Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Roles of galectins in infection

Key Points

  • Virtually all bacterial and eukaryotic cells, as well as many viruses, display surface carbohydrates, which have a crucial role in the establishment of host–microorganism complex interactions through their recognition by protein receptors, mainly known as lectins.

  • Lectin–glycan interactions are ubiquitous and essential to biological systems, not simply as the 'glue' between cells, but as the initiators of a functional crosstalk that modulates their physiology and homeostatic balance. Microbial lectins, including viral haemagglutinins, bacterial adhesins and parasite lectins, are involved in host colonization, whereas some animal lectins can function as pattern recognition receptors in immune responses against microbial pathogens and parasites.

  • Among the various lectin families, the galectins are proteins that are characterized by a unique binding-site sequence motif, affinity for β-galactosides and wide taxonomic distribution. Most metazoans are endowed with a complex galectin repertoire, with members exhibiting multiple isoforms and subtle variations in carbohydrate specificity, which together with a certain level of plasticity in sugar binding suggests they have substantial diversity in recognition properties.

  • Galectins were initially thought to only bind endogenous 'self' glycans and mediate developmental processes, including cell differentiation and tissue organization, and more recently, regulation of immune homeostasis. In the past few years, however, it has become clear that galectins also bind non-self glycans on the surface of potentially pathogenic microorganisms (viruses, bacteria, protista and fungi) and parasitic worms, and mediate recognition and effector functions in innate immunity.

  • Some pathogens and parasites subvert the roles of galectins as PRRs to either attach to suitable epithelia in their insect vector or final host, or to enter the host cells to proliferate and disseminate systemically. Furthermore, galectins from parasites might contribute directly or indirectly to host invasion, or downregulation of the host immune response.

  • In summary, the recent evidence discussed in this Review indicates that host galectins can function as recognition receptors that target non-self glycans on the surfaces of viruses, bacteria, protista and helminth pathogens and parasites, and either prevent or facilitate infection. Because galectins also bind self glycans on the host cell surface as the first step in immunoregulation and developmental processes, galectins do not fit current models of innate immune self or non-self recognition or defence.

  • Gaps in our knowledge about the diversity of the host galectins, their subcellular compartmentalization and secretion, and structural and biophysical aspects of their interactions with the microbial carbohydrate moieties warrant further investigation. The novel insights provided by the realization that galectins are directly involved in pathogen recognition has opened new avenues of research aimed at disrupting their roles in parasite–vector interactions or host invasion.

Abstract

Galectins, which were first characterized in the mid-1970s, were assigned a role in the recognition of endogenous ('self') carbohydrate ligands in embryogenesis, development and immune regulation. Recently, however, galectins have been shown to bind glycans on the surface of potentially pathogenic microorganisms, and function as recognition and effector factors in innate immunity. Some parasites subvert the recognition roles of the vector or host galectins to ensure successful attachment or invasion. This Review discusses the role of galectins in microbial infection, with particular emphasis on adaptations of pathogens to evasion or subversion of host galectin-mediated immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pattern-recognition receptors and their participation in microbial–metazoan interactions.
Figure 2: Galectin types, binding activity and biological roles at the cell surface.
Figure 3: Galectin 1 functions as a pattern-recognition receptor for paramixoviruses and HIV-1.
Figure 4: Galectins function as protein-recognition receptors for parasites.
Figure 5: Glycans on the surface of selected microorganisms and protistan or metazoan parasites potentially recognized by galectins 1, 3 and 9.

Similar content being viewed by others

References

  1. Casadevall, A. & Pirofski, L. A. Host–pathogen interactions: basic concepts of microbial commensalism, colonization, infection, and disease. Infect. Immun. 68, 6511–6518 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hughes, D. T. & Sperandio, V. Inter-kingdom signalling: communication between bacteria and their hosts. Nature Rev. Microbiol. 6, 111–120 (2008). A review that describes the quorum sensing that takes place between the metazoan host and its microbiota.

    Article  CAS  Google Scholar 

  3. Ohtsubo, K. & Marth, J. D. Glycosylation in cellular mechanisms of health and disease. Cell 126, 855–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. van Kooyk, Y. & Rabinovich, G. A. Protein–glycan interactions in the control of innate and adaptive immune responses. Nature Immunol. 9, 593–601 (2008).

    Article  CAS  Google Scholar 

  5. Marth, J. D. & Grewal, P. K. Mammalian glycosylation in immunity. Nature Rev. Immunol. 8, 874–887 (2008). References 4 and 5 provide excellent, comprehensive overviews of the roles of cell surface glycans in microbial infection and host immune responses.

    Article  CAS  Google Scholar 

  6. Sharon, N. Lectins: carbohydrate-specific reagents and biological recognition molecules. J. Biol. Chem. 282, 2753–2764 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Vasta, G. R. & Ahmed, H. (eds) Animal Lectins: A Functional View (CRC, Boca Raton, 2008).

    Book  Google Scholar 

  8. Doyle, R. J. & Slifkin, M. (eds) Lectin–Microorganism Interactions (Routledge, United States, 1994).

    Book  Google Scholar 

  9. Mirelman, D. Microbial Lectins and Agglutinins: Properties and Biological Activity (John Wiley & Sons, New York, 1986).

    Google Scholar 

  10. Medzhitov, R. & Janeway, C. A. Jr. Decoding the patterns of self and nonself by the innate immune system. Science 296, 298–300 (2002). A detailed analysis of the self and non-self recognition mechanisms and effector pathways in immune responses.

    Article  CAS  PubMed  Google Scholar 

  11. Leffler, H., Carlsson, S., Hedlund, M., Qian, Y. & Poirier, F. Introduction to galectins. Glycoconj. J. 19, 433–440 (2004).

    Article  Google Scholar 

  12. Yang, R. Y., Rabinovich, G. A. & Liu, F. T. Galectins: structure, function and therapeutic potential. Expert Rev. Mol. Med. 10, e17 (2008).

    Article  PubMed  Google Scholar 

  13. Rabinovich, G. A. & Toscano, M. A. Turning sweet on immunity: galectin–glycan interactions in immune tolerance and inflammation. Nature Rev. Immunol. (in the press).

  14. Sato, S. & Nieminen, J. Seeing strangers or announcing “danger”: galectin-3 in two models of innate immunity. Glycoconj. J. 19, 583–591 (2004). This article was the first to propose that intracellular galectins function as 'danger signals'.

    Article  Google Scholar 

  15. Vasta, G. R., Ahmed, H. & Odom, E. O. Structural and functional diversity of lectin repertoires in invertebrates, protochordates and ectothermic vertebrates. Curr. Opin. Struct. Biol. 14, 617–630 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Mathis, R. et al. Lipopolysaccharides as a communication signal for progression of legume endosymbiosis. Proc. Natl Acad. Sci. USA 102, 2655–2660 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wood-Charlson, E. M., Hollingsworth, L. L., Krupp, D. A. & Weis, V. M. Lectin/glycan interactions play a role in recognition in a coral/dinoflagellate symbiosis. Cell. Microbiol. 8, 1985–1993 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Nyholm, S. V. & McFall-Ngai, M. J. The winnowing: establishing the squid– Vibrio symbiosis. Nature Rev. Microbiol. 2, 632–642 (2004). References 17 and 18 show that protein–carbohydrate interactions are crucial to the establishment of invertebrate–microorganism and invertebrate–algae symbioses.

    Article  CAS  Google Scholar 

  19. Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R. & Gordon, J. I. Worlds within worlds: evolution of the vertebrate gut microbiota. Nature Rev. Microbiol. 6, 776–788 (2008).

    Article  CAS  Google Scholar 

  20. Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bishop, J. R. & Gagneux, P. Evolution of carbohydrate antigens — microbial forces shaping host glycomes? Glycobiology 17, 23R–34R (2007). References 20 and 21 describe in detail mechanistic aspects of how the mammalian gut symbiotic microbiota regulates the host–microorganism homeostatic balance.

    Article  CAS  PubMed  Google Scholar 

  22. Stevens, J. et al. Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J. Mol. Biol. 355, 1143–1155 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Mandlik, A., Swierczynski, A., Das, A. & Ton-That, H. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol. 16, 33–40 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Frederick, J. R. & Petri, W. A. Jr. Roles for the galactose-/N-acetylgalactosamine-binding lectin of Entamoeba in parasite virulence and differentiation. Glycobiology 15, 53R–59R (2005).

    Article  CAS  PubMed  Google Scholar 

  25. von Itzstein, M., Plebanski, M., Cooke, B. M. & Coppel, R. L. Hot, sweet and sticky: the glycobiology of Plasmodium falciparum. Trends Parasitol. 24, 210–218 (2008). Comprehensive report that reveals the various carbohydrate-mediated mechanisms for P. falciparum recognition and invasion of the host.

    Article  CAS  PubMed  Google Scholar 

  26. Bhat, N., Joe, A., Pereira Perrin, M. & Ward, H. D. Cryptosporidium p30, a galactose/ N-acetylgalactosamine-specific lectin, mediates infection in vitro. J. Biol. Chem. 282, 34877–34887 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Hager, K. M. & Carruthers, V. B. MARveling at parasite invasion. Trends Parasitol. 24, 51–54 (2008). First rigorous description of a Toxoplasma micronemal protein for host cell colonization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Drickamer, K. Two distinct classes of carbohydrate-recognition domains in animal lectins. J. Biol. Chem. 263, 9557–9560 (1988). First identification of sequence motifs that define the animal C-type and S-type lectin families.

    CAS  PubMed  Google Scholar 

  29. Zelensky, A. N. & Gready, J. E. The C-type lectin-like domain superfamily. FEBS J. 272, 6179–6217 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Odom, E. W. & Vasta, G. R. Characterization of a binary tandem domain F-type lectin from striped bass (Morone saxatilis). J. Biol. Chem. 281, 1698–1713 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Bianchet, M. A., Odom, E. W., Vasta, G. R. & Amzel, L. M. A novel fucose recognition fold involved in innate immunity. Nature Struct. Biol. 9, 628–634 (2002).

    CAS  PubMed  Google Scholar 

  32. Dam, T. K. & Brewer, C. F. Effects of clustered epitopes in multivalent ligand–receptor interactions. Biochemistry 47, 8470–8476 (2008). A rigorous analysis of cooperative effects in multivalent lectin–ligand interactions.

    Article  CAS  PubMed  Google Scholar 

  33. van Vliet, S. J., Saeland, E. & van Kooyk, Y. Sweet preferences of MGL: carbohydrate specificity and function. Trends Immunol. 29, 83–90 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Yu, X. Q., Zhu, Y. F., Ma, C., Fabrick, J. A. & Kanost, M. R. Pattern recognition proteins in Manduca sexta plasma. Insect Biochem. Mol. Biol. 32, 1287–1293 (2002). First description of C-type lectins (immulectins) that activate melanization pathways.

    Article  CAS  PubMed  Google Scholar 

  35. Houzelstein, D. et al. Phylogenetic analysis of the vertebrate galectin family. Mol. Biol. Evol. 21, 1177–1187 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Hirabayashi, J. & Kasai, K. The family of metazoan metal-independent β-galactoside-binding lectins: structure, function and molecular evolution. Glycobiology 3, 297–304 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Cooper, D. N. Galectinomics: finding themes in complexity. Biochim. Biophys. Acta 1572, 209–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Lipkowitz, M. S., Leal-Pinto, E., Cohen, B. E. & Abramson, R. G. Galectin 9 is the sugar-regulated urate transporter/channel UAT. Glycoconj. J. 19, 491–498 (2004).

    Article  Google Scholar 

  39. Gorski, J. P., Liu, F. T., Artigues, A., Castagna, L. F. & Osdoby, P. New alternatively spliced form of galectin-3, a member of the β-galactoside-binding animal lectin family, contains a predicted transmembrane-spanning domain and a leucine zipper motif. J. Biol. Chem. 277, 18840–18848 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Saouros, S. et al. A novel galectin-like domain from Toxoplasma gondii micronemal protein 1 assists the folding, assembly, and transport of a cell adhesion complex. J. Biol. Chem. 280, 38583–38591 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Walser, P. J., Kües, U., Aebi, M. & Künzler, M. Ligand interactions of the Coprinopsis cinerea galectins. Fungal Genet. Biol. 42, 293–305 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Stalz, H. The Geodia cydonium galectin exhibits prototype and chimera-type characteristics and a unique sequence polymorphism within its carbohydrate recognition domain. Glycobiology 16, 402–414 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Ahmed, H. & Vasta, G. R. Unlike mammalian GRIFIN, the zebrafish homologue (DrGRIFIN) represents a functional carbohydrate-binding galectin. Biochem. Biophys. Res. Commun. 371, 350–355 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou, D. et al. Crystal structure of the C-terminal conserved domain of human GRP, a galectin-related protein, reveals a function mode different from those of galectins. Proteins 71, 1582–1588 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Lobsanov, Y. D., Gitt, M. A., Leffler, H., Barondes, S. H. & Rini, J. M. X-ray crystal structure of the human dimeric S-Lac lectin, L-14-II, in complex with lactose at 2.9-Å resolution. J. Biol. Chem. 268, 27034–27038 (1993).

    CAS  PubMed  Google Scholar 

  46. Liao, D. I., Kapadia, G., Ahmed, H., Vasta, G. R. & Herzberg, O. Structure of S-lectin, a developmentally regulated vertebrate β-galactoside-binding protein. Proc. Natl Acad. Sci. USA 91, 1428–1432 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bianchet, M. A., Ahmed, H., Vasta, G. R. & Amzel, L. M. Soluble β-galactosyl-binding lectin (galectin) from toad ovary: crystallographic studies of two protein–sugar complexes. Proteins 40, 378–388 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Seetharaman, J. et al. X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-Å resolution. J. Biol. Chem. 273, 13047–13052 (1998). References 45–48 provided the first structures of galectins 1 and 3, which enabled us to understand their distinct binding properties.

    Article  CAS  PubMed  Google Scholar 

  49. Sato, S. & Hughes, R. C. Binding specificity of a baby hamster kidney lectin for H type I and II chains, polylactosamine glycans, and appropriately glycosylated forms of laminin and fibronectin. J. Biol. Chem. 267, 6983–6990 (1992).

    CAS  PubMed  Google Scholar 

  50. Zhou, Q. & Cummings, R. D. The S-type lectin from calf heart tissue binds selectively to the carbohydrate chains of laminin. Arch. Biochem. Biophys. 281, 27–35 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. Fang, R., Mantle, M. & Ceri, H. Characterization of quail intestinal mucin as a ligand for endogenous quail lectin. Biochem. J. 293, 867–872 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ozeki, Y. et al. Tissue fibronectin is an endogenous ligand for galectin-1. Glycobiology 5, 255–261 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Shoji, H., Nishi, N., Hirashima, M. & Nakamura, T. Characterization of the Xenopus galectin family. Three structurally different types as in mammals and regulated expression during embryogenesis. J. Biol. Chem. 278, 12285–12293 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Patterson, R. J., Dagher, S. F., Vyakarnam, A. & Wang, J. L. Nuclear galectins: functionally redundant components in processing of pre-mRNA. Trends Glycosci. Glycotechnol. 9, 77–85 (1997).

    Article  CAS  Google Scholar 

  55. Cleves, A. E., Cooper, D. N. W., Barondes, S. H. & Kelly, R. B. A new pathway for protein export in Saccharomyces cerevisiae. J. Cell Biol. 133, 1017–1026 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Guévremont, M. et al. Galectin-3 surface expression on human adult chondrocytes: a potential substrate for collagenase-3. Ann. Rheum. Dis. 63, 636–643 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Morris, S. et al. Quaternary solution structures of galectins-1, -3, and -7. Glycobiology 14, 293–300 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Rabinovich, G. A., Toscano, M. A., Jackson, S. S. & Vasta, G. R. Functions of cell surface galectin–glycoprotein lattices. Curr. Opin. Struct. Biol. 17, 513–520 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Partridge, E. A. et al. Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306, 120–124 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Ohtsubo, K. et al. Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell 123, 1307–1321 (2005). References 59 and 60 established that galectins function in modulating the turnover and function of cell surface transporters and receptors.

    Article  CAS  PubMed  Google Scholar 

  61. Stowell, S. R. et al. Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. J. Immunol. 180, 3091–3102 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Rabinovich, G. A., Liu, F. T., Hirashima, M. & Anderson, A. An emerging role for galectins in tuning the immune response: lessons from experimental models of inflammatory disease, autoimmunity and cancer. Scand. J. Immunol. 66, 143–158 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Liu, F. T. & Hsu, D. K. The role of galectin-3 in promotion of the inflammatory response. Drug News Perspect. 20, 455–460 (2007). Excellent review of the various roles of galectin 3 in inflammation.

    Article  CAS  PubMed  Google Scholar 

  64. Hirashima, M. et al. Galectin-9 in physiological and pathological conditions. Glycoconj. J. 19, 593–600 (2004).

    Article  Google Scholar 

  65. Perone, M. J. et al. Transgenic galectin-1 induces maturation of dendritic cells that elicit contrasting responses in naive and activated T cells. J. Immunol. 176, 7207–7220 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Fulcher, J. A. et al. Galectin-1-matured human monocyte-derived dendritic cells have enhanced migration through extracellular matrix. J. Immunol. 177, 216–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Rossi, B., Espeli, M., Schiff, C. & Gauthier, L. Clustering of pre-B cell integrins induces galectin-1-dependent pre-B cell receptor relocalization and activation. J. Immunol. 177, 796–803 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Toscano, M. A. Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nature Immunol. 8, 825–834 (2007). First description of the galectin-mediated mechanism that leads to the polarization of T H 1, T H 2and T H 17 effector cells.

    Article  CAS  Google Scholar 

  69. Salatino, M. et al. Galectin-1 as a potential therapeutic target in autoimmune disorders and cancer. Expert Opin. Biol. Ther. 8, 45–57 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Mey, A., Leffler, H., Hmama, Z., Normier, G. & Revillard, J. P. The animal lectin galectin-3 interacts with bacterial lipopolysaccharides via two independent sites. J. Immunol. 156, 1572 (1996). First report of the mechanism of bacterial LPS recognition by galectin 3.

    CAS  PubMed  Google Scholar 

  71. Kamhawi, S. Phlebotomine sand flies and Leishmania parasites: friends or foes? Trends Parasitol. 22, 439–445 (2006).

    Article  PubMed  Google Scholar 

  72. Lee, B. Envelope–receptor interactions in Nipah virus pathobiology. Ann. NY Acad. Sci. 1102, 51–65 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Levroney, E. L. et al. Novel innate immune functions for galectin-1: galectin-1 inhibits cell fusion by Nipah virus envelope glycoproteins and augments dendritic cell secretion of proinflammatory cytokines. J. Immunol. 175, 413–420 (2005). First description of galectin 1 as a recognition (or effector) receptor for viral envelope glycans.

    Article  CAS  PubMed  Google Scholar 

  74. Aguilar, H. C. et al. N-glycans on Nipah virus fusion protein protect against neutralization but reduce membrane fusion and viral entry. J. Virol. 80, 4878–4889 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gonzalez, M. I. et al. Regulated expression of galectin-1 after in vitro productive infection with herpes simplex virus type 1: implications for T cell apoptosis. Int. J. Immunopathol. Pharmacol. 18, 615–623 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Almkvist, J., Dahlgren, C., Leffler, H. & Karlsson, A. Newcastle disease virus neuraminidase primes neutrophils for stimulation by galectin-3 and formyl-Met-Leu-Phe. Exp. Cell Res. 298, 74–82 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Pioche-Durieu, C. et al. In nasopharyngeal carcinoma cells, Epstein–Barr virus LMP1 interacts with galectin 9 in membrane raft elements resistant to simvastatin. J. Virol. 79, 13326–13337 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vinogradov, E. & Perry, M. B. Structural analysis of the core region of the lipopolysaccharides from eight serotypes of Klebsiella pneumoniae. Carbohydr. Res. 335, 291–296 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Mandrell, R. E., Apicella, M. A., Lindstedt, R. & Leffler, H. Possible interaction between animal lectins and bacterial carbohydrates. Methods Enzymol. 236, 231–254 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. John, C. M. et al. Galectin-3 binds lactosaminylated lipooligosaccharides from Neisseria gonorrhoeae and is selectively expressed by mucosal epithelial cells that are infected. Cell. Microbiol. 4, 649–662 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Gupta, S. K., Masinick, S., Garrett, M. & Hazlett, L. D. Pseudomonas aeruginosa lipopolysaccharide binds galectin-3 and other human corneal epithelial proteins. Infect. Immun. 65, 2747–2753 (1997). This interesting report proposed that P. aeruginosa binds to host galectin 3 to establish corneal infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Barboni, E., Coade, S. & Fiori, A. The binding of mycolic acids to galectin-3: a novel interaction between a host soluble lectin and trafficking mycobacterial lipids? FEBS Lett. 579, 6749–6755 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Fowler, M., Thomas, R. J., Atherton, J., Roberts, I. S. & High, N. J. Galectin-3 binds to Helicobacter pylori O-antigen: it is upregulated and rapidly secreted by gastric epithelial cells in response to H. pylori adhesion. Cell. Microbiol. 8, 44–54 (2006). First comprehensive analysis of the effects of H. pylori infection on galectin 3 expression and secretion.

    Article  CAS  PubMed  Google Scholar 

  84. Huff, J. L., Hansen, L. M. & Solnick, J. V. Gastric transcription profile of Helicobacter pylori infection in the rhesus macaque. Infect. Immun. 72, 5216–5226 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lim, J. W., Kim, H. & Kim, K. H. Cell adhesion-related gene expression by Helicobacter pylori in gastric epithelial AGS cells. Int. J. Biochem. Cell Biol. 35, 1284–1296 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Farnworth, S. L. et al. Galectin-3 reduces the severity of pneumococcal pneumonia by augmenting neutrophil function. Am. J. Pathol. 172, 395–405 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nieminen, J., St-Pierre, C., Bhaumik, P., Poirier, F. & Sato, S. Role of galectin-3 in leukocyte recruitment in a murine model of lung infection by Streptococcus pneumoniae. J. Immunol. 180, 2466–2473 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Kasamatsu, A. et al. Elevation of galectin-9 as an inflammatory response in the periodontal ligament cells exposed to Porphylomonas gingivalis lipopolysaccharide in vitro and in vivo. Int. J. Biochem. Cell Biol. 37, 397–408 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Yu, Y. et al. Molecular and biochemical characterization of galectin from amphioxus: primitive galectin of chordates participated in the infection processes. Glycobiology 17, 774–783 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Li, Y. et al. Galectin-3 is a negative regulator of lipopolysaccharide-mediated inflammation. J. Immunol. 181, 2781–2789 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Fradin, C., Poulain, D. & Jouault, T. β-1,2-linked oligomannosides from Candida albicans bind to a 32-kilodalton macrophage membrane protein homologous to the mammalian lectin galectin-3. 68, 4391–4398 (2000). First description of the galectin-mediated recognition of surface glycans in a pathogenic fungus.

  92. Jouault, T. et al. Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J. Immunol. 177, 4679–4687 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Jawhara, S. et al. Colonization of mice by Candida albicans is promoted by chemically induced colitis and augments inflammatory responses through galectin-3. J. Infect. Dis. 197, 972–980 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Kohatsu, L., Hsu, D. K., Jegalian, A. G., Liu, F. T. & Baum, L. G. Galectin-3 induces death of Candida species expressing specific β-1,2-linked mannans. J. Immunol. 177, 4718–4726 (2006). First description of the fungicidal activity of a host galectin.

    Article  CAS  PubMed  Google Scholar 

  95. Pelletier, I. et al. Specific recognition of Leishmania major poly-β-galactosyl epitopes by galectin-9: possible implication of galectin-9 in interaction between L. major and host cells. J. Biol. Chem. 278, 22223–22230 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Pelletier, I. & Sato, S. Specific recognition and cleavage of galectin-3 by Leishmania major through species-specific polygalactose epitope. J. Biol. Chem. 277, 17663–17670 (2002). The authors proposed, for the first time, a mechanism for how the susceptibility of galectin 3 to proteolytic attack from L. major determines the specific cutaneous or visceral clinical manifestations of the infection.

    Article  CAS  PubMed  Google Scholar 

  97. Späth, G. F., Garraway, L. A., Turco, S. J. & Beverley, S. M. The role(s) of lipophosphoglycan (LPG) in the establishment of Leishmania major infections in mammalian hosts. Proc. Natl Acad. Sci. USA 100, 9536–9541 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kamhawi, S. et al. A role for insect galectins in parasite survival. Cell 119, 329–341 (2004). First report that a galectin expressed in the midgut of the insect vector mediates attachment of the parasite for maturationto the next stage of its life cycle.

    Article  CAS  PubMed  Google Scholar 

  99. Okumura, C. Y., Baum, L. G. & Johnson, P. J. Galectin-1 on cervical epithelial cells is a receptor for the sexually transmitted human parasite Trichomonas vaginalis. Cell. Microbiol. 1, 2078–2090 (2008).

    Article  CAS  Google Scholar 

  100. Singh, B. N. et al. Structural details and composition of Trichomonas vaginalis lipophosphoglycan in relevance to the epithelial immune function. Glycoconj. J. 26, 3–17 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Tarleton, R. L. Immune system recognition of Trypanosoma cruzi. Curr. Opin. Immunol. 19, 430–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Kleschenko, Y. Y. et al. Human galectin-3 promotes Trypanosoma cruzi adhesion to human coronary artery smooth muscle cells. Infect. Immun. 72, 6717–6721 (2003).

    Article  CAS  Google Scholar 

  103. Vray, B. et al. Up-regulation of galectin-3 and its ligands by Trypanosoma cruzi infection with modulation of adhesion and migration of murine dendritic cells. Glycobiology 14, 647–657 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Silva-Monteiro, E. et al. Altered expression of galectin-3 induces cortical thymocyte depletion and premature exit of immature thymocytes during Trypanosoma cruzi infection. Am. J. Pathol. 170, 546–556 (2007). This study revealed the dramatic galectin 3-mediated effects of T. cruzi infection on T cells in both the central and peripheral compartments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Acosta- Rodríguez, E. V. et al. Galectin-3 mediates IL-4-induced survival and differentiation of B cells: functional cross-talk and implications during Trypanosoma cruzi infection. J. Immunol. 172, 493–502 (2004).

    Article  Google Scholar 

  106. Zúñiga, E., Gruppi, A., Hirabayashi, J., Kasai, K. I. & Rabinovich, G. A. Regulated expression and effect of galectin-1 on Trypanosoma cruzi-infected macrophages: modulation of microbicidal activity and survival. Infect. Immun. 69, 6804–6812 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Bernardes, E. S. et al. Toxoplasma gondii infection reveals a novel regulatory role for galectin-3 in the interface of innate and adaptive immunity. Am. J. Pathol. 168, 1910–1920 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. van Liempt, E. et al. Schistosoma mansoni soluble egg antigens are internalized by human dendritic cells through multiple C-type lectins and suppress TLR-induced dendritic cell activation. Mol. Immunol. 44, 2605–2615 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. van den Berg, T. K. et al. LacdiNAc-glycans constitute a parasite pattern for galectin-3-mediated immune recognition. J. Immunol. 173, 1902–1907 (2004). A direct demonstration of galectin 3 as a PRR for S. mansoni glycans.

    Article  CAS  PubMed  Google Scholar 

  110. Oliveira, F. L. et al. Kinetics of mobilization and differentiation of lymphohematopoietic cells during experimental murine schistosomiasis in galectin-3−/− mice. J. Leukoc. Biol. 82, 300–310 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Bickle, Q. & Helmby, H. Lack of galectin-3 involvement in murine intestinal nematode and schistosome infection. Parasite Immunol. 29, 93–100 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Dunphy, J. L. et al. Isolation and characterization of a novel inducible mammalian galectin. J. Biol. Chem. 275, 32106–32113 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Ouellet, M. et al. Galectin-1 acts as a soluble host factor that promotes HIV-1 infectivity through stabilization of virus attachment to host cells. J. Immunol. 174, 4120–4126 (2005). An elegant study that shows how, in contrast to the paramixovirus, galectins promote HIV-1 infection.

    Article  CAS  PubMed  Google Scholar 

  114. Mercier, S. et al. Galectin-1 promotes HIV-1 infectivity in macrophages through stabilization of viral adsorption. Virology 371, 121–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Fogel, S., Guittaut, M., Legrand, A., Monsigny, M. & Hébert, E. The tat protein of HIV-1 induces galectin-3 expression. Glycobiology 9, 383–387 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Schröder, H. C. et al. Expression of nuclear lectin carbohydrate-binding protein 35 in human immunodeficiency virus type 1-infected Molt-3 cells. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 9, 340–348 (1995).

    PubMed  Google Scholar 

  117. Hsu, D. K., Hammes, S. R., Kuwabara, I., Greene, W. C. & Liu, F. T. Human T lymphotropic virus-I infection of human T lymphocytes induces expression of the β-galactoside-binding lectin, galectin-3. Am. J. Pathol. 148, 1661–1670 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Volf, Pt, & Myskova, J. Sand flies and Leishmania: specific versus permissive vectors. Trends Parasitol. 22, 439–445 (2006).

    Article  Google Scholar 

  119. Myskova, J., Svobodova, M., Beverley, S. M. & Volf, P. A lipophosphoglycan-independent development of Leishmania in permissive sand flies. Microbes Infect. 9, 317–324 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dillon, R. J. et al. Analysis of ESTs from Lutzomyia longipalpis sand flies and their contribution toward understanding the insect–parasite relationship. Genomics 88, 831–840 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Jochim, R. C. et al. The midgut transcriptome of Lutzomyia longipalpis: comparative analysis of cDNA libraries from sugar-fed, blood-fed, post-digested and Leishmania infantum chagasi-infected sand flies. BMC Genomics 9,15 (2008).

  122. Pace, K. E. & Baum, L. G. Insect galectins: roles in immunity and development. Glycoconj. J. 19, 607–614 (2004).

    Article  Google Scholar 

  123. Valenzuela, J. G., Francischetti, I. M., Pham, V. M., Garfield, M. K. & Ribeiro, J. M. Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito. Insect Biochem. Mol. Biol. 33, 717–732 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Basseri, H. R., Tew, I. F. & Ratcliffe, N. A. Identification and distribution of carbohydrate moieties on the salivary glands of Rhodnius prolixus and their possible involvement in attachment/invasion by Trypanosoma rangeli. Exp. Parasitol. 100, 226–234 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Huang, X. et al. Molecular characterization and oligosaccharide-binding properties of a galectin from the argasid tick Ornithodoros moubata. Glycobiology 17, 313–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Harvell, C. D. et al. Emerging marine diseases climate links and anthropogenic factors. Science 285, 1505–1510 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Tasumi, S. & Vasta, G. R. A galectin of unique domain organization from hemocytes of the Eastern oyster (Crassostrea virginica) is a receptor for the protistan parasite Perkinsus marinus. J. Immunol. 179, 3086–3098 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Yoshino, T. P., Dinguirard, N., Kunert, J. & Hokke, C. H. Molecular and functional characterization of a tandem-repeat galectin from the freshwater snail Biomphalaria glabrata, intermediate host of the human blood fluke Schistosoma mansoni. Gene 411, 46–58 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bastida-Corcuera, F. D., Okumura, C. Y., Colocoussi, A. & Johnson, P. J. Trichomonas vaginalis lipophosphoglycan mutants have reduced adherence and cytotoxicity to human ectocervical cells. Eukaryot. Cell 4, 1951–1958 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Klion, A. D. & Donelson, J. E. OvGalBP, a filarial antigen with homology to vertebrate galactoside-binding proteins. Mol. Biochem. Parasitol. 65, 305–315 (1994).

    Article  CAS  PubMed  Google Scholar 

  131. Greenhalgh, C. J., Loukas, A. & Newton, S. E. The organization of a galectin gene from Teladorsagia circumcincta. Mol. Biochem. Parasitol. 101, 199–206 (1999).

    Article  CAS  PubMed  Google Scholar 

  132. Newlands, G. F., Skuce, P. J., Knox, D. P., Smith, S. K. & Smith, W. D. Cloning and characterization of a β-galactoside-binding protein (galectin) from the gut of the gastrointestinal nematode parasite Haemonchus contortus. Parasitology 119, 483–490 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Greenhalgh, C. J., Beckham, S. A. & Newton, S. E. Galectins from sheep gastrointestinal nematode parasites are highly conserved. Mol. Biochem. Parasitol. 98, 285–289 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Nemoto-Sasaki, Y. et al. Caenorhabditis elegans galectins LEC-1-LEC-11: structural features and sugar-binding properties. Biochim. Biophys. Acta 1780, 1131–1142 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Rabinovich, G. A. & Gruppi, A. Galectins as immunoregulators during infectious processes: from microbial invasion to the resolution of the disease. Parasite Immunol. 27, 103–114 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Young, A. R. & Meeusen, E. N. Galectins in parasite infection and allergic inflammation. Glycoconj. J. 19, 601–606 (2004).

    Article  Google Scholar 

  137. Craig, H., Wastling, J. M. & Knox, D. P. A preliminary proteomic survey of the in vitro excretory/secretory products of fourth-stage larval and adult Teladorsagia circumcincta. Parasitology 132, 535–543 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Hewitson, J. P. et al. The secretome of the filarial parasite, Brugia malayi: proteomic profile of adult excretory–secretory products. Mol. Biochem. Parasitol. 160, 8–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Mulvenna, J. et al. Proteomic analysis of the excretory/secretory component of the blood-feeding stage of the hookworm, Ancylostoma caninum. Mol. Cell Proteomics 8, 109–121 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Turner, D. G., Wildblood, L. A., Inglis, N. F. & Jones, D. G. Characterization of a galectin-like activity from the parasitic nematode, Haemonchus contortus, which modulates ovine eosinophil migration in vitro. Vet. Immunol. Immunopathol. 122, 138–145 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Kiel, M. et al. Identification of immuno-reactive proteins from a sheep gastrointestinal nematode, Trichostrongylus colubriformis, using two-dimensional electrophoresis and mass spectrometry. Int. J. Parasitol. 37, 1419–1429 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Yanming, S. et al. Vaccination of goats with recombinant galectin antigen induces partial protection against Haemonchus contortus infection. Parasite Immunol. 29, 319–326 (2007). The first direct demonstration of the protective effects of immunization against a parasite worm galectin.

    Article  CAS  PubMed  Google Scholar 

  143. Lourenço, E. V. et al. Toxoplasma gondii micronemal protein MIC1 is a lactose-binding lectin. Glycobiology 11, 541–547 (2001).

    Article  PubMed  Google Scholar 

  144. Ortega-Barria, E. & Boothroyd, J. C. A Toxoplasma lectin-like activity specific for sulfated polysaccharides is involved in host cell infection. J. Biol. Chem. 274, 1267–1276 (1999).

    Article  CAS  PubMed  Google Scholar 

  145. Hirabayashi, J. et al. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim. Biophys. Acta 1572, 232–254 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Varki, A. Nothing in glycobiology makes sense, except in the light of evolution. Cell 126, 841–845 (2006). An excellent article that analyses the evolutionary aspects of protein–carbohydrate interactions in microbial infection and host defence.

    Article  CAS  PubMed  Google Scholar 

  147. McGuinness, D. H., Dehal, P. K. & Pleass, R. J. Pattern recognition molecules and innate immunity to parasites. Trends Parasitol. 19, 312–319 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Taylor, M. A. & Drickamer, K. Introduction to Glycobiology (Oxford Univ. Press, New York, 2003).

    Google Scholar 

  149. Mizuochi, T. et al. Diversity of oligosaccharide structures on the envelope glycoprotein gp 120 of human immunodeficiency virus 1 from the lymphoblastoid cell line H9. Presence of complex-type oligosaccharides with bisecting N-acetylglucosamine residues. J. Biol. Chem. 265, 8519–8524 (1990).

    CAS  PubMed  Google Scholar 

  150. Cox, A. D. et al. Identification of a novel inner-core oligosaccharide structure in Neisseria meningitidis lipopolysaccharide. Eur. J. Biochem. 270, 1759–1766 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Mandrell, R. E., Griffiss, J. M. & Macher, B. A. Lipooligosaccharides (LOS) of Neisseria gonorrhoeae and Neisseria meningitidis have components that are immunochemically similar to precursors of human blood group antigens. Carbohydrate sequence specificity of the mouse monoclonal antibodies that recognize crossreacting antigens on LOS and human erythrocytes. J. Exp. Med. 168, 107–126 (1988).

    Article  CAS  PubMed  Google Scholar 

  152. Masoud, H., Martin, A., Thibault, P., Moxon, E. R. & Richards, J. C. Structure of extended lipopolysaccharide glycoforms containing two globotriose units in Haemophilus influenzae serotype b strain RM7004. Biochemistry 42, 4463–4475 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Aspinall, G. O., Monteiro, M. A., Pang, H., Walsh, E. J. & Moran, A. P. Lipopolysaccharide of the Helicobacter pylori type strain NCTC 11637 (ATCC 43504): structure of the O antigen chain and core oligosaccharide regions. Biochemistry 35, 2489–2497 (1996).

    Article  CAS  PubMed  Google Scholar 

  154. Kolkman, M. A., Morrison, D. A., Van Der Zeijst, B. A. & Nuijten, P. J. The capsule polysaccharide synthesis locus of Streptococcus pneumoniae serotype 14: identification of the glycosyl transferase gene cps14E. J. Bacteriol. 178, 3736–3741 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Moody, S. F., Handman, E., McConville, M. J. & Bacic, A. The structure of Leishmania major amastigote lipophosphoglycan. J. Biol. Chem. 268, 18457–18466 (1993).

    CAS  PubMed  Google Scholar 

  156. Cummings, R. D. & Nyame, A. K. Schistosome glysoconjugates. Biochim. Biophys. Acta 1455, 363–374 (1999).

    Article  CAS  PubMed  Google Scholar 

  157. Netea, M. G., Brown, G. D., Kullberg, B. J. & Gow, N. A. An integrated model of the recognition of Candida albicans by the innate immune system. Nature Rev. Microbiol. 6, 67–78 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks M. Bianchet, Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, for providing the galectin structural models in BOX 1. He also thanks R.D. Cummings, Department of Biochemistry, Emory University School of Medicine, S. Sato, Research Center for Infectious Diseases, Laval University, and L.G. Baum, Department of Pathology and Laboratory Medicine, UCLA School of Medicine, for useful comments on Fig. 5. Research in the authors laboratory was supported by grant R01 GM070589-01 from the National Institutes of Health, grants IOB-0618409 and IOS-0822257 from the National Science Foundation and grant NA05NMF4571243 from the National Oceanic and Atmospheric Administration. The author apologizes to the numerous investigators whose articles could not be cited owing to space constraints.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Entrez Genome Project

Ancylostoma caninum

Biomphalaria glabrata

Brugia malayi

Candida albicans

Caenorhabditis elegans

Coprinopsis cinerea

Crassostrea virginica

Entoamoeba hystolytica

Fasciola hepatica

Haemophilus influenzae

Helicobacter pylori

Klebsiella pneumoniae

Leishmania infantum

Leishmania major

Lutzomyia longipalpis

Neisseria gonorrhoeae

Neisseria meningitidis

Perkinsus marinus

Phlebotomus papatasi

Plasmodium falciparum

Porphyromonas gingivalis

Pseudomonas aeruginosa

Rhodnius prolixus

Saccharomyces cerevisiae

Staphylococcus aureus

Streptococcus pneumoniae

Toxoplasma gondii

Trichomonas vaginalis

Trypanosoma cruzi

Trypanosoma rangeli

Vibrio parahaemolyticus

Vibrio vulnificus

FURTHER INFORMATION

Gerardo R. Vasta's homepage

A Genomics Resource for Animal Lectins

Functional Glycomics Gateway

Glossary

Pattern-recognition receptor

Soluble or membrane-associated receptor displayed by the metazoan host that can recognize complex molecular patterns on the surface of microorganisms.

Innate immunity

Constitutive immunity that in contrast to acquired or adaptive immunity, is not inducible to specific antigens and does not require prior sensitization through an antigen from, for example, an infection or vaccination.

Glycome

The entire carbohydrate repertoire, whether free or present in more complex molecules, of an organism.

Adaptive immune response

A response to a stimulating agent, such as protein, carbohydrate, or a pathogen, that improves recognition of the agent and, after neutralization of the agent, allows the system to retain immunological memory.

Collectin

A C-type lectin characterized by a collagen-like domain. A coiled-coil neck domain connects the carbohydrate recognition domains with the collagen-like domain, and a cysteine-rich domain is present at the amino terminus. Collectin subunits are usually organized as trimers, and trimeric units are assembled in numbers that differ among members of the collectin family.

Apoptosis

Programmed cell death in multicellular organisms that is characterized by cell shrinkage, cytoskeleton break-up, chromatin condensation and chromosomal fragmentation. In contrast to necrosis, elimination of apoptotic cells or their fragments has no detrimental effects on the organism.

Metacyclogenesis

The process by which non-infective promastigotes mature into the infective parasite life stage. In Leishmania spp., this process takes place in the midgut of the insect vector, and the changes in metabolism (such as protein kinase A activity) and expression of surface molecules that take place during the process are major determinants of parasite virulence.

Microneme

Small, osmiophilic, elongated secretory organelle that forms part of the apical complex located within the extreme apical region of the apicomplexan parasite, under the inner membrane complex. Micronemes discharge their contents (micronemal proteins) during initial contact of the parasite's apical pole with the host cell surface.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasta, G. Roles of galectins in infection. Nat Rev Microbiol 7, 424–438 (2009). https://doi.org/10.1038/nrmicro2146

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing