Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune cell dysfunction and inflammation in end-stage renal disease

Abstract

Uraemia causes inflammation and reduces immune system function as evidenced by an increased risk of viral-associated cancers, increased susceptibility to infections and decreased vaccination responses in patients with end-stage renal disease (ESRD). The substantially increased risk of atherosclerosis in these patients is also probably related to uraemia-associated inflammation. Uraemia is associated with a reduction in the number and function of lymphoid cells, whereas numbers of myeloid cells in uraemic patients are normal or increased with increased production of inflammatory cytokines and reactive oxygen species. Similar to healthy elderly individuals, patients with ESRD have increased numbers of specific proinflammatory subsets of T cells and monocytes, suggesting the presence of premature immunological ageing in these patients. These cells might contribute to inflammation and destabilization of atherosclerotic plaques, and have, therefore, been identified as novel nonclassical cardiovascular risk factors. The cellular composition of the immune system does not normalize after successful kidney transplantation despite a rapid reduction in inflammation and oxidative stress. This finding suggests that premature ageing of the immune system in patients with ESRD might be related to a permanent skewing of the haematopoetic stem cell population towards myeloid-generating subsets, similar to that seen in healthy elderly individuals.

Key Points

  • Progressive loss of kidney function leads to activation and impairment of the function and interactions of the innate and adaptive immune systems

  • In patients with end-stage renal disease (ESRD), immune system impairment results in an increased susceptibility to bacterial and viral infections, poor vaccination responses and an increased risk of malignancies

  • ESRD-related changes in the immune system result in the expansion of proinflammatory CD4+CD28 T cell and CD14+CD16++ monocyte populations, which are considered to be novel, nontraditional cardiovascular risk factors

  • In patients with ESRD, loss of renal function is associated with a progressive reduction in numbers of lymphoid cells, whereas myeloid cell numbers are increased

  • ESRD-related immune system changes are compatible with the concept of premature immunological ageing and might reflect a skewing in the ratio of lymphoid and myeloid hematopoietic stem cell subsets

  • Kidney transplantation does not restore total numbers or function of circulating immune cells; therefore, patients with kidney transplants remain at high risk of infection, malignancies and cardiovascular disease

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effect of uraemia on the immune system.

Similar content being viewed by others

References

  1. Sarnak, M. J. & Jaber, B. L. Mortality caused by sepsis in patients with end-stage renal disease compared with the general population. Kidney Int. 58, 1758–1764 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Verkade, M. A. et al. Peripheral blood dendritic cells and GM-CSF as an adjuvant for hepatitis B vaccination in hemodialysis patients. Kidney Int. 66, 614–621 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Stewart, J. H. et al. The pattern of excess cancer in dialysis and transplantation. Nephrol. Dial. Transplant. 24, 3225–3231 (2009).

    Article  PubMed  Google Scholar 

  4. Vaziri, N. D. Oxidative stress in uremia: nature, mechanisms, and potential consequences. Semin. Nephrol. 24, 469–473 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Pecoits-Filho, R. et al. Associations between circulating inflammatory markers and residual renal function in CRF patients. Am. J. Kidney Dis. 41, 1212–1218 (2003).

    Article  PubMed  Google Scholar 

  6. Locatelli, F. et al. Oxidative stress in end-stage renal disease: an emerging threat to patient outcome. Nephrol. Dial. Transplant. 18, 1272–1280 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Kato, S. et al. Aspects of immune dysfunction in end-stage renal disease. Clin. J. Am. Soc. Nephrol. 3, 1526–1533 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bohlender, J. M., Franke, S., Stein, G. & Wolf, G. Advanced glycation end products and the kidney. Am. J. Physiol. Renal Physiol. 289, F645–F659 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Bierhaus, A. & Nawroth, P. P. Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia 52, 2251–2263 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Meier, P., Golshayan, D., Blanc, E., Pascual, M. & Burnier, M. Oxidized LDL modulates apoptosis of regulatory T cells in patients with ESRD. J. Am. Soc. Nephrol. 20, 1368–1384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Recio-Mayoral, A., Banerjee, D., Streather, C. & Kaski, J. C. Endothelial dysfunction, inflammation and atherosclerosis in chronic kidney disease—a cross-sectional study of predialysis, dialysis and kidney-transplantation patients. Atherosclerosis 216, 446–451 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Hansson, G. K. & Libby, P. The immune response in atherosclerosis: a double-edged sword. Nat. Rev. Immunol. 6, 508–519 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Foley, R. N., Parfrey, P. S. & Sarnak, M. J. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am. J. Kidney Dis. 32, S112–S119 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Meier, P., Dayer, E., Blanc, E. & Wauters, J. P. Early T cell activation correlates with expression of apoptosis markers in patients with end-stage renal disease. J. Am. Soc. Nephrol. 13, 204–212 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. van Riemsdijk, I. C. et al. T cells activate the tumor necrosis factor-α system during hemodialysis, resulting in tachyphylaxis. Kidney Int. 59, 883–892 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Akar, H., Akar, G. C., Carrero, J. J., Stenvinkel, P. & Lindholm, B. Systemic consequences of poor oral health in chronic kidney disease patients. Clin. J. Am. Soc. Nephrol. 6, 218–226 (2011).

    Article  PubMed  Google Scholar 

  17. Betjes, M. G., Langerak A. W., van der Spek, A., de Wit, E. A. & Litjens, N. H. Premature aging of circulating T cells in patients with end-stage renal disease. Kidney Int. 80, 208–217 (2011).

    Article  PubMed  Google Scholar 

  18. Nockher, W. A. & Scherberich, J. E. Expanded CD14+CD16+ monocyte subpopulation in patients with acute and chronic infections undergoing hemodialysis. Infect. Immun. 66, 2782–2790 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Betjes, M. G., Huisman, M., Weimar, W. & Litjens, N. H. Expansion of cytolytic CD4+CD28- T cells in end-stage renal disease. Kidney Int. 74, 760–767 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Iwasaki, A. & Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science 327, 291–295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Riganti, C., Massaia, M., Davey, M. S. & Eberl, M. Human γδ T-cell responses in infection and immunotherapy: common mechanisms, common mediators? Eur. J. Immunol. 42, 1668–1676 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Hausmann, M. & Rogler, G. Immune–nonimmune networks in intestinal inflammation. Curr. Drug Targets 9, 388–394 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Cooper, M. D. & Alder, M. N. The evolution of adaptive immune systems. Cell 124, 815–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Nace, G., Evankovich, J., Eid, R. & Tsung, A. Dendritic cells and damage-associated molecular patterns: endogenous danger signals linking innate and adaptive immunity. J. Innate Immun. 4, 6–15 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. McHeyzer-Williams, L. J. & McHeyzer-Williams, M. G. Antigen-specific memory B cell development. Annu. Rev. Immunol. 23, 487–513 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Sela, S. et al. Primed peripheral polymorphonuclear leukocyte: a culprit underlying chronic low-grade inflammation and systemic oxidative stress in chronic kidney disease. J. Am. Soc. Nephrol. 16, 2431–2438 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Gollapudi, P., Yoon, J. W., Gollapudi, S., Pahl, M. V. & Vaziri, N. D. Leukocyte toll-like receptor expression in end-stage kidney disease. Am. J. Nephrol. 31, 247–254 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Yoon, J. W., Pahl, M. V. & Vaziri, N. D. Spontaneous leukocyte activation and oxygen-free radical generation in end-stage renal disease. Kidney Int. 71, 167–172 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Mazor, R. et al. Tumor necrosis factor-α: a possible priming agent for the polymorphonuclear leukocyte-reduced nicotinamide-adenine dinucleotide phosphate oxidase in hypertension. Hypertension 55, 353–362 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Roselaar, S. E. et al. Detection of oxidants in uremic plasma by electron spin resonance spectroscopy. Kidney Int. 48, 199–206 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Descamps-Latscha, B. & Witko-Sarsat, V. Importance of oxidatively modified proteins in chronic renal failure. Kidney Int. Suppl. 78, S108–S113 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Toure, F. et al. Receptor for advanced glycation end-products (RAGE) modulates neutrophil adhesion and migration on glycoxidated extracellular matrix. Biochem. J. 416, 255–261 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Pindjakova, J. & Griffin, M. D. Defective neutrophil rolling and transmigration in acute uremia. Kidney Int. 80, 447–450 (2011).

    Article  PubMed  Google Scholar 

  34. Mahajan, S., Kalra, O. P., Asit, K. T., Ahuja, G. & Kalra, V. Phagocytic polymorphonuclear function in patients with progressive uremia and the effect of acute hemodialysis. Ren. Fail. 27, 357–360 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Anding, K., Gross, P., Rost, J. M., Allgaier, D. & Jacobs, E. The influence of uraemia and haemodialysis on neutrophil phagocytosis and antimicrobial killing. Nephrol. Dial. Transplant. 18, 2067–2073 (2003).

    Article  PubMed  Google Scholar 

  36. Cendoroglo, M. et al. Neutrophil apoptosis and dysfunction in uremia. J. Am. Soc. Nephrol. 10, 93–100 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Jaber, B. L., Perianayagam, M. C., Balakrishnan, V. S., King, A. J. & Pereira, B. J. Mechanisms of neutrophil apoptosis in uremia and relevance of the Fas (APO-1, CD95)/Fas ligand system. J. Leukoc. Biol. 69, 1006–1012 (2001).

    CAS  PubMed  Google Scholar 

  38. Glorieux, G., Vanholder, R. & Lameire, N. Uraemic retention and apoptosis: what is the balance for the inflammatory status in uraemia? Eur. J. Clin. Invest. 33, 631–634 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Majewska, E., Baj, Z., Sulowska, Z., Rysz, J. & Luciak, M. Effects of uraemia and haemodialysis on neutrophil apoptosis and expression of apoptosis-related proteins. Nephrol. Dial. Transplant. 18, 2582–2588 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Witko-Sarsat, V. et al. AOPP-induced activation of human neutrophil and monocyte oxidative metabolism: a potential target for N-acetylcysteine treatment in dialysis patients. Kidney Int. 64, 82–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Cohen, G., Rudnicki, M., Walter, F., Niwa, T. & Horl, W. H. Glucose-modified proteins modulate essential functions and apoptosis of polymorphonuclear leukocytes. J. Am. Soc. Nephrol. 12, 1264–1271 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Horl, W. H. Neutrophil function and infections in uremia. Am. J. Kidney Dis. 33, xlv–xlviii (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Chonchol, M. Neutrophil dysfunction and infection risk in end-stage renal disease. Semin. Dial. 19, 291–296 (2006).

    Article  PubMed  Google Scholar 

  44. Witko-Sarsat, V., Gausson, V. & Descamps-Latscha, B. Are advanced oxidation protein products potential uremic toxins? Kidney Int. Suppl. 84, S11–S14 (2003).

    Article  CAS  Google Scholar 

  45. Paulsson, J., Dadfar, E., Held, C., Jacobson, S. H. & Lundahl, J. Activation of peripheral and in vivo transmigrated neutrophils in patients with stable coronary artery disease. Atherosclerosis 192, 328–334 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Vlahu, C. A. et al. Damage of the endothelial glycocalyx in dialysis patients. J. Am. Soc. Nephrol. 23, 1900–1908 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Klein, J. B., McLeish, K. R. & Ward, R. A. Transplantation, not dialysis, corrects azotemia-dependent priming of the neutrophil oxidative burst. Am. J. Kidney Dis. 33, 483–491 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Moretta, L. et al. Effector and regulatory events during natural killer–dendritic cell interactions. Immunol. Rev. 214, 219–228 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Lodoen, M. B. & Lanier, L. L. Natural killer cells as an initial defense against pathogens. Curr. Opin. Immunol. 18, 391–398 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Griveas, I. et al. Comparative analysis of immunophenotypic abnormalities in cellular immunity of uremic patients undergoing either hemodialysis or continuous ambulatory peritoneal dialysis. Ren. Fail. 27, 279–282 (2005).

    Article  PubMed  Google Scholar 

  51. Charpentier, B. et al. Depressed polymorphonuclear leukocyte functions associated with normal cytotoxic functions of T and natural killer cells during chronic hemodialysis. Clin. Nephrol. 19, 288–294 (1983).

    CAS  PubMed  Google Scholar 

  52. Gascon, A. et al. Antigen phenotype and cytotoxic activity of natural killer cells in hemodialysis patients. Am. J. Kidney Dis. 27, 373–379 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Zaoui, P. & Hakim, R. M. Natural-killer-cell function in hemodialysis-patients—effect of the dialysis membrane. Kidney Int. 43, 1298–1305 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Cala, S., Mazuran, R. & Kordic, D. Negative effect of uraemia and cuprophane haemodialysis on natural killer cells. Nephrol. Dial. Transplant. 5, 437–440 (1990).

    Article  CAS  PubMed  Google Scholar 

  55. Peraldi, M. N. et al. Oxidative stress mediates a reduced expression of the activating receptor NKG2D in NK cells from end-stage renal disease patients. J. Immunol. 182, 1696–705 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Vacher-Coponat, H. et al. Natural killer cell alterations correlate with loss of renal function and dialysis duration in uraemic patients. Nephrol. Dial. Transplant. 23, 1406–1414 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Hutchinson, P., Chadban, S. J., Atkins, R. C. & Holdsworth, S. R. Laboratory assessment of immune function in renal transplant patients. Nephrol. Dial. Transplant. 18, 983–989 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Carroll, R. P. et al. Immune phenotype predicts risk for posttransplantation squamous cell carcinoma. J. Am. Soc. Nephrol. 21, 713–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lim, W. H., Kireta, S., Leedham, E., Russ, G. R. & Coates, P. T. Uremia impairs monocyte and monocyte-derived dendritic cell function in hemodialysis patients. Kidney Int. 72, 1138–1148 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. de Cal, M. et al. Oxidative stress and 'monocyte reprogramming' after kidney transplant: a longitudinal study. Blood Purif. 26, 105–110 (2008).

    Article  PubMed  Google Scholar 

  61. Satomura, A. et al. Significant elevations in serum mannose-binding lectin levels in patients with chronic renal failure. Nephron 92, 702–704 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Ando, M., Lundkvist, I., Bergstrom, J. & Lindholm, B. Enhanced scavenger receptor expression in monocyte-macrophages in dialysis patients. Kidney Int. 49, 773–780 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Ando, M., Gafvels, M., Bergstrom, J., Lindholm, B. & Lundkvist, I. Uremic serum enhances scavenger receptor expression and activity in the human monocytic cell line U937. Kidney Int. 51, 785–792 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Muniz-Junqueira, M. I., Braga Lopes, C., Magalhaes, C. A., Schleicher, C. C. & Veiga, J. P. Acute and chronic influence of hemodialysis according to the membrane used on phagocytic function of neutrophils and monocytes and pro-inflammatory cytokines production in chronic renal failure patients. Life Sci. 77, 3141–3155 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Lewis, S. L. & Van Epps, D. E. Neutrophil and monocyte alterations in chronic dialysis patients. Am. J. Kidney Dis. 9, 381–395 (1987).

    Article  CAS  PubMed  Google Scholar 

  66. Chmielewski, M. et al. Expression of scavenger receptor CD36 in chronic renal failure patients. Artif. Organs 29, 608–614 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Ando, M., Shibuya, A., Tsuchiya, K., Akiba, T. & Nitta, K. Reduced expression of Toll-like receptor 4 contributes to impaired cytokine response of monocytes in uremic patients. Kidney Int. 70, 358–362 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Ziegler-Heitbrock, L. The CD14+CD16+ blood monocytes: their role in infection and inflammation. J. Leukoc. Biol. 81, 584–592 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Scherberich, J. E., Estner, H. & Segerer, W. Impact of different immunosuppressive regimens on antigen-presenting blood cells in kidney transplant patients. Kidney Blood Press. Res. 27, 177–180 (2004).

    Article  PubMed  Google Scholar 

  70. Zawada, A. M. et al. SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood 118, e50–e61 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Heine, G. H. et al. CD14++CD16+ monocytes but not total monocyte numbers predict cardiovascular events in dialysis patients. Kidney Int. 73, 622–629 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Rogacev, K. S. et al. CD14++CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography. J. Am. Coll. Cardiol. 60, 1512–1520 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Rogacev, K. S. et al. CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. Eur. Heart J. 32, 84–92 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Pahl, M. V., Vaziri, N. D., Yuan, J. & Adler, S. G. Upregulation of monocyte/macrophage HGFIN (Gpnmb/osteoactivin) expression in end-stage renal disease. Clin. J. Am. Soc. Nephrol. 5, 56–61 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Girndt, M. et al. Production of interleukin-6, tumor necrosis factor α and interleukin-10 in vitro correlates with the clinical immune defect in chronic hemodialysis patients. Kidney Int. 47, 559–565 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Girndt, M. et al. Anti-inflammatory interleukin-10 genotype protects dialysis patients from cardiovascular events. Kidney Int. 62, 949–955 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Girndt, M., Sester, U., Kaul, H. & Kohler, H. Production of proinflammatory and regulatory monokines in hemodialysis patients shown at a single-cell level. J. Am. Soc. Nephrol. 9, 1689–1696 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Stenvinkel, P. et al. IL-10, IL-6, and TNF-α: central factors in the altered cytokine network of uremia—the good, the bad, and the ugly. Kidney Int. 67, 1216–1233 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Shi, C. et al. Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. Immunity 34, 590–601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. O'Donnell, V. B. & Murphy, R. C. New families of bioactive oxidized phospholipids generated by immune cells: identification and signaling actions. Blood 120, 1985–1992 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Watson, A. D. et al. Structural identification of a novel proinflammatory epoxyisoprostane phospholipid in mildly oxidized low density lipoprotein. J. Biol. Chem. 274, 24787–24798 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Betjes, M. G. et al. Immuno-effector characteristics of peritoneal cells during CAPD treatment: a longitudinal study. Kidney Int. 43, 641–648 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Betjes, M. G. et al. Analysis of the peritoneal cellular immune system during CAPD shortly before a clinical peritonitis. Nephrol. Dial. Transplant. 9, 684–692 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Zemel, D. et al. Analysis of inflammatory mediators and peritoneal permeability to macromolecules shortly before the onset of overt peritonitis in patients treated with CAPD. Perit. Dial. Int. 15, 134–141 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Ulrich, C., Heine, G. H., Gerhart, M. K., Kohler, H. & Girndt, M. Proinflammatory CD14+CD16+ monocytes are associated with subclinical atherosclerosis in renal transplant patients. Am. J. Transplant. 8, 103–110 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Steinman, R. M. & Idoyaga, J. Features of the dendritic cell lineage. Immunol. Rev. 234, 5–17 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Mettang, T. et al. Epidermal Langerhans cells in uremic patients on hemodialysis or continuous ambulatory peritoneal dialysis. Nephron 65, 278–283 (1993).

    Article  CAS  PubMed  Google Scholar 

  89. Verkade, M. A. et al. Functional impairment of monocyte-derived dendritic cells in patients with severe chronic kidney disease. Nephrol. Dial. Transplant. 22, 128–138 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Verkade M. A., van Druningen, C. J., Op de Hoek, C. T., Weimar, W. & Betjes, M. G. Decreased antigen-specific T-cell proliferation by moDC among hepatitis B vaccine non-responders on haemodialysis. Clin. Exp. Med. 7, 65–71 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Meuer, S. C., Hauer, M., Kurz, P., Meyer zum Buschenfelde, K. H. & Kohler, H. Selective blockade of the antigen-receptor-mediated pathway of T cell activation in patients with impaired primary immune responses. J. Clin. Invest. 80, 743–749 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lim, W. H., Kireta, S., Thomson, A. W., Russ, G. R. & Coates, P. T. Renal transplantation reverses functional deficiencies in circulating dendritic cell subsets in chronic renal failure patients. Transplantation 81, 160–168 (2006).

    Article  PubMed  Google Scholar 

  93. Hesselink, D. A. et al. The effects of chronic kidney disease and renal replacement therapy on circulating dendritic cells. Nephrol. Dial. Transplant. 20, 1868–1873 (2005).

    Article  PubMed  Google Scholar 

  94. Agrawal, S., Gollapudi, P., Elahimehr, R., Pahl, M. V. & Vaziri, N. D. Effects of end-stage renal disease and haemodialysis on dendritic cell subsets and basal and LPS-stimulated cytokine production. Nephrol. Dial. Transplant. 25, 737–746 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Lim, W. H., Kireta, S., Russ, G. R. & Coates, P. T. Uremia impairs blood dendritic cell function in hemodialysis patients. Kidney Int. 71, 1122–1131 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Betjes, M. G. et al. Antigen-presenting capacity of macrophages and dendritic cells in the peritoneal cavity of patients treated with peritoneal dialysis. Clin. Exp. Immunol. 94, 377–384 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Girndt, M., Pietsch, M. & Kohler, H. Tetanus immunization and its association to hepatitis B vaccination in patients with chronic renal failure. Am. J. Kidney Dis. 26, 454–460 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Dobler, C. C., McDonald, S. P. & Marks, G. B. Risk of tuberculosis in dialysis patients: a nationwide cohort study. PLoS ONE 6, e29563 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Vajdic, C. M. et al. Cancer incidence before and after kidney transplantation. JAMA 296, 2823–2831 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Womer, K. L. et al. Dendritic cell deficiency associated with development of BK viremia and nephropathy in renal transplant recipients. Transplantation 89, 115–123 (2010).

    Article  PubMed  Google Scholar 

  101. Descamps-Latscha, B. & Chatenoud, L. T cells and B cells in chronic renal failure. Semin. Nephrol. 16, 183–191 (1996).

    CAS  PubMed  Google Scholar 

  102. Litjens N. H., van Druningen, C. J. & Betjes, M. G. Progressive loss of renal function is associated with activation and depletion of naive T lymphocytes. Clin. Immunol. 118, 83–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Yoon, J. W., Gollapudi, S., Pahl, M. V. & Vaziri, N. D. Naive and central memory T-cell lymphopenia in end-stage renal disease. Kidney Int. 70, 371–376 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Brinkkoetter, P. T. et al. Altered CD46-mediated T cell co-stimulation in haemodialysis patients. Clin. Exp. Immunol. 139, 534–541 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Betjes, M. G., Meijers, R. W., de Wit, E. A., Weimar, W. & Litjens, N. H. Terminally differentiated CD8+ Temra cells are associated with the risk for acute kidney allograft rejection. Transplantation 94, 63–69 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Yadav, A. K. & Jha, V. CD4+CD28null cells are expanded and exhibit a cytolytic profile in end-stage renal disease patients on peritoneal dialysis. Nephrol. Dial. Transplant. 26, 1689–1694 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Betjes, M. G., Meijers R. W., de Wit, L. E. & Litjens, N. H. A killer on the road: circulating CD4+CD28null T cells as cardiovascular risk factor in ESRD patients. J. Nephrol. 25, 183–191 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Betjes, M. G., Weimar, W. & Litjens, N. H. CMV seropositivity determines epoetin dose and hemoglobin levels in patients with CKD. J. Am. Soc. Nephrol. 20, 2661–2666 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Betjes M. G., de Wit, E. E., Weimar, W. & Litjens, N. H. Circulating pro-inflammatory CD4+CD28null T cells are independently associated with cardiovascular disease in ESRD patients. Nephrol. Dial. Transplant. 25, 3640–3646 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Meier, P., Dayer, E., Ronco, P. & Blanc, E. Dysregulation of IL-2/IL-2R system alters proliferation of early activated CD4+ T cell subset in patients with end-stage renal failure. Clin. Nephrol. 63, 8–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Litjens, N. H., Huisman, M., van den Dorpel, M. & Betjes, M. G. Impaired immune responses and antigen-specific memory CD4+ T cells in hemodialysis patients. J. Am. Soc. Nephrol. 19, 1483–1490 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Litjens, N. H. et al. IL-2 producing memory CD4+ T lymphocytes are closely associated with the generation of IgG-secreting plasma cells. J. Immunol. 181, 3665–3673 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Kruger, S., Muller-Steinhardt, M., Kirchner, H. & Kreft, B. A 5-year follow-up on antibody response after diphtheria and tetanus vaccination in hemodialysis patients. Am. J. Kidney Dis. 38, 1264–1270 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Tsouchnikas, I. et al. Loss of hepatitis B immunity in hemodialysis patients acquired either naturally or after vaccination. Clin. Nephrol. 68, 228–234 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Charest, A. F., Grand'Maison, A., McDougall, J. & Goldstein, M. B. Evolution of naturally acquired hepatitis B immunity in the long-term hemodialysis population. Am. J. Kidney Dis. 42, 1193–1199 (2003).

    Article  PubMed  Google Scholar 

  116. Calarota, S. A. et al. Kinetics of T-lymphocyte subsets and post-transplant opportunistic infections in heart and kidney transplant recipients. Transplantation 93, 112–119 (2012).

    Article  PubMed  Google Scholar 

  117. Thibaudin, D., Alamartine, E., Mariat, C., Absi, L. & Berthoux, F. Long-term kinetic of T-lymphocyte subsets in kidney-transplant recipients: influence of anti-T-cell antibodies and association with post-transplant malignancies. Transplantation 80, 1514–1517 (2005).

    Article  PubMed  Google Scholar 

  118. George, J. Mechanisms of disease: the evolving role of regulatory T cells in atherosclerosis. Nat. Clin. Pract. Cardiovasc. Med. 5, 531–540 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Hendrikx, T. K. et al. End-stage renal failure and regulatory activities of CD4+CD25bright+FoxP3+ T-cells. Nephrol. Dial. Transplant. 24, 1969–1978 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Berglund, D. et al. Isolation, expansion and functional assessment of CD4+CD25+FoxP3+ regulatory T cells and Tr1 cells from uremic patients awaiting kidney transplantation. Transpl. Immunol. 26, 27–33 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Pahl, M. V. et al. Effect of end-stage renal disease on B-lymphocyte subpopulations, IL-7, BAFF and BAFF receptor expression. Nephrol. Dial. Transplant. 25, 205–212 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Fernandez-Fresnedo, G. et al. B lymphopenia in uremia is related to an accelerated in vitro apoptosis and dysregulation of Bcl-2. Nephrol. Dial. Transplant. 15, 502–510 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Bouts, A. H. et al. Immunoglobulins in chronic renal failure of childhood: effects of dialysis modalities. Kidney Int. 58, 629–637 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Betjes, M. G., Litjens, N. H. & Zietse, R. Seropositivity for cytomegalovirus in patients with end-stage renal disease is strongly associated with atherosclerotic disease. Nephrol. Dial. Transplant. 22, 3298–3303 (2007).

    Article  PubMed  Google Scholar 

  125. Beaman, M., Michael, J., MacLennan, I. C. & Adu, D. T-cell-independent and T-cell-dependent antibody responses in patients with chronic renal failure. Nephrol. Dial. Transplant. 4, 216–221 (1989).

    Article  CAS  PubMed  Google Scholar 

  126. Chen, J. et al. Toll-like receptor 4 regulates early endothelial activation during ischemic acute kidney injury. Kidney Int. 79, 288–299 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Vesosky, B., Flaherty, D. K., Rottinghaus, E. K., Beamer, G. L. & Turner, J. Age dependent increase in early resistance of mice to Mycobacterium tuberculosis is associated with an increase in CD8 T cells that are capable of antigen independent IFN-γ production. Exp. Gerontol. 41, 1185–1194 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Sportes, C. et al. Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J. Exp. Med. 205, 1701–1714 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Raskova, J., Czerwinski, D. K., Shea, S. M. & Raska, K. Jr. Cellular immunity and lymphocyte populations in developing uremia in the rat. J. Exp. Pathol. 2, 229–245 (1986).

    CAS  PubMed  Google Scholar 

  130. McKay, D. & Jameson, J. Kidney transplantation and the ageing immune system. Nat. Rev. Nephrol. 8, 700–708 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Merino, A. et al. Senescent CD14+CD16+ monocytes exhibit proinflammatory and proatherosclerotic activity. J. Immunol. 186, 1809–1815 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Franceschi, C. et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 128, 92–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Meijers, R. W. et al. Uremia causes premature ageing of the T cell compartment in end-stage renal disease patients. Immun. Ageing 9, 19 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Trzonkowski, P. et al. Immunosenescence increases the rate of acceptance of kidney allotransplants in elderly recipients through exhaustion of CD4+ T-cells. Mech. Ageing Dev. 131, 96–104 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Simmons, E. M. et al. Effect of renal transplantation on biomarkers of inflammation and oxidative stress in end-stage renal disease patients. Transplantation 79, 914–919 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Cho, R. H., Sieburg, H. B. & Muller-Sieburg, C. E. A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood 111, 5553–5561 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Muller-Sieburg, C. E., Sieburg, H. B., Bernitz, J. M. & Cattarossi, G. Stem cell heterogeneity: implications for aging and regenerative medicine. Blood 119, 3900–3907 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Roeder, I. et al. Characterization and quantification of clonal heterogeneity among hematopoietic stem cells: a model-based approach. Blood 112, 4874–4883 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chambers, S. M. et al. Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol. 5, e201 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Zawada, A. M. et al. SuperTAG methylation-specific digital karyotyping (SMSDK) reveals uremia induced epigenetic dysregulation of atherosclerosis-related genes. Circ. Cardiovasc. Genet. 5, 611–620 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

M. G. H. Betjes has received a Kolff Senior Clinical Research Grant (KSPB 10.012) from the Dutch Kidney Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betjes, M. Immune cell dysfunction and inflammation in end-stage renal disease. Nat Rev Nephrol 9, 255–265 (2013). https://doi.org/10.1038/nrneph.2013.44

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.44

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing