively ineffective interventions such as angioplasty and stent placement, an extremely high incidence of catheter use, and more doubts rather than guidance with regard to the role (or lack thereof) of surveillance. An important reason for these problems is the lack of focused translational research and robust randomized prospective studies in this area. In this Review, we will address some of these critical issues, with a special emphasis on identifying the best process of care pathways that could reduce morbidity and mortality. We also discuss the potential use of novel therapies to reduce dialysis vascular access dysfunction.

Key Points

  • Vascular access for dialysis is fraught with problems, but the current lack of effective therapies is an opportunity for innovation in this area

  • Vascular access is critically important for haemodialysis patients, being both a lifeline and an Achilles' heel

  • An improved understanding of the biology of dialysis access dysfunction could enable the development of novel therapies to solve this problem

  • The use of surveillance is appropriate in certain settings

  • Vascular access in the elderly needs to be individualized

  • Changes in process of care inputs (for example, communication, education, and logistics) are likely to have the greatest impact on vascular access dysfunction

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neointimal hyperplasia in a polytetrafluroethylene graft.
Figure 2: Angioplasty: a double-edged sword.
Figure 3: Barriers and solutions for vascular access placement.
Figure 4: Optiflow® connector.
Figure 5: GORE® Hybrid graft.
Figure 6: Vascugel® wrap.
Figure 7: Bioengineered vessels from allogeneic cells by Humacyte.

Similar content being viewed by others

References

  1. Parker, T. F. 3rd, Glassock, R. J. & Steinman, T. I. Conclusions, consensus, and directions for the future. Clin. J. Am. Soc. Nephrol. 4 (Suppl. 1), S139–S144 (2009).

    Article  PubMed  Google Scholar 

  2. Rooijens, P. P. et al. Autogenous radial-cephalic or prosthetic brachial-antecubital forearm loop AVF in patients with compromised vessels? A randomized, multicenter study of the patency of primary hemodialysis access. J. Vasc. Surg. 42, 481–486 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Roy-Chaudhury, P., Sukhatme, V. P. & Cheung, A. K. Hemodialysis vascular access dysfunction: a cellular and molecular viewpoint. J. Am. Soc. Nephrol. 17, 1112–1127 (2006).

    Article  PubMed  Google Scholar 

  4. Roy-Chaudhury, P. & Lee, T. Vascular stenosis: biology and interventions. Curr. Opin. Nephrol. Hypertens. 16, 516–522 (2007).

    Article  PubMed  Google Scholar 

  5. Lee, T. & Roy-Chaudhury, P. Advances and new frontiers in the pathophysiology of venous neointimal hyperplasia and dialysis access stenosis. Adv. Chronic Kidney Dis. 16, 329–338 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Quinton, W., Dillard, D. & Scribner, B. H. Cannulation of blood vessels for prolonged hemodialysis. Trans. Am. Soc. Artif. Intern. Organs 6, 104–113 (1960).

    CAS  PubMed  Google Scholar 

  7. Konner, K. History of vascular access for haemodialysis. Nephrol. Dial. Transplant. 20, 2629–2635 (2005).

    Article  PubMed  Google Scholar 

  8. Brescia, M. J., Cimino, J. E., Appel, K. & Hurwich, B. J. Chronic hemodialysis using venipuncture and a surgically created arteriovenous fistula. N. Engl. J. Med. 275, 1089–1092 (1966).

    Article  CAS  PubMed  Google Scholar 

  9. Vascular Access 2006 Work Group. Clinical practice guidelines for vascular access. Am. J. Kidney Dis. 48 (Suppl. 1), S176–S247 (2006).

  10. Tordoir, J. et al. EBPG on Vascular Access. Nephrol. Dial. Transplant. 22 (Suppl. 2), ii88–ii117 (2007).

    PubMed  Google Scholar 

  11. Jindal, K. et al. Hemodialysis clinical practice guidelines for the Canadian Society of Nephrology. J. Am. Soc. Nephrol. 17, S1–S27 (2006).

    Article  PubMed  Google Scholar 

  12. The Renal Association. Clinical Practice Guidelines for Vascular Access for Haemodialysis [online], (2011).

  13. Rayner, H. C. et al. Vascular access results from the Dialysis Outcomes and Practice Patterns Study (DOPPS): performance against Kidney Disease Outcomes Quality Initiative (K/DOQI) Clinical Practice Guidelines. Am. J. Kidney Dis. 44, 22–26 (2004).

    Article  PubMed  Google Scholar 

  14. Department of Health & Human Services Centers for Medicare & Medicaid Services. CMS launches “Fistula First” initiative to improve care and quality of life for hemodialysis patients [online], (2004).

  15. Lych, J. R., Mohan, S. & McClellan, W. M. Achieving the goal: results from the Fistula First Breakthrough Initiative. Curr. Opin. Nephrol. Hypertens. 20, 583–592 (2011).

    Article  Google Scholar 

  16. Fistula First. Arteriovenous fistula first [online].

  17. Lee, T. & Roy-Chaudhury, P. Improving incident fistula rates: a process of care issue. Am. J. Kidney Dis. 57, 814–817 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Slinin, Y. et al. Meeting KDOQI guideline goals at hemodialysis initiation and survival during the first year. Clin. J. Am. Soc. Nephrol. 5, 1574–1581 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bradbury, B. D. et al. Predictors of early mortality among incident US hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Clin. J. Am. Soc. Nephrol. 2, 89–99 (2007).

    Article  PubMed  Google Scholar 

  20. Beathard, G. A., Arnold, P., Jackson, J. & Litchfield, T. Aggressive treatment of early fistula failure. Kidney Int. 64, 1487–1494 (2003).

    Article  PubMed  Google Scholar 

  21. Tordoir, J. H. et al. Prospective evaluation of failure modes in autogenous radiocephalic wrist access for haemodialysis. Nephrol. Dial. Transplant. 18, 378–383 (2003).

    Article  PubMed  Google Scholar 

  22. Schild, A. F. et al. Maturation and failure rates in a large series of arteriovenous dialysis access fistulas. Vasc. Endovascular Surg. 38, 449–453 (2004).

    Article  PubMed  Google Scholar 

  23. Clark, T. W. et al. Salvage of nonmaturing native fistulas by using angioplasty. Radiology 242, 286–292 (2007).

    Article  PubMed  Google Scholar 

  24. Dember, L. M. et al. Effect of clopidogrel on early failure of arteriovenous fistulas for hemodialysis: a randomized controlled trial. JAMA 299, 2164–2171 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Allon, M. & Lok, C. E. Dialysis fistula or graft: the role for randomized clinical trials. Clin. J. Am. Soc. Nephrol. 5, 2348–2354 (2010).

    Article  PubMed  Google Scholar 

  26. Roy-Chaudhury, P. et al. Venous neointimal hyperplasia in polytetrafluoroethylene dialysis grafts. Kidney Int. 59, 2325–2334 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Roy-Chaudhury, P. et al. Neointimal hyperplasia in early arteriovenous fistula failure. Am. J. Kidney Dis. 50, 782–790 (2007).

    Article  PubMed  Google Scholar 

  28. Roy-Chaudhury, P. et al. Cellular phenotypes in human stenotic lesions from haemodialysis vascular access. Nephrol. Dial. Transplant. 24, 2786–2791 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stracke, S. et al. Increased expression of TGF-beta1 and IGF-I in inflammatory stenotic lesions of hemodialysis fistulas. Kidney Int. 61, 1011–1019 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Li, L. et al. Cellular and morphological changes during neointimal hyperplasia development in a porcine arteriovenous graft model. Nephrol. Dial. Transplant. 22, 3139–3146 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Li, L., Terry, C. M., Shiu, Y. T. & Cheung, A. K. Neointimal hyperplasia associated with synthetic hemodialysis grafts. Kidney Int. 74, 1247–1261 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roy-Chaudhury, P. et al. Hemodialysis vascular access dysfunction: from pathophysiology to novel therapies. Blood Purif. 21, 99–110 (2003).

    Article  PubMed  Google Scholar 

  33. Roy-Chaudhury, P. & Lee, T. C. Vascular stenosis: biology and interventions. Curr. Opin. Nephrol. Hypertens. 16, 516–522 (2007).

    Article  PubMed  Google Scholar 

  34. Weiss, M. F., Scivittaro, V. & Anderson, J. M. Oxidative stress and increased expression of growth factors in lesions of failed hemodialysis access. Am. J. Kidney Dis. 37, 970–980 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Kokubo, T. et al. CKD accelerates development of neointimal hyperplasia in arteriovenous fistulas. J. Am. Soc. Nephrol. 20, 1236–1245 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Langer, S. et al. Chronic kidney disease aggravates arteriovenous fistula damage in rats. Kidney Int. 78, 1312–1321 (2010).

    Article  PubMed  Google Scholar 

  37. Lee, T. et al. Severe venous neointimal hyperplasia prior to dialysis access surgery. Nephrol. Dial. Transplant. 26, 2264–2270 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wasse, H. et al. Inflammation, oxidation and venous neointimal hyperplasia precede vascular injury from AVF creation in CKD patients. J. Vasc. Access 13, 168–174 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lehoux, S., Castier, Y. & Tedgui, A. Molecular mechanisms of the vascular responses to haemodynamic forces. J. Intern. Med. 259, 381–392 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Lehoux, S. Redox signalling in vascular responses to shear and stretch. Cardiovasc. Res. 71, 269–279 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Castier, Y., Brandes, R. P., Leseche, G., Tedgui, A. & Lehoux, S. p47phox-dependent NADPH oxidase regulates flow-induced vascular remodeling. Circ. Res. 97, 533–540 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Krishnamoorthy, M. K. et al. Anatomic configuration affects the flow rate and diameter of porcine arteriovenous fistulae. Kidney Int. 81, 745–750 (2012).

    Article  PubMed  Google Scholar 

  43. Lee, T. et al. Standardized definitions for hemodialysis vascular access. Semin. Dial. 24, 515–524 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Huber, T. S. et al. Prospective validation of an algorithm to maximize native arteriovenous fistulae for chronic hemodialysis access. J. Vasc. Surg. 36, 452–459 (2002).

    Article  PubMed  Google Scholar 

  45. Malovrh, M. Native arteriovenous fistula: preoperative evaluation. Am. J. Kidney Dis. 39, 1218–1225 (2002).

    Article  PubMed  Google Scholar 

  46. Dixon, B. S., Novak, L. & Fangman, J. Hemodialysis vascular access survival: upper-arm native arteriovenous fistula. Am. J. Kidney Dis. 39, 92–101 (2002).

    Article  PubMed  Google Scholar 

  47. Miller, P. E. et al. Predictors of adequacy of arteriovenous fistulas in hemodialysis patients. Kidney Int. 56, 275–280 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Wong, V. et al. Factors associated with early failure of arteriovenous fistulae for haemodialysis access. Eur. J. Vasc. Endovasc. Surg. 12, 207–213 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Goodkin, D. A., Pisoni, R. L., Locatelli, F., Port, F. K. & Saran, R. Hemodialysis vascular access training and practices are key to improved access outcomes. Am. J. Kidney Dis. 56, 1032–1042 (2010).

    Article  PubMed  Google Scholar 

  50. Prischl, F. C. et al. Parameters of prognostic relevance to the patency of vascular access in hemodialysis patients. J. Am. Soc. Nephrol. 6, 1613–1618 (1995).

    CAS  PubMed  Google Scholar 

  51. Basile, C. & Lomonte, C. The operating surgeon is the major determinant for a successful arteriovenous fistula maturation. Kidney Int. 72, 772 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Dixon, B. S. Why don't fistulas mature? Kidney Int. 70, 1413–1422 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Lok, C. E. et al. Risk equation determining unsuccessful cannulation events and failure to maturation in arteriovenous fistulas (REDUCE FTM I). J. Am. Soc. Nephrol. 17, 3204–3212 (2006).

    Article  PubMed  Google Scholar 

  54. Wang, W. et al. Comorbidities do not influence primary fistula success in incident hemodialysis patients: a prospective study. Clin. J. Am. Soc. Nephrol. 3, 78–84 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Silva, M. B. Jr et al. A strategy for increasing use of autogenous hemodialysis access procedures: impact of preoperative noninvasive evaluation. J. Vasc. Surg. 27, 302–307 (1998).

    Article  PubMed  Google Scholar 

  56. Beck, G. J. et al. Progress of the hemodialysis fistula maturation (HFM) study (SA-OR452). Presented at American Society of Nephrology Kidney Week 2011.

  57. He, C. et al. Impact of the surgeon on the prevalence of arteriovenous fistulas. ASAIO J. 48, 39–40 (2002).

    Article  PubMed  Google Scholar 

  58. Lazarides, M. K. et al. Influence of surgeons' specialty on the selection of vascular access for hemodialysis treatment. Blood Purif. 20, 338–341 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. O'Hare, A. M. et al. Impact of surgeon and surgical center characteristics on choice of permanent vascular access. Kidney Int. 64, 681–689 (2003).

    Article  PubMed  Google Scholar 

  60. Choi, K. L. et al. Impact of surgeon selection on access placement and survival following preoperative mapping in the “Fistula First” era. Semin. Dial. 21, 341–345 (2008).

    Article  PubMed  Google Scholar 

  61. Mishler, R. & Yevzlin, A. S. Outcomes of arteriovenous fistulae created by a U. S. interventional nephrologist. Semin. Dial. 23, 224–228 (2010).

    Article  PubMed  Google Scholar 

  62. Beathard, G. A. An algorithm for the physical examination of early fistula failure. Semin. Dial. 18, 331–335 (2005).

    Article  PubMed  Google Scholar 

  63. Asif, A., Roy-Chaudhury, P. & Beathard, G. A. Early arteriovenous fistula failure: a logical proposal for when and how to intervene. Clin. J. Am. Soc. Nephrol. 1, 332–339 (2006).

    Article  PubMed  Google Scholar 

  64. Asif, A. et al. Accuracy of physical examination in the detection of arteriovenous fistula stenosis. Clin. J. Am. Soc. Nephrol. 2, 1191–1194 (2007).

    Article  PubMed  Google Scholar 

  65. Leon, C. & Asif, A. Physical examination of arteriovenous fistulae by a renal fellow: does it compare favorably to an experienced interventionalist? Semin. Dial. 21, 557–560 (2008).

    Article  PubMed  Google Scholar 

  66. Robbin, M. L. et al. Hemodialysis arteriovenous fistula maturity: US evaluation. Radiology 225, 59–64 (2002).

    Article  PubMed  Google Scholar 

  67. National Kidney Foundation. 2006 Updates: Clinical Practice Guidelines and Recommendations [online]

  68. Patel, S. T., Hughes, J. & Mills, J. L. Sr. Failure of arteriovenous fistula maturation: an unintended consequence of exceeding dialysis outcome quality Initiative guidelines for hemodialysis access. J. Vasc. Surg. 38, 439–445 (2003).

    Article  PubMed  Google Scholar 

  69. Beathard, G. A., Settle, S. M. & Shields, M. W. Salvage of the nonfunctioning arteriovenous fistula. Am. J. Kidney Dis. 33, 910–916 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Beathard, G. A. Strategy for maximizing the use of arteriovenous fistulae. Semin. Dial. 13, 291–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Falk, A. Maintenance and salvage of arteriovenous fistulas. J. Vasc. Interv. Radiol. 17, 807–813 (2006).

    Article  PubMed  Google Scholar 

  72. Nasser, G. M., Nguyen, B., Rhee, E. & Achkar, K. Endovascular treatment of the “failing to mature” arteriovenous fistula. Clin. J. Am. Soc. Nephrol. 1, 275–280 (2006).

    Article  Google Scholar 

  73. Tessitore, N. et al. Endovascular versus surgical preemptive repair of forearm arteriovenous fistula juxta-anastomotic stenosis: analysis of data collected prospectively from 1999 to 2004. Clin. J. Am. Soc. Nephrol. 1, 448–454 (2006).

    Article  PubMed  Google Scholar 

  74. Lipari, G. et al. Outcomes of surgical revision of stenosed and thrombosed forearm arteriovenous fistulae for haemodialysis. Nephrol. Dial. Transplant. 22, 2605–2612 (2007).

    Article  PubMed  Google Scholar 

  75. Lee, T. et al. Decreased cumulative access survival in arteriovenous fistulas requiring interventions to promote maturation. Clin. J. Am. Soc. Nephrol. 6, 575–581 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  76. [No authors listed] III. NKF-K/DOQI Clinical Practice Guidelines for Vascular Access: update 2000. Am. J. Kidney Dis. 37 (Suppl. 1), S137–S181 (2001).

  77. Kumbar, L., Karim, J. & Besarab, A. Surveillance and monitoring of dialysis access. Int. J. Nephrol. http://dx.doi.org/10.1155/2012/649735.

  78. Tonelli, M., James, M., Wiebe, N., Jindal, K. & Hemmelgarn, B. Ultrasound monitoring to detect access stenosis in hemodialysis patients: a systematic review. Am. J. Kidney Dis. 51, 630–640 (2008).

    Article  PubMed  Google Scholar 

  79. Paulson, W. D. Blood flow surveillance of hemodialysis grafts and the dysfunction hypothesis. Semin. Dial. 14, 175–180 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Work, J. Role of access surveillance and preemptive intervention. Semin. Vasc. Surg. 24, 137–142 (2011).

    Article  PubMed  Google Scholar 

  81. Paulson, W. D., Moist, L. & Lok, C. E. Vascular access surveillance: an ongoing controversy. Kidney Int. 81, 132–142 (2012).

    Article  PubMed  Google Scholar 

  82. Paulson, W. D. & Work, J. Controversial vascular access surveillance mandate. Semin. Dial. 23, 92–94 (2010).

    Article  PubMed  Google Scholar 

  83. Allon, M. & Robbin, M. L. Questions about graft surveillance. Kidney Int. 68, 2401–2402 (2005).

    Article  PubMed  Google Scholar 

  84. Tessitore, N. et al. Adding access blood flow surveillance to clinical monitoring reduces thrombosis rates and costs, and improves fistula patency in the short term: a controlled cohort study. Nephrol. Dial. Transplant. 23, 3578–3584 (2008).

    Article  PubMed  Google Scholar 

  85. United States Renal Data System. USRDS 2010 Annual Data Report: Atlas of End-Stage Renal Disease in the United States [online], (2010).

  86. Richardson, A. I. 2nd et al. Should fistulas really be first in the elderly patient? J. Vasc. Access 10, 199–202 (2009).

    Article  PubMed  Google Scholar 

  87. Lazarides, M. K., Georgiadis, G. S., Antoniou, G. A. & Staramos, D. N. A meta-analysis of dialysis access outcome in elderly patients. J. Vasc. Surg. 45, 420–426 (2007).

    Article  PubMed  Google Scholar 

  88. Lok, C. E. et al. Arteriovenous fistula outcomes in the era of the elderly dialysis population. Kidney Int. 67, 2462–2469 (2005).

    Article  PubMed  Google Scholar 

  89. Staramos, D. N. et al. Patency of autologous and prosthetic arteriovenous fistulas in elderly patients. Eur. J. Surg. 166, 777–781 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Vachharajani, T. J. et al. Re-evaluating the Fistula First initiative in octogenarians on hemodialysis. Clin. J. Am. Soc. Nephrol. 6, 1663–1667 (2011).

    Article  PubMed  Google Scholar 

  91. Chan, M. R., Sanchez, R. J., Young, H. N. & Yevzlin, A. S. Vascular access outcomes in the elderly hemodialysis population: A USRDS study. Semin. Dial. 20, 606–610 (2007).

    Article  PubMed  Google Scholar 

  92. Perl, J. et al. Hemodialysis vascular access modifies the association between dialysis modality and survival. J. Am. Soc. Nephrol. 22, 1113–1121 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Pisoni, R. L. et al. Facility hemodialysis vascular access use and mortality in countries participating in DOPPS: an instrumental variable analysis. Am. J. Kidney Dis. 53, 475–491 (2009).

    Article  PubMed  Google Scholar 

  94. United States Renal Data System. USRDS 2012 Annual Data Report: Atlas of End-Stage Renal Disease in the United States [online], (2012).

  95. Allon, M. et al. Effect of change in vascular access on patient mortality in hemodialysis patients. Am. J. Kidney Dis. 47, 469–477 (2006).

    Article  PubMed  Google Scholar 

  96. Manson, R. J. et al. Arteriovenous fistula creation using the Optiflow vascular anastomosis device: a first in man pilot study. Semin. Dial. 26, 97–99 (2013).

    Article  PubMed  Google Scholar 

  97. Gore. GORE® Hybrid Vascular Graft [online], (2013).

  98. Vassalotti, J. A. et al. Fistula first breakthrough initiative: targeting catheter last in fistula first. Semin. Dial. 25, 303–310 (2012).

    Article  PubMed  Google Scholar 

  99. Peden, E. K. et al. A multi-center, dose-escalation study of human type I pancreatic elastase (PRT-201) administered after arteriovenous fistula creation. J. Vasc. Access http://dx.doi.org/10.5301/jva.5000125.

  100. Paulson, W. D. et al. Safety and efficacy of locally eluted sirolimus for prolonging AV graft patency (PTFE Graft plus Coll.-R.)—first in man experience. Poster at American Society of Nephrology Kidney Week 2011.

  101. Paulson, W. D. et al. Safety and efficacy of local periadventitial delivery of sirolimus for improving hemodialysis graft patency: first human experience with a sirolimus-eluting collagen membrane (Coll-R). Nephrol. Dial. Transplant. 27, 1219–1224 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Nugent, H. M. et al. Perivascular endothelial implants inhibit intimal hyperplasia in a model of arteriovenous fistulae: a safety and efficacy study in the pig. J. Vasc. Res. 39, 524–533 (2002).

    Article  PubMed  Google Scholar 

  103. Nugent, H. M. et al. Adventitial endothelial implants reduce matrix metalloproteinase-2 expression and increase luminal diameter in porcine arteriovenous grafts. J. Vasc. Surg. 46, 548–556 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Conte, M. S. et al. Multicenter phase I/II trial of the safety of allogeneic endothelial cell implants after the creation of arteriovenous access for hemodialysis use: the V-HEALTH study. J. Vasc. Surg. 50, 1359.e1–1368.e1 (2009).

    Google Scholar 

  105. Conte, M. S., Nugent, H. M., Gaccione, P., Roy-Chaudhury, P. & Lawson, J. H. Influence of diabetes and perivascular allogeneic endothelial cell implants on arteriovenous fistula remodeling. J. Vasc. Surg. 54, 1383–1389 (2011).

    Article  PubMed  Google Scholar 

  106. Scheller, B. et al. Treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter. N. Engl. J. Med. 355, 2113–2124 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Tepe, G. et al. Local delivery of paclitaxel to inhibit restenosis during angioplasty of the leg. N. Engl. J. Med. 358, 689–699 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Katsanos, K. et al. Drug-coated balloon angioplasty in hemodialysis access. Presented at the 2011 38th Annual Symposium on Vascular and Endovascular Issues, Techniques and Horizons (VEITHsymposium).

  109. Morice, M. C. et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N. Engl. J. Med. 346, 1773–1780 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Stone, G. W. et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N. Engl. J. Med. 350, 221–231 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Stone, G. W. et al. Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents. N. Engl. J. Med. 356, 998–1008 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Rotmans, J. I. et al. Sirolimus-eluting stents to abolish intimal hyperplasia and improve flow in porcine arteriovenous grafts: a 4-week follow-up study. Circulation 111, 1537–1542 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Tay, K. et al. Prospective randomised controlled trial comparing drug eluting stent (DES) versus percutaneous transluminal angioplasty (PTA) for the treatment of hemodialysis arterio-venous graft (AVG) stenoses: preliminary report [abstract 7]. J. Vasc. Interv. Radiol. 22 (Suppl.), S6 (2011).

    Article  Google Scholar 

  114. Haskal, Z. J. et al. Stent graft versus balloon angioplasty for failing dialysis-access grafts. N. Engl. J. Med. 362, 494–503 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Salman, L. & Asif, A. Dialysis: the stent graft for stenosis: let's appraise before we praise. Nat. Rev. Nephrol. 6, 503–504 (2010).

    Article  PubMed  Google Scholar 

  116. Salman, L. & Asif, A. Stent graft for nephrologists: concerns and consensus. Clin. J. Am. Soc. Nephrol. 5, 1347–1352 (2010).

    Article  PubMed  Google Scholar 

  117. Peck, M., Gebhart, D., Dusserre, N., McAllister, T. N. & L'Heureux, N. The evolution of vascular tissue engineering and current state of the art. Cells Tissues Organs 195, 144–158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Peck, M. K. et al. New biological solutions for hemodialysis access. J. Vasc. Access 12, 185–192 (2011).

    Article  PubMed  Google Scholar 

  119. L'Heureux, N. et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat. Med. 12, 361–365 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. McAllister, T. N. et al. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 373, 1440–1446 (2009).

    Article  PubMed  Google Scholar 

  121. L'Heureux, N., McAllister, T. N. & de la Fuente, L. M. Tissue-engineered blood vessel for adult arterial revascularization. N. Engl. J. Med. 357, 1451–1453 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Dahl, S. L. et al. Readily available tissue-engineered vascular grafts. Sci. Transl. Med. 3, 68ra9 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Lopez-Vargas, P. A. et al. Barriers to timely arteriovenous fistula creation: a study of providers and patients. Am. J. Kidney Dis. 57, 873–882 (2011).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Miguel C. Riella.

Ethics declarations

Competing interests

P. Roy-Chaudhury is a consultant/research grant recipient/advisory board member for BioConnect Systems, Medtronic, Proteon Therapeutics, Vascular Therapies and W. L. Gore & Associates. P. Roy-Chaudhury is currently supported by NIH U01-DK82218, NIH R01-EB004527, NIH R21-DK089280, NIH R21-EB016150, a VA Merit Review Grant and a W. L. Gore Research Grant. M. C. Riella declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riella, M., Roy-Chaudhury, P. Vascular access in haemodialysis: strengthening the Achilles' heel. Nat Rev Nephrol 9, 348–357 (2013). https://doi.org/10.1038/nrneph.2013.76

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.76

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing