Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes

Key Points

  • All currents in the brain superimpose to yield an 'electric field' at any given point in space. The current sources and sinks form dipoles or higher-order n-poles.

  • Extracellular currents arise from many sources, including synaptic currents, fast action potentials and their afterpotentials, calcium spikes and voltage-dependent intrinsic currents.

  • The magnitude of extracellular currents depends critically on two factors: the cytoarchitectural organization of a network and the temporal synchrony of the various current sinks and sources.

  • Depending on the recording method, neuroscientists distinguish between electroencephalogram (EEG), electrocorticogram (ECoG) and local field potential (LFP; also known as micro-, depth or intracranial EEG), although all of these measures refer to the same biophysical process.

  • The electric field is the force 'felt' by an electric charge, and can be transmitted through brain volume. The extent of volume conduction depends on the relationships between the current dipole and the features of the conductive medium.

  • High-density sampling of the extracellular field with contemporary methods enables the calculation of current source density, and therefore the localization of current sinks and sources.

  • The voltage gradients generated by highly synchronous activity of neuronal groups can affect the transmembrane potential of the member neurons and alter their excitability through ephaptic coupling.

  • Synchronous spiking of nearby neurons is the main source of the high-frequency components of the local field.

  • There is a discernable relationship between the temporal evolution of cell assemblies and the time-dependent changes of the spatially distributed currents. High-density, wide-band recordings of the local field can therefore provide access to both afferent inputs and the spiking output of neurons.

Abstract

Neuronal activity in the brain gives rise to transmembrane currents that can be measured in the extracellular medium. Although the major contributor of the extracellular signal is the synaptic transmembrane current, other sources — including Na+ and Ca2+ spikes, ionic fluxes through voltage- and ligand-gated channels, and intrinsic membrane oscillations — can substantially shape the extracellular field. High-density recordings of field activity in animals and subdural grid recordings in humans, combined with recently developed data processing tools and computational modelling, can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase our understanding of how these processes contribute to the extracellular signal.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Extracellular traces using different recording methods are fundamentally similar.
Figure 2: Excitatory and inhibitory postsynaptic currents are the most ubiquitous contributors to Ve.
Figure 3: Non-synaptic contributions to the LFP.
Figure 4: Identifying current sources.
Figure 5: Spike contribution to the LFP.
Figure 6: Spikes are embedded in unique synapsembles and spatially distributed LFP.

Similar content being viewed by others

References

  1. Petsche, H., Pockberger, H. & Rappelsberger, P. On the search for the sources of the electroencephalogram. Neuroscience 11, 1–27 (1984). An excellent review of the sources of the local field.

    Article  CAS  PubMed  Google Scholar 

  2. Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J. & Lounasmaa, O. V. Magnetoencephalography — theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65, 413–497 (1993). An exhaustive review of and excellent tutorial on the theory and methods of MEG.

    Article  Google Scholar 

  3. Bokil, H., Andrews, P., Kulkarni, J. E., Mehta, S. & Mitra, P. P. Chronux: a platform for analyzing neural signals. J. Neurosci. Methods 192, 146–151 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Crone, N. E., Korzeniewska, A. & Franaszczuk, P. J. Cortical gamma responses: searching high and low. Int. J. Psychophysiol. 79, 9–15 (2011).

    Article  PubMed  Google Scholar 

  5. Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Uhhaas, P. J. & Singer, W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52, 155–168 (2006).

    Article  CAS  Google Scholar 

  7. Elul, R. The genesis of the EEG. Int. Rev. Neurobiol. 15, 227–272 (1971).

    Article  CAS  PubMed  Google Scholar 

  8. Pfurtscheller, G. & Lopes da Silva, F. H. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110, 1842–1857 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Creutzfeldt, O. D., Watanabe, S. & Lux, H. D. Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and epicortical stimulation. Electroencephalogr. Clin. Neurophysiol. 20, 1–18 (1966).

    Article  CAS  PubMed  Google Scholar 

  10. Niedermayer, E. & Lopes da Silva, F. H. Electroencephalography: Basic Principles, Clinical Applications, And Related Fields 5th edn (Wolters Kluwer, 2005). A classical and comprehensive text, covering both basic and clinical aspects of EEG.

    Google Scholar 

  11. Freeman, W. J. Origin, structure, and role of background EEG activity. Part 1. Analytic amplitude. Clin. Neurophysiol. 115, 2077–2088 (2004).

    Article  PubMed  Google Scholar 

  12. Freeman, W. J. Origin, structure, and role of background EEG activity. Part 2. Analytic phase. Clin. Neurophysiol. 115, 2089–2107 (2004).

    Article  PubMed  Google Scholar 

  13. Buzsáki, G. Rhythms Of The Brain (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  14. Olejniczak, P. Neurophysiologic basis of EEG. J. Clin. Neurophysiol. 23, 186–189 (2006).

    Article  PubMed  Google Scholar 

  15. Destexhe, A. & Sejnowski, T. J. Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiol. Rev. 83, 1401–1453 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Nunez, P. & Srinivasan, R. Electric Fields Of The Brain (Oxford Univ. Press, 2006). A comprehensive review of the physical attributes of the EEG.

    Book  Google Scholar 

  17. Okada, Y. C., Wu, J. & Kyuhou, S. Genesis of MEG signals in a mammalian CNS structure. Electroencephalogr. Clin. Neurophysiol. 103, 474–485 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Nadasdy, Z., Csicsvari, J., Penttonen, M. & Buzsáki, G. in Neuronal Ensembles: Strategies For Recording And Decoding (eds Eichenbaum, H. & Davis, J. L.) 17–55 (Wiley-Liss, 1998).

    Google Scholar 

  19. Steriade, M. Corticothalamic resonance, states of vigilance and mentation. Neuroscience 101, 243–276, (2000).

    Article  CAS  PubMed  Google Scholar 

  20. He, B. J., Snyder, A. Z., Zempel, J. M., Smyth, M. D. & Raichle, M. E. Electrophysiological correlates of the brain's intrinsic large-scale functional architecture. Proc. Natl Acad. Sci. USA 105, 16039–16044 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Srinivasan, R., Winter, W. R. & Nunez, P. L. Source analysis of EEG oscillations using high-resolution EEG and MEG. Prog. Brain Res. 159, 29–42 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Buzsáki, G., Traub, R. D. & Pedley, T. A. in Current Practice of Clinical Encephalography (eds Ebersole, J. S. & Pedley, T. A.) 1–11 (Lippincott-Williams and Wilkins, 2003).

    Google Scholar 

  23. Logothetis, N. K. & Wandell, B. A. Interpreting the BOLD signal. Annu. Rev. Physiol. 66, 735–769 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Logothetis, N. K., Kayser, C. & Oeltermann, A. In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron 55, 809–823 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Riedner, B. A., Hulse, B. K., Murphy, M. J., Ferrarelli, F. & Tononi, G. Temporal dynamics of cortical sources underlying spontaneous and peripherally evoked slow waves. Prog. Brain Res. 193, 201–218 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bartos, M., Vida, I. & Jonas, P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nature Rev. Neurosci. 8, 45–56 (2007).

    Article  CAS  Google Scholar 

  27. Koch, C. Biophysics Of Computation (Oxford Univ. Press, 1999).

    Google Scholar 

  28. Trevelyan, A. J. The direct relationship between inhibitory currents and local field potentials. J. Neurosci. 29, 15299–15307 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Glickfeld, L. L., Roberts, J. D., Somogyi, P. & Scanziani, M. Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis. Nature Neurosci. 12, 21–23 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Bazelot, M., Dinocourt, C., Cohen, I. & Miles, R. Unitary inhibitory field potentials in the CA3 region of rat hippocampus. J. Physiol. 588, 2077–2090 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andersen, P., Bliss, T. V. & Skrede, K. K. Unit analysis of hippocampal polulation spikes. Exp. Brain Res. 13, 208–221 (1971).

    CAS  PubMed  Google Scholar 

  32. Wong, R. K., Prince, D. A. & Basbaum, A. I. Intradendritic recordings from hippocampal neurons. Proc. Natl Acad. Sci. USA 76, 986–990 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hirsch, J. A., Alonso, J.-M. & Reid, R. C. Visually evoked calcium action potentials in cat striate cortex. Nature 378, 612–616 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Schiller, J., Major, G., Koester, H. J. & Schiller, Y. NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404, 285–289 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Polsky, A., Mel, B. W. & Schiller, J. Computational subunits in thin dendrites of pyramidal cells. Nature Neurosci. 7, 621–627 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Larkum, M. E., Nevian, T., Sandler, M., Polsky, A. & Schiller, J. Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325, 756–760 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Stuart, G., Spruston, N. & Hausser, M. Dendrites (Oxford Univ. Press, 2008).

    Google Scholar 

  38. Schiller, J., Schiller, Y., Stuart, G. & Sakmann, B. Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J. Physiol. 505, 605–616 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Llinas, R. R. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242, 1654–1664 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Kamondi, A., Acsady, L. & Buzsáki, G. Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus. J. Neurosci. 18, 3919–3928 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Storm, J. F. Temporal integration by a slowly inactivating K+ current in hippocampal neurons. Nature 336, 379–381 (1988).

    Article  CAS  PubMed  Google Scholar 

  42. Silva, L. R., Amitai, Y. & Connors, B. W. Intrinsic oscillations of neocortex generated by layer five pyramidal neurons. Science 251, 432–435 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Leung, L. S. & Yim, C. Y. Intrinsic membrane potential oscillations in hippocampal neurons in vitro. Brain Res. 553, 261–274 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Freund, T. F. & Buzsáki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Cardin, J. A. et al. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nature Protoc. 5, 247–254 (2010).

    Article  CAS  Google Scholar 

  46. Pike, F. G. et al. Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents. J. Physiol. 529, 205–213 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hotson, J. R. & Prince, D. A. A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons. J. Neurophysiol. 43, 409–419 (1980).

    Article  CAS  PubMed  Google Scholar 

  48. Buzsáki, G. et al. Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J. Neurosci. 8, 4007–4026 (1988).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ylinen, A. et al. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J. Neurosci. 15, 30–46 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kornhuber, H. H., Becker, W., Taumer, R., Hoehne, O. & Iwase, K. Cerebral potentials accompanying voluntary movements in man: readiness potential and reafferent potentials. Electroencephalogr. Clin. Neurophysiol. 26, 439 (1969).

    CAS  PubMed  Google Scholar 

  51. Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, W. C. & Winter, A. L. Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain. Nature 203, 380–384 (1964).

    Article  CAS  PubMed  Google Scholar 

  52. Steriade, M., Nunez, A. & Amzica, F. A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13, 3252–3265 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sanchez-Vives, M. V. & McCormick, D. A. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neurosci. 3, 1027–1034 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Jasper, H. & Stefanis, C. Intracellular oscillatory rhythms in pyramidal tract neurones in the cat. Electroencephalogr. Clin. Neurophysiol. 18, 541–553 (1965).

    Article  CAS  PubMed  Google Scholar 

  55. Rappelsberger, P., Pockberger, H. & Petsche, H. The contribution of the cortical layers to the generation of the EEG: field potential and current source density analyses in the rabbit's visual cortex. Electroencephalogr. Clin. Neurophysiol. 53, 254–269 (1982).

    Article  CAS  PubMed  Google Scholar 

  56. Sirota, A. & Buzsáki, G. Interaction between neocortical and hippocampal networks via slow oscillations. Thalamus Relat. Syst. 3, 245–259 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Luthi, A. & McCormick, D. A. H-current: properties of a neuronal and network pacemaker. Neuron 21, 9–12 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Steriade, M. & Buzsáki, G. in Brain Cholinergic System (eds Steriade, M. & Biesold, D.) 3–64 (Oxford Univ. Press, 1989).

    Google Scholar 

  59. Bennett, M. V. & Zukin, R. S. Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41, 495–511 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Cruikshank, S. J., Landisman, C. E., Mancilla, J. G. & Connors, B. W. Connexon connexions in the thalamocortical system. Prog. Brain Res. 149, 41–57 (2005).

    Article  PubMed  Google Scholar 

  61. Katsumaru, H., Kosaka, T., Heizmann, C. W. & Hama, K. Gap-junctions on GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus (Ca1 region). Exp. Brain Res. 72, 363–370 (1988).

    CAS  PubMed  Google Scholar 

  62. Barth, D. S. Submillisecond synchronization of fast electrical oscillations in neocortex. J. Neurosci. 23, 2502–2510 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Traub, R. D., Bibbig, A., LeBeau, F. E., Buhl, E. H. & Whittington, M. A. Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro. Annu. Rev. Neurosci. 27, 247–278 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. He, B. J., Snyder, A. Z., Zempel, J. M., Smyth, M. D. & Raichle, M. E. Electrophysiological correlates of the brain's intrinsic large-scale functional architecture. Proc. Natl Acad. Sci. USA 105, 16039–16044 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kang, J., Jiang, L., Goldman, S. A. & Nedergaard, M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nature Neurosci. 1, 683–692 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Vanhatalo, S. et al. Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. Proc. Natl Acad. Sci. USA 101, 5053–5057 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hughes, S. W., Lorincz, M. L., Parri, H. R. & Crunelli, V. Infraslow (<0.1 Hz) oscillations in thalamic relay nuclei basic mechanisms and significance to health and disease states. Prog. Brain Res. 193, 145–162 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Poskanzer, K. E. & Yuste, R. Astrocytic regulation of cortical UP states. Proc. Natl Acad. Sci. USA 108, 18453–18458 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chan, C. Y. & Nicholson, C. Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. J. Physiol. 371, 89–114 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Anastassiou, C. A., Montgomery, S. M., Barahona, M., Buzsáki, G. & Koch, C. The effect of spatially inhomogeneous extracellular electric fields on neurons. J. Neurosci. 30, 1925–1936 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Faber, D. S. & Korn, H. Electrical field effects: their relevance in central neural networks. Physiol. Rev. 69, 821–863 (1989).

    Article  CAS  PubMed  Google Scholar 

  72. Ozen, S. et al. Transcranial electric stimulation entrains cortical neuronal populations in rats. J. Neurosci. 30, 11476–11485 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Marshall, L., Helgadottir, H., Molle, M. & Born, J. Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–613 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Bikson, M. et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J. Physiol. 557, 175–190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Radman, T., Su, Y., An, J. H., Parra, L. C. & Bikson, M. Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. J. Neurosci. 27, 3030–3036 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Anastassiou, C. A., Perin, R., Markram, H. & Koch, C. Ephaptic coupling in cortical neurons. Nature Neurosci. 14, 217–223 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Jefferys, J. G. Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. Physiol. Rev. 75, 689–723 (1995). The most comprehensive text on the ephaptic effects in the brain to date.

    Article  CAS  PubMed  Google Scholar 

  78. McCormick, D. A. & Contreras, D. On the cellular and network bases of epileptic seizures. Annu. Rev. Physiol. 63, 815–846 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Yim, C. C., Krnjevic, K. & Dalkara, T. Ephaptically generated potentials in CA1 neurons of rat's hippocampus in situ. J. Neurophysiol. 56, 99–122 (1986).

    Article  CAS  PubMed  Google Scholar 

  80. Frohlich, F. & McCormick, D. A. Endogenous electric fields may guide neocortical network activity. Neuron 67, 129–143 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Deans, J. K., Powell, A. D. & Jefferys, J. G. Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. J. Physiol. 583, 555–565 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lorente de Nó, R. A study of nerve physiology. Studies from the Rockefeller Institute for Medical Research Part I, Vol. 131 (The Rockefeller Institute for Medical Research, 1947).

    Google Scholar 

  83. Linden, H., Pettersen, K. H. & Einevoll, G. T. Intrinsic dendritic filtering gives low-pass power spectra of local field potentials. J. Comput. Neurosci. 29, 423–444 (2010).

    Article  PubMed  Google Scholar 

  84. Linden, H. et al. Modeling the spatial reach of the LFP. Neuron 72, 859–872 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Amaral, D. & Lavenex, P. in The Hippocampus Book (eds Andersen, P. et al.) 37–114 (Oxford Univ. Press, 2007).

    Google Scholar 

  86. Buzsáki, G. Theta oscillations in the hippocampus. Neuron 33, 325–340 (2002).

    Article  PubMed  Google Scholar 

  87. Kahana, M. J., Seelig, D. & Madsen, J. R. Theta returns. Curr. Opin. Neurobiol. 11, 739–744 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Herculano-Houzel, S., Collins, C. E., Wong, P. & Kaas, J. H. Cellular scaling rules for primate brains. Proc. Natl Acad. Sci. USA 104, 3562–3567 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Buzsáki, G. et al. Hippocampal network patterns of activity in the mouse. Neuroscience 116, 201–211 (2003).

    Article  PubMed  Google Scholar 

  90. Buzsáki, G. in Electrical Activity of the Archicortex (eds Buzsáki, G. & Vanderwolf, C. H.) 143–167 (1985).

    Google Scholar 

  91. Graybiel, A. M. Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci. 31, 359–387 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Niedermeyer, E. The electrocerebellogram. Clin. EEG Neurosci. 35, 112–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Kandel, A. & Buzsáki, G. Cerebellar neuronal activity correlates with spike and wave EEG patterns in the rat. Epilepsy Res. 16, 1–9 (1993).

    Article  CAS  PubMed  Google Scholar 

  94. Milstein, J., Mormann, F., Fried, I. & Koch, C. Neuronal shot noise and Brownian 1/f2 behavior in the local field potential. PLoS ONE 4, e4338 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Miller, K. J., Sorensen, L. B., Ojemann, J. G. & den Nijs, M. Power-law scaling in the brain surface electric potential. PLoS Comput. Biol. 5, e1000609 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pritchard, W. S. The brain in fractal time: 1/f-like power spectrum scaling of the human electroencephalogram. Int. J. Neurosci. 66, 119–129 (1992). One of the first papers discussing the fractal nature of the EEG.

    Article  CAS  PubMed  Google Scholar 

  97. Bedard, C. & Destexhe, A. Macroscopic models of local field potentials and the apparent 1/f noise in brain activity. Biophys. J. 96, 2589–2603 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Manning, J. R., Jacobs, J., Fried, I. & Kahana, M. J. Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J. Neurosci. 29, 13613–13620 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gold, C., Henze, D. A., Koch, C. & Buzsáki, G. On the origin of the extracellular action potential waveform: A modeling study. J. Neurophysiol. 95, 3113–3128 (2006). The first simultaneous intra- and extracellular modelling of action potentials.

    Article  CAS  PubMed  Google Scholar 

  100. Pettersen, K. H., Hagen, E. & Einevoll, G. T. Estimation of population firing rates and current source densities from laminar electrode recordings. J. Comput. Neurosci. 24, 291–313 (2008).

    Article  PubMed  Google Scholar 

  101. Bernander, O., Douglas, R. J., Martin, K. A. C. & Koch, C. Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc. Natl Acad. Sci. USA 88, 11569–11573 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bazhenov, M., Lonjers, P., Skorheim, S., Bedard, C. & Dstexhe, A. Non-homogeneous extracellular resistivity affects the current-source density profiles of up-down state oscillations. Philos. Transact. A Math. Phys. Eng. Sci. 369, 3802–3819 (2011).

    Article  Google Scholar 

  103. Goto, T. et al. An evaluation of the conductivity profile in the somatosensory barrel cortex of Wistar rats. J. Neurophysiol. 104, 3388–3412 (2010).

    Article  PubMed  Google Scholar 

  104. Lakatos, P. et al. An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J. Neurophysiol. 94, 1904–1911 (2005).

    Article  PubMed  Google Scholar 

  105. Roopun, A. K. et al. Temporal interactions between cortical rhythms. Front. Neurosci. 2, 145–154 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bragin, A. et al. Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 15, 47–60 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chrobak, J. J. & Buzsáki, G. Gamma oscillations in the entorhinal cortex of the freely behaving rat. J. Neurosci. 18, 388–398 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Canolty, R. T. & Knight, R. T. The functional role of cross-frequency coupling. Trends Cogn. Sci. 14, 506–515 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Fell, J. & Axmacher, N. The role of phase synchronization in memory processes. Nature Rev. Neurosci. 12, 105–118 (2011).

    Article  CAS  Google Scholar 

  110. Schroeder, C. E. & Lakatos, P. Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci. 32, 9–18 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Belluscio, M. A., Mizuseki, K., Schmidt, R., Kempter, R. & Buzsáki, G. Cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. J. Neurosci. 32, 423–435 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kajikawa, Y. & Schroeder, C. E. How local is the local field potential? Neuron 72, 847–858 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nicholson, C. & Freeman, J. A. Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. J. Neurophysiol. 38, 356–368 (1975). A pioneering study of the physical basis of the extracellular currents.

    Article  CAS  PubMed  Google Scholar 

  114. Hoeltzell, P. B. & Dykes, R. W. Conductivity in the somatosensory cortex of the cat — evidence for cortical anisotropy. Brain Res. 177, 61–82 (1979).

    Article  CAS  PubMed  Google Scholar 

  115. Cobb, W. & Sears, T. A. A study of the transmission of potentials after hemispherectomy. Electroencephalogr. Clin. Neurophysiol. 12, 371–383 (1960).

    Article  CAS  PubMed  Google Scholar 

  116. Jewett, D. L. & Williston, J. S. Auditory-evoked far fields averaged from the scalp of humans. Brain 94, 681–696 (1971).

    Article  CAS  PubMed  Google Scholar 

  117. Sirota, A. et al. Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron 60, 683–697 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Alifanov, O. M. Solution of the inverse heat conduction problems by iterative methods. J. Eng. Physics (Russia) 26, 682–689 (1974).

    Google Scholar 

  119. Einevoll, G. T. et al. Laminar population analysis: estimating firing rates and evoked synaptic activity from multielectrode recordings in rat barrel cortex. J. Neurophysiol. 97, 2174–2190 (2007).

    Article  PubMed  Google Scholar 

  120. Li, X. & Ascoli, G. A. Effects of synaptic synchrony on the neuronal input-output relationship. Neural Comput. 20, 1717–1731 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Mitzdorf, U. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol. Rev. 65, 37–100 (1985). The most frequently cited text on the methods of CSD analysis.

    Article  CAS  PubMed  Google Scholar 

  122. Buzsáki, G., Czopf, J., Kondakor, I. & Kellenyi, L. Laminar distribution of hippocampal rhythmic slow activity (RSA) in the behaving rat: current-source density analysis, effects of urethane and atropine. Brain Res. 365, 125–137 (1986).

    Article  PubMed  Google Scholar 

  123. Klausberger, T. & Somogyi, P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321, 53–57 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rasch, M. J., Gretton, A., Murayama, Y., Maass, W. & Logothetis, N. K. Inferring spike trains from local field potentials. J. Neurophysiol. 99, 1461–1476 (2008).

    Article  PubMed  Google Scholar 

  125. Pettersen, K. H., Devor, A., Ulbert, I., Dale, A. M. & Einevoll, G. T. Current-source density estimation based on inversion of electrostatic forward solution: effects of finite extent of neuronal activity and conductivity discontinuities. J. Neurosci. Methods 154, 116–133 (2006).

    Article  PubMed  Google Scholar 

  126. Steriade, M. Neuronal Substrates Of Sleep And Epilepsy (Cambridge Univ. Press, 2003).

    Book  Google Scholar 

  127. Steriade, M., McCormick, D. A. & Sejnowski, T. J. Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679–685 (1993).

    Article  CAS  PubMed  Google Scholar 

  128. Castro-Alamancos, M. A. & Connors, B. W. Short-term plasticity of a thalamocortical pathway dynamically modulated by behavioral state. Science 272, 274–277 (1996).

    Article  CAS  PubMed  Google Scholar 

  129. Kandel, A. & Buzsáki, G. Cellular-synaptic generation of sleep spindles, spike-and-wave discharges, and evoked thalamocortical responses in the neocortex of the rat. J. Neurosci. 17, 6783–6797 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Buzsáki, G. Large-scale recording of neuronal ensembles. Nature Neurosci. 7, 446–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. McCormick, D. A. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog. Neurobiol. 39, 337–388 (1992).

    Article  CAS  PubMed  Google Scholar 

  133. Montgomery, S. M., Sirota, A. & Buzsáki, G. Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep. J. Neurosci. 28, 6731–6741 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gaona, C. M. et al. Nonuniform high-gamma (60–500 Hz) power changes dissociate cognitive task and anatomy in human cortex. J. Neurosci. 31, 2091–2100 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zanos, T. P., Mineault, P. J. & Pack, C. C. Removal of spurious correlations between spikes and local field potentials. J. Neurophysiol. 105, 474–486 (2011).

    Article  PubMed  Google Scholar 

  136. Ray, S. & Maunsell, J. H. Differences in gamma frequencies across visual cortex restrict their possible use in computation. Neuron 67, 885–896 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Quilichini, P., Sirota, A. & Buzsáki, G. Intrinsic circuit organization and theta-gamma oscillation dynamics in the entorhinal cortex of the rat. J. Neurosci. 30, 11128–11142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Miller, K. J. et al. Spectral changes in cortical surface potentials during motor movement. J. Neurosci. 27, 2424–2432 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Buzsáki, G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68, 362–385 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Csicsvari, J., Hirase, H., Mamiya, A. & Buzsáki, G. Ensemble patterns of hippocampal CA3-CA1 neurons during sharp wave-associated population events. Neuron 28, 585–594 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Canolty, R. T. et al. Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies. Proc. Natl Acad. Sci. USA 107, 17356–17361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Denker, M. et al. The local field potential reflects surplus spike synchrony. Cereb. Cortex 21, 2681–2695 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Canolty, R. T. et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Manning, J. R., Polyn, S. M., Baltuch, G. H., Litt, B. & Kahana, M. J. Oscillatory patterns in temporal lobe reveal context reinstatement during memory search. Proc. Natl Acad. Sci. USA 108, 12893–12897 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chang, E. F. et al. Cortical spatio-temporal dynamics underlying phonological target detection in humans. J. Cogn. Neurosci. 23, 1437–1446 (2011).

    Article  PubMed  Google Scholar 

  146. Tucker, D. M. Spatial sampling of head electrical fields: the geodesic sensor net. Electroencephalogr. Clin. Neurophysiol. 87, 154–163 (1993).

    Article  CAS  PubMed  Google Scholar 

  147. Ebersole, J. S. & Ebersole, S. M. Combining MEG and EEG source modeling in epilepsy evaluations. J. Clin. Neurophysiol. 27, 360–371 (2010).

    Article  PubMed  Google Scholar 

  148. Dehghani, N., Bédard, C., Cash, S. S., Halgren, E. & Destexhe, A. Comparative power spectral analysis of simultaneous electroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media: EEG and MEG power spectra. J. Comput. Neurosci. 29, 405–421 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Engel, A. K., Moll, C. K., Fried, I. & Ojemann, G. A. Invasive recordings from the human brain: clinical insights and beyond. Nature Rev. Neurosci. 6, 35–47 (2005).

    Article  CAS  Google Scholar 

  150. Henze, D. A. et al. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol. 84, 390–400 (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Du, J., Blanche, T. J., Harrison, R. R., Lester, H. A. & Masmanidis, S. C. Multiplexed, high density electrophysiology with nanofabricated neural probes. PLoS ONE 6, e26204 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kipke, D. R. et al. Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J. Neurosci. 28, 11830–11838 (2008). A short summary of the recent developments in extracellular recording methods.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Siegel, M. S. & Isacoff, E. Y. A genetically encoded optical probe of membrane voltage. Neuron 19, 735–741 (1997).

    Article  CAS  PubMed  Google Scholar 

  154. Grinvald, A. & Hildesheim, R. VSDI: a new era in functional imaging of cortical dynamics. Nature Rev. Neurosci. 5, 874–885 (2004).

    Article  CAS  Google Scholar 

  155. Akemann, W., Mutoh, H., Perron, A., Rossier, J. & Knopfel, T. Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nature Methods 7, 643–649 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Denk, W. et al. Anatomical and functional imaging of neurons using 2-photon laser-scanning microscopy. J. Neurosci. Methods 54, 151–162 (1994).

    Article  CAS  PubMed  Google Scholar 

  157. Nir, Y. et al. Regional slow waves and spindles in human sleep. Neuron 70, 153–169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Contreras D. & Steriade M. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J. Neurosci. 51, 604–622 (1995).

    Article  Google Scholar 

  159. Kamondi, A., Acsády, L., Wang, X. J. & Buzsáki, G. Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus 8, 244–261 (1998).

    Article  CAS  PubMed  Google Scholar 

  160. Buzsáki, G., Penttonen, M., Nádasdy, Z. & Bragin, A. Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo. Proc. Natl Acad. Sci. USA 93, 9921–9925 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Helmchen, F., Svoboda, K., Denk, W. & Tank, D. W. In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nature Neurosci. 2, 989–996 (1999).

    Article  CAS  PubMed  Google Scholar 

  162. Ray, S. & Maunsell, J. H. R. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. 9, e1000610 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are supported by the National Institutes of Health (grants NS34994, MH54671 and NS074015), the Swiss National Science Foundation (grant PA00P3_131470), the G. Harold and Leila Y. Mathers Charitable Foundation, the US–Israel Binational Foundation, the Global Institute for Scientific Thinking and the Human Frontiers Science Program (grant RGP0032/2011). Parts of this Review were written while G.B. was a visiting scholar at the Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem (2007) and at the Zukunftskolleg Program, University of Konstanz, Germany (2011). We thank G. Einevoll, E. Schomburg and J. Taxidis for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Buzsáki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information S1 (movie)

Spike-triggered average of the LFP in the hippocampus during exploration. (AVI 3003 kb)

Supplementary Information S2 (movie)

Spike triggered average of the LFP in the hippocampus during non-REM sleep. (AVI 3033 kb)

Related links

Related links

FURTHER INFORMATION

György Buzsáki's homepage

Christof Koch's homepage

Glossary

Sink

By convention, a site on the neuronal membrane where positive charges enter the neuron.

Electroneutrality

The phenomenon that, owing to charge conservation, at any given point in time the total charge entering and leaving the cell across all of its membrane equals zero.

Sources

Locations along the neuronal membrane where positive charge flows out of the neuron. For negative charge, the location of sinks and sources is inverted.

Return current

A loop current that flows in the opposite direction to an active sink or source.

Dipole

An ideal electric dipole is defined by two charges of opposite polarity with infinitely small separation, such that the product of the charge times the distance r separating them remains finite. The electric potential of a dipole falls off as 1/r2.

Equilibrium potential

The voltage difference between intracellular and extracellular space of a neuron when the net ionic flux across the membrane equals zero.

Ih currents

Currents flowing through hyperpolarization deinactivated cyclic nucleotide-gated channels.

IT currents

Low-threshold (hyperpolarization-induced) transient Ca2+ currents, which often lead to burst firing.

Resonance

A property of the neuronal membrane to respond to some input frequencies more strongly than others. At the resonant frequency, even weak periodic driving can produce large-amplitude oscillations.

Silicon probes

Multiple-site recording electrodes for high spatial density monitoring of the extracellular field. The recordings sites can record Ve along one, two or even three orthogonal axes.

Ephaptic coupling

The effect of the extracellular field on the transmembrane potential of a neuron.

Open field

When the sink (or the source) is substantially spatially separated from the return currents of the dipole.

Closed field

When the sink (or the source) is minimally spatially separated from the return currents of the dipole.

Power law (of LFP)

The power law of LFP describes a relationship between the amplitude of the extracellular signal and its temporal frequency. A descending straight line on the log–log plot (power versus frequency) would be an indication of a power law that scales as 1/fn.

Low-pass frequency filtering

A process by which the frequency components of a signal beyond a cutoff frequency are increasingly attenuated, typically owing to a serial capacitance (for example, the bi-lipid membrane).

Phase–amplitude coupling

The power of a faster oscillation is phase-modulated by a slower oscillation.

Ohmic

Electrical current flow through a purely resistive milieu. The extracellular cytoplasm is primarily ohmic in the 1–10,000 kHz frequency range.

Current source density

(CSD). The current source density reflects the rate of current flow in a given direction through the unit surface (unit, A m−2) or volume (unit, A m−3).

Anisotropic

Ansiotropic tissue can conduct electricity in a direction-dependent manner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buzsáki, G., Anastassiou, C. & Koch, C. The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13, 407–420 (2012). https://doi.org/10.1038/nrn3241

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3241

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing