Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lithium nephrotoxicity revisited

Abstract

Lithium is widely used to treat bipolar disorder. Nephrogenic diabetes insipidus (NDI) is the most common adverse effect of lithium and occurs in up to 40% of patients. Renal lithium toxicity is characterized by increased water and sodium diuresis, which can result in mild dehydration, hyperchloremic metabolic acidosis and renal tubular acidosis. The concentrating defect and natriuretic effect develop within weeks of lithium initiation. After years of lithium exposure, full-blown nephropathy can develop, which is characterized by decreased glomerular filtration rate and chronic kidney disease. Here, we review the clinical and experimental evidence that the principal cell of the collecting duct is the primary target for the nephrotoxic effects of lithium, and that these effects are characterized by dysregulation of aquaporin 2. This dysregulation is believed to occur as a result of the accumulation of cytotoxic concentrations of lithium, which enters via the epithelial sodium channel (ENaC) on the apical membrane and leads to the inhibition of signaling pathways that involve glycogen synthase kinase type 3β. Experimental and clinical evidence demonstrates the efficacy of the ENaC inhibitor amiloride for the treatment of lithium-induced NDI; however, whether this agent can prevent the long-term adverse effects of lithium is not yet known.

Key Points

  • Nephrogenic diabetes insipidus (NDI) is a very common adverse effect of lithium therapy in psychiatric patients

  • Chronic kidney disease is a frequent and serious adverse effect of long-term lithium exposure

  • The principal cells of the collecting duct are the primary target for the cytotoxic effects of lithium, which are thought to involve inhibition of signaling pathways that involve glycogen synthase kinase type 3β

  • The epithelial sodium channel (ENaC) is the primary site of entry for lithium into the collecting duct; therefore, blockade of the ENaC by amiloride might prevent the nephrotoxic effects of lithium

  • Amiloride should be considered the treatment of choice for lithium-induced NDI and should be investigated for the prevention of lithium-induced nephropathy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transport of sodium, potassium and water in a principal cell of the cortical collecting duct under physiological conditions and in the presence of lithium.
Figure 2: Renal biopsy specimens from a patient with lithium-induced nephropathy.

Similar content being viewed by others

References

  1. Belmaker, R. H. Bipolar disorder. N. Engl. J. Med. 351, 476–486 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Muller-Oerlinghausen, B., Berghofer, A. & Bauer, M. Bipolar disorder. Lancet 359, 241–247 (2002).

    Article  PubMed  Google Scholar 

  3. Freeman, M. P. & Freeman, S. A. Lithium: clinical considerations in internal medicine. Am. J. Med. 119, 478–481 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Fornai, F. et al. Lithium delays progression of amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 105, 2052–2057 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Martinez, A. & Perez, D. I. GSK-3 inhibitors: a ray of hope for the treatment of Alzheimer's disease? J. Alzheimers Dis. 15, 181–191 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Boton, R., Gaviria, M. & Batlle, D. C. Prevalence, pathogenesis, and treatment of renal dysfunction associated with chronic lithium therapy. Am. J. Kidney Dis. 10, 329–345 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Bendz, H., Sjodin, I. & Aurell, M. Renal function on and off lithium in patients treated with lithium for 15 years or more. A controlled, prospective lithium-withdrawal study. Nephrol. Dial. Transplant. 11, 457–460 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Presne, C. et al. Lithium-induced nephropathy: rate of progression and prognostic factors. Kidney Int. 64, 585–592 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Stone, K. A. Lithium-induced nephrogenic diabetes insipidus. J. Am. Board Fam. Pract. 12, 43–47 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Marples, D., Christensen, S., Christensen, E. I., Ottosen, P. D. & Nielsen, S. Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla. J. Clin. Invest. 95, 1838–1845 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Laursen, U. H. et al. Changes of rat kidney AQP2 and Na, K-ATPase mRNA expression in lithium-induced nephrogenic diabetes insipidus. Nephron Exp. Nephrol. 97, e1–e16 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Kim, Y. H. et al. Altered expression of renal acid–base transporters in rats with lithium-induced NDI. Am. J. Physiol. Renal Physiol. 285, F1244–F1257 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Christensen, B. M. et al. Changes in cellular composition of kidney collecting duct cells in rats with lithium-induced NDI. Am. J. Physiol. Cell Physiol. 286, C952–C964 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Christensen, B. M., Kim, Y. H., Kwon, T. H. & Nielsen, S. Lithium treatment induces a marked proliferation of primarily principal cells in rat kidney inner medullary collecting duct. Am. J. Physiol. Renal Physiol. 291, F39–F48 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Nielsen, J. et al. Segment-specific ENaC downregulation in kidney of rats with lithium-induced NDI. Am. J. Physiol. Renal Physiol. 285, F1198–F1209 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Nielsen, J., Kwon, T. H., Frokiaer, J., Knepper, M. A. & Nielsen, S. Lithium-induced NDI in rats is associated with loss of α-ENaC regulation by aldosterone in CCD. Am. J. Physiol. Renal Physiol. 290, F1222–F1233 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Rojek, A. et al. Altered expression of selected genes in kidney of rats with lithium-induced NDI. Am. J. Physiol. Renal Physiol. 288, F1276–F1289 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Rao, R. et al. Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria. Am. J. Physiol. Renal Physiol. 288, F642–F649 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Kotnik, P. et al. Altered expression of COX-1, COX-2, and mPGES in rats with nephrogenic and central diabetes insipidus. Am. J. Physiol. Renal Physiol. 288, F1053–F1068 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Li, Y., Shaw, S., Kamsteeg, E. J., Vandewalle, A. & Deen, P. M. Development of lithium-induced nephrogenic diabetes insipidus is dissociated from adenylyl cyclase activity. J. Am. Soc. Nephrol. 17, 1063–1072 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Bichet, D. G. Lithium, cyclic AMP signaling, A-kinase anchoring proteins, and aquaporin-2. J. Am. Soc. Nephrol. 17, 920–922 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Nielsen, J. et al. Proteomic analysis of lithium-induced nephrogenic diabetes insipidus: mechanisms for aquaporin 2 down-regulation and cellular proliferation. Proc. Natl Acad. Sci. USA 105, 3634–3639 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Cohen, P. & Frame, S. The renaissance of GSK3. Nat. Rev. Mol. Cell Biol. 2, 769–776 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Gould, T. D. & Manji, H. K. Glycogen synthase kinase-3: a putative molecular target for lithium mimetic drugs. Neuropsychopharmacology 30, 1223–1237 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. O'Brien, W. T. et al. Glycogen synthase kinase-3β haploinsufficiency mimics the behavioral and molecular effects of lithium. J. Neurosci. 24, 6791–6798 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Christensen, B. M., Loffing, J., Hummler, E. & Rossier, B. C. Collecting duct-specific gene inactivation of α ENaC protects mice against lithium-induced nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 17, 295A (2006).

    Google Scholar 

  27. Bedford, J. J. et al. Amiloride restores renal medullary osmolytes in lithium-induced nephrogenic diabetes insipidus. Am. J. Physiol. Renal Physiol. 294, F812–F820 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Bedford, J. J. et al. Lithium-induced nephrogenic diabetes insipidus: renal effects of amiloride. Clin. J. Am. Soc. Nephrol. 3, 1324–1331 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Batlle, D. C., von Riotte, A. B., Gaviria, M. & Grupp, M. Amelioration of polyuria by amiloride in patients receiving long-term lithium therapy. N. Engl. J. Med. 312, 408–414 (1985).

    Article  CAS  PubMed  Google Scholar 

  30. Leverich, G. S. et al. The poor prognosis of childhood-onset bipolar disorder. J. Pediatr. 150, 485–490 (2007).

    Article  PubMed  Google Scholar 

  31. Bendz, H., Aurell, M., Balldin, J., Mathe, A. A. & Sjodin, I. Kidney damage in long-term lithium patients: a cross-sectional study of patients with 15 years or more on lithium. Nephrol. Dial. Transplant. 9, 1250–1254 (1994).

    CAS  PubMed  Google Scholar 

  32. Bendz, H., Andersch, S. & Aurell, M. Kidney function in an unselected lithium population. A cross-sectional study. Acta Psychiatr. Scand. 68, 325–334 (1983).

    Article  CAS  PubMed  Google Scholar 

  33. Lepkifker, E. et al. Renal insufficiency in long-term lithium treatment. J. Clin. Psychiatry 65, 850–856 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Bassilios, N. et al. Monitoring of glomerular filtration rate in lithium-treated outpatients—an ambulatory laboratory database surveillance. Nephrol. Dial. Transplant. 23, 562–565 (2008).

    Article  PubMed  Google Scholar 

  35. Hestbech, J., Hansen, H. E., Amdisen, A. & Olsen, S. Chronic renal lesions following long-term treatment with lithium. Kidney Int. 12, 205–213 (1977).

    Article  CAS  PubMed  Google Scholar 

  36. Markowitz, G. S. et al. Lithium nephrotoxicity: a progressive combined glomerular and tubulointerstitial nephropathy. J. Am. Soc. Nephrol. 11, 1439–1448 (2000).

    CAS  PubMed  Google Scholar 

  37. Farres, M. T. et al. Chronic lithium nephropathy: MR imaging for diagnosis. Radiology 229, 570–574 (2003).

    Article  PubMed  Google Scholar 

  38. Thoma, C. R., Frew, I. J. & Krek, W. The VHL tumor suppressor: riding tandem with GSK3β in primary cilium maintenance. Cell Cycle 6, 1809–1813 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Quiroz, J. A., Gould, T. D. & Manji, H. K. Molecular effects of lithium. Mol. Interv. 4, 259–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Alexander, M. P., Farag, Y. M., Mittal, B. V., Rennke, H. G. & Singh, A. K. Lithium toxicity: a double-edged sword. Kidney Int. 73, 233–237 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Bauer, M. Review: lithium reduces relapse rates in people with bipolar disorder. Evid. Based Ment. Health 7, 72 (2004).

    Article  PubMed  Google Scholar 

  42. Gonzalez-Pinto, A., Aldama, A., Mosquera, F. & Gonzalez Gomez, C. Epidemiology, diagnosis and management of mixed mania. CNS Drugs 21, 611–626 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Garfinkel, P. E., Ezrin, C. & Stancer, H. C. Hypothyroidism and hyperparathyroidism associated with lithium. Lancet 2, 331–332 (1973).

    Article  CAS  PubMed  Google Scholar 

  44. Christiansen, C., Baastrup, P. C., Lindgreen, P. & Transbol, I. Endocrine effects of lithium: II. 'Primary' hyperparathyroidism. Acta Endocrinol. (Copenh.) 88, 528–534 (1978).

    Article  CAS  Google Scholar 

  45. Bendz, H., Sjodin, I., Toss, G. & Berglund, K. Hyperparathyroidism and long-term lithium therapy—a cross-sectional study and the effect of lithium withdrawal. J. Intern. Med. 240, 357–365 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Hundley, J. C., Woodrum, D. T., Saunders, B. D., Doherty, G. M. & Gauger, P. G. Revisiting lithium-associated hyperparathyroidism in the era of intraoperative parathyroid hormone monitoring. Surgery 138, 1027–1031 (2005).

    Article  PubMed  Google Scholar 

  47. Sloand, J. A. & Shelly, M. A. Normalization of lithium-induced hypercalcemia and hyperparathyroidism with cinacalcet hydrochloride. Am. J. Kidney Dis. 48, 832–837 (2006).

    Article  PubMed  Google Scholar 

  48. Gregoor, P. S. & de Jong, G. M. Lithium hypercalcemia, hyperparathyroidism, and cinacalcet. Kidney Int. 71, 470 (2007).

    Article  PubMed  Google Scholar 

  49. Sajid-Crockett, S., Singer, F. R. & Hershman, J. M. Cinacalcet for the treatment of primary hyperparathyroidism. Metabolism 57, 517–521 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Shiraki, T., Kohno, K., Saito, D., Takayama, H. & Fujimoto, A. Complete atrioventricular block secondary to lithium therapy. Circ. J. 72, 847–849 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Darbar, D., Yang, T., Churchwell, K., Wilde, A. A. & Roden, D. M. Unmasking of Brugada syndrome by lithium. Circulation 112, 1527–1531 (2005).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Désirée Lie, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Grünfeld.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grünfeld, JP., Rossier, B. Lithium nephrotoxicity revisited. Nat Rev Nephrol 5, 270–276 (2009). https://doi.org/10.1038/nrneph.2009.43

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2009.43

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing