Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ecology and evolution of Mycobacterium tuberculosis

Key Points

  • The Mycobacterium tuberculosis complex (MTBC) evolved from an environmental organism to an obligate pathogen through a combination of genome reduction and the acquisition of new genes. Key steps in this process were acquiring the ability to grow inside host cells and the ability to transmit directly from host to host.

  • Data indicate that the transition from environmental organism to an obligate pathogen happened in Africa, but there is currently no consensus with respect to the timing of this event.

  • The MTBC comprises human-adapted and animal-adapted lineages, but the molecular basis of host preference remains largely unknown.

  • Among the human-adapted MTBC lineages, some occur globally and others are geographically restricted, suggesting generalist and specialist phenotypes.

  • Most evidence indicates that ongoing horizontal gene exchange in the MTBC is absent. As a consequence, the MTBC exhibits a clonal population structure.

  • Strict clonality combined with serial transmission bottlenecks leads to a reduction in MTBC genomic diversity and affects the balance between natural selection and random genetic drift.

  • The global epidemics of antibiotic-resistant MTBC are driven by both the de novo acquisition of resistance mutations during suboptimal patient treatment and direct transmission of resistant strains between individuals.

Abstract

Tuberculosis (TB) is the number one cause of human death due to an infectious disease. The causative agents of TB are a group of closely related bacteria known as the Mycobacterium tuberculosis complex (MTBC). As the MTBC exhibits a clonal population structure with low DNA sequence diversity, methods (such as multilocus sequence typing) that are applied to more genetically diverse bacteria are uninformative, and much of the ecology and evolution of the MTBC has therefore remained unknown. Owing to recent advances in whole-genome sequencing and analyses of large collections of MTBC clinical isolates from around the world, many new insights have been gained, including a better understanding of the origin of the MTBC as an obligate pathogen and its molecular evolution and population genetic characteristics both within and between hosts, as well as many aspects related to antibiotic resistance. The purpose of this Review is to summarize these recent discoveries and discuss their relevance for developing better tools and strategies to control TB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global phylogeography of the human-adapted MTBC.
Figure 2: MTBC L4 can be separated into specialists and generalists.
Figure 3: The role of natural selection and genetic drift in the evolution of the MTBC and the emergence of drug resistance.
Figure 4: The role of epistasis in the evolution of multidrug-resistant tuberculosis.

Similar content being viewed by others

References

  1. Paulson, T. Epidemiology: a mortal foe. Nature 502, S2–S3 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization. Global tuberculosis control — surveillance, planning, financing. (WHO, Geneva, Switzerland, 2017).

  3. Houben, R. M. & Dodd, P. J. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLOS Med. 13, e1002152 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dheda, K., Barry, C. E. III & Maartens, G. Tuberculosis. Lancet 387, 1211–1226 (2016).

    Article  PubMed  Google Scholar 

  5. Dye, C., Williams, B. G., Espinal, M. A. & Raviglione, M. C. Erasing the world's slow stain: strategies to beat multidrug-resistant tuberculosis. Science 295, 2042–2046 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Comas, I. & Gagneux, S. The past and future of tuberculosis research. PLOS Pathog. 5, e1000600 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Achtman, M. Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu. Rev. Microbiol. 62, 53–70 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Gagneux, S. Strain variation in the Mycobacterium tuberculosis complex: its role in biology, epidemiology and control (Springer, Heidelberg, 2017).

    Book  Google Scholar 

  9. Fedrizzi, T. et al. Genomic characterization of Nontuberculous Mycobacteria. Sci. Rep. 7, 45258 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rogall, T., Wolters, J., Flohr, T. & Bottger, E. C. Towards a phylogeny and definition of species at the molecular level within the genus Mycobacterium. Int. J. Syst. Bacteriol. 40, 323–330 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Brites, D. & Gagneux, S. Old and new selective pressures on Mycobacterium tuberculosis. Infect. Genet. Evol. 12, 678–685 (2012).

    Article  PubMed  Google Scholar 

  12. Ebert, D. & Bull, J. J. Challenging the trade-off model for the evolution of virulence: is virulence management feasible? Trends Microbiol. 11, 15–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Jang, J., Becq, J., Gicquel, B., Deschavanne, P. & Neyrolles, O. Horizontally acquired genomic islands in the tubercle bacilli. Trends Microbiol. 16, 303–308 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. VanderVen, B. C., Huang, L., Rohde, K. H. & Russell, D. G. The minimal unit of infection: Mycobacterium tuberculosis in the macrophage. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.TBTB2-0025-2016 (2016).

  15. Chisholm, R. H., Trauer, J. M., Curnoe, D. & Tanaka, M. M. Controlled fire use in early humans might have triggered the evolutionary emergence of tuberculosis. Proc. Natl Acad. Sci. USA 113, 9051–9056 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Veyrier, F. J., Dufort, A. & Behr, M. A. The rise and fall of the Mycobacterium tuberculosis genome. Trends Microbiol. 19, 156–161 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Stinear, T. P. et al. Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res. 18, 729–741 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, J. et al. Insights on the emergence of Mycobacterium tuberculosis from the analysis of Mycobacterium kansasii. Genome Biol. Evol. 7, 856–870 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Becq, J. et al. Contribution of horizontally acquired genomic islands to the evolution of the Tubercle Bacilli. Mol. Biol. Evol. 24, 1861–1871 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Veyrier, F., Pletzer, D., Turenne, C. & Behr, M. A. Phylogenetic detection of horizontal gene transfer during the step-wise genesis of Mycobacterium tuberculosis. BMC Evol. Biol. 9, 196 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reva, O., Korotetskiy, I. & Ilin, A. Role of the horizontal gene exchange in evolution of pathogenic Mycobacteria. BMC Evol. Biol. 15 (Suppl. 1), S2 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boritsch, E. C. et al. A glimpse into the past and predictions for the future: the molecular evolution of the tuberculosis agent. Mol. Microbiol. 93, 835–852 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Brennan, M. J. & Delogu, G. The PE multigene family: a 'molecular mantra' for mycobacteria. Trends Microbiol. 10, 246–249 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Gey van Pittius, N. C. et al. Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol. Biol. 6, 95 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sala, A., Bordes, P. & Genevaux, P. Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins (Basel) 6, 1002–1020 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rose, G. et al. Mapping of genotype-phenotype diversity among clinical isolates of Mycobacterium tuberculosis by sequence-based transcriptional profiling. Genome Biol. Evol. 5, 1849–1862 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ernst, J. D. The immunological life cycle of tuberculosis. Nat. Rev. Immunol. 12, 581–591 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Gutierrez, C. et al. Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLOS Pathog. 1, 1–7 (2005).

    Article  CAS  Google Scholar 

  29. Blouin, Y. et al. Progenitor “Mycobacterium canettii” clone responsible for lymph node tuberculosis epidemic, Djibouti. Emerg. Infect. Dis. 20, 21–28 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Koeck, J. L. et al. Clinical characteristics of the smooth tubercle bacilli “Mycobacterium canettii” infection suggest the existence of an environmental reservoir. Clin. Microbiol. Infect. 17, 1013–1019 (2010).

    Article  PubMed  Google Scholar 

  31. Supply, P. et al. Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nat. Genet. 45, 172–179 (2013). This is the most detailed genomic analysis of M. canettii and other STB to date and provides interesting insights into the evolution of the MTBC.

    Article  CAS  PubMed  Google Scholar 

  32. Coscolla, M. & Gagneux, S. Consequences of genomic diversity in Mycobacterium tuberculosis. Semin. Immunol. 26, 431–444 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smith, S. E. et al. Comparative genomic and phylogenetic approaches to characterize the role of genetic recombination in mycobacterial evolution. PLOS One 7, e50070 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gray, T. A., Krywy, J. A., Harold, J., Palumbo, M. J. & Derbyshire, K. M. Distributive conjugal transfer in mycobacteria generates progeny with meiotic-like genome-wide mosaicism, allowing mapping of a mating identity locus. PLOS Biol. 11, e1001602 (2013). This paper is the first description of the novel mechanism of horizontal gene exchange known as distributive conjugal transfer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mortimer, T. D. & Pepperell, C. S. Genomic signatures of distributive conjugal transfer among mycobacteria. Genome Biol. Evol. 6, 2489–2500 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boritsch, E. C. et al. Key experimental evidence of chromosomal DNA transfer among selected tuberculosis-causing mycobacteria. Proc. Natl Acad. Sci. USA 113, 9876–9881 (2016). This paper provides experimental evidence for ongoing HGT in M. canettii and other STB. By contrast, and despite multiple attempts, no evidence of HGT was detected in the MTBC.

    Article  CAS  PubMed  Google Scholar 

  37. Young, D. B., Comas, I. & de Carvalho, L. P. Phylogenetic analysis of vitamin B12-related metabolism in Mycobacterium tuberculosis. Front. Mol. Biosci. 2, 6 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zumbo, A. et al. Functional dissection of protein domains involved in the immunomodulatory properties of PE_PGRS33 of Mycobacterium tuberculosis. Pathog. Dis. 69, 232–239 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Boritsch, E. C. et al. pks5-recombination-mediated surface remodelling in Mycobacterium tuberculosis emergence. Nat. Microbiol. 1, 15019 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Cadena, A. M., Fortune, S. M. & Flynn, J. L. Heterogeneity in tuberculosis. Nat. Rev. Immunol. 17, 691–702 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brites, D. & Gagneux, S. Co-evolution of Mycobacterium tuberculosis and Homo sapiens. Immunol. Rev. 264, 6–24 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Smith, T. A comparative study of bovine tubercle bacilli and of human bacilli from sputum. J. Exp. Med. 3, 451–511 (1898).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Muller, B. et al. Zoonotic Mycobacterium bovis-induced tuberculosis in humans. Emerg. Infect. Dis. 19, 899–908 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gormley, E. & Corner, L. A. Control strategies for wildlife tuberculosis in Ireland. Transbound Emerg. Dis. 60 (Suppl. 1), 128–135 (2013).

    Article  PubMed  Google Scholar 

  45. Smith, N. H. et al. Ecotypes of the Mycobacterium tuberculosis complex. J. Theor. Biol. 239, 220–225 (2005).

    Article  PubMed  Google Scholar 

  46. Pym, A. S., Brodin, P., Brosch, R., Huerre, M. & Cole, S. T. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol. Microbiol. 46, 709–717 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Mostowy, S., Cousins, D. & Behr, M. A. Genomic interrogation of the dassie bacillus reveals it as a unique RD1 mutant within the Mycobacterium tuberculosis complex. J. Bacteriol. 186, 104–109 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Alexander, K. A. et al. Novel Mycobacterium tuberculosis complex pathogen, M. mungi. Emerg. Infect. Dis. 16, 1296–1299 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mahairas, G. G., Sabo, P. J., Hickey, M. J., Singh, D. C. & Stover, C. K. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol. 178, 1274–1282 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Behr, M. A. Comparative genomics of mycobacteria: some answers, yet more new questions. Cold Spring Harb. Perspect. Med. 5, a021204 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  51. Gonzalo-Asensio, J. et al. Evolutionary history of tuberculosis shaped by conserved mutations in the PhoPR virulence regulator. Proc. Natl Acad. Sci. USA 111, 11491–11496 (2014). This is an elegant study exploring the impact of mutations in the PhoPR two-component system on the virulence and potential host tropism in the MTBC.

    Article  CAS  PubMed  Google Scholar 

  52. Whelan, A. O. et al. Revisiting host preference in the Mycobacterium tuberculosis complex: experimental infection shows M. tuberculosis H37Rv to be avirulent in cattle. PLOS One 5, e8527 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ameni, G. et al. Transmission of Mycobacterium tuberculosis between farmers and cattle in central Ethiopia. PLOS One 8, e76891 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Manchester, K. Tuberculosis and leprosy in antiquity: an interpretation. Med. Hist. 28, 162–173 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Garnier, T. et al. The complete genome sequence of Mycobacterium bovis. Proc. Natl Acad. Sci. USA 100, 7877–7882 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Brosch, R. et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl Acad. Sci. USA 99, 3684–3689 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Mostowy, S., Cousins, D., Brinkman, J., Aranaz, A. & Behr, M. A. Genomic deletions suggest a phylogeny for the Mycobacterium tuberculosis complex. J. Infect. Dis. 186, 74–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Dippenaar, A. et al. Whole genome sequence analysis of Mycobacterium suricattae. Tuberculosis (Edinb.) 95, 682–688 (2015).

    Article  CAS  Google Scholar 

  60. de Jong, B. C., Antonio, M. & Gagneux, S. Mycobacterium africanum — review of an important cause of human tuberculosis in West Africa. PLOS Negl. Trop. Dis. 4, e744 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Smith, N. H., Hewinson, R. G., Kremer, K., Brosch, R. & Gordon, S. V. Myths and misconceptions: the origin and evolution of Mycobacterium tuberculosis. Nat. Rev. Microbiol. 7, 537–544 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Comas, I. et al. Population genomics of Mycobacterium tuberculosis in Ethiopia contradicts the virgin soil hypothesis for human tuberculosis in sub-Saharan Africa. Curr. Biol. 25, 3260–3266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Comas, I. et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat. Genet. 45, 1176–1182 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kay, G. L. et al. Eighteenth-century genomes show that mixed infections were common at time of peak tuberculosis in Europe. Nat. Commun. 6, 6717 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bos, K. I. et al. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514, 494–497 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Baker, O. et al. Human tuberculosis predates domestication in ancient Syria. Tuberculosis (Edinb.) 95 (Suppl. 1), S4–S12 (2015).

    Article  Google Scholar 

  67. Hershkovitz, I. et al. Detection and molecular characterization of 9000-year-old Mycobacterium tuberculosis from a neolithic settlement in the Eastern Mediterranean. PLOS ONE 3, e3426 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee, O. Y. et al. Mycobacterium tuberculosis complex lipid virulence factors preserved in the 17,000-year-old skeleton of an extinct bison, Bison antiquus. PLOS One 7, e41923 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Eldholm, V. et al. Armed conflict and population displacement as drivers of the evolution and dispersal of Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 113, 13881–13886 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Ho, S. Y. & Larson, G. Molecular clocks: when times are a-changin'. Trends Genet. 22, 79–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Duchene, S. et al. Genome-scale rates of evolutionary change in bacteria. Microb. Genom. 2, e000094 (2016).

    PubMed  PubMed Central  Google Scholar 

  72. Comas, I. & Gagneux, S. A role for systems epidemiology in tuberculosis research. Trends Microbiol. 19, 492–500 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gagneux, S. Host–pathogen coevolution in human tuberculosis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 850–859 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).

    Article  Google Scholar 

  75. Hirsh, A. E., Tsolaki, A. G., DeRiemer, K., Feldman, M. W. & Small, P. M. Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proc. Natl Acad. Sci. USA 101, 4871–4876 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Baker, L., Brown, T., Maiden, M. C. & Drobniewski, F. Silent nucleotide polymorphisms and a phylogeny for Mycobacterium tuberculosis. Emerg. Infect. Dis. 10, 1568–1577 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Reed, M. B. et al. Major Mycobacterium tuberculosis lineages associate with patient country of origin. J. Clin. Microbiol. 47, 1119–1128 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gagneux, S. et al. Variable host–pathogen compatibility in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 103, 2869–2873 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Fenner, L. et al. HIV infection disrupts the sympatric host–pathogen relationship in human tuberculosis. PLOS Genet. 9, e1003318 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Asante-Poku, A. et al. Mycobacterium africanum is associated with patient ethnicity in Ghana. PLOS Negl. Trop. Dis. 9, e3370 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Asante-Poku, A. et al. Molecular epidemiology of Mycobacterium africanum in Ghana. BMC Infect. Dis. 16, 385 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Systemat. 19, 207–233 (1988).

    Article  Google Scholar 

  83. Coll, F. et al. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat. Commun. 5, 4812 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Stucki, D. et al. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat. Genet. 48, 1535–1543 (2016). In this study, several thousand MTBC L4 clinical isolates are subtyped into sublineages. The geographical distribution of these sublineages supports a classification into ecological specialists and generalists.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Comas, I. et al. Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat. Genet. 42, 498–503 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pepperell, C. S. et al. The role of selection in shaping diversity of natural M. tuberculosis populations. PLOS Pathog. 9, e1003543 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Coscolla, M. et al. M. tuberculosis T cell epitope analysis reveals paucity of antigenic variation and identifies rare variable TB antigens. Cell Host Microbe 18, 538–548 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yruela, I., Contreras-Moreira, B., Magalhaes, C., Osorio, N. S. & Gonzalo-Asensio, J. Mycobacterium tuberculosis complex exhibits lineage-specific variations affecting protein ductility and epitope recognition. Genome Biol. Evol. 8, 3751–3764 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Blaser, M. J. & Kirschner, D. The equilibria that allow bacterial persistence in human hosts. Nature 449, 843–849 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Zheng, N., Whalen, C. C. & Handel, A. Modeling the potential impact of host population survival on the evolution of M. tuberculosis latency. PLOS One 9, e105721 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Barnes, I., Duda, A., Pybus, O. G. & Thomas, M. G. Ancient urbanization predicts genetic resistance to tuberculosis. Evolution 65, 842–848 (2011).

    Article  PubMed  Google Scholar 

  92. Coscolla, M. & Gagneux, S. Does M. tuberculosis genomic diversity explain disease diversity? Drug Discov. Today Dis. Mech. 7, e43–e59 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hershberg, R. et al. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLOS Biol. 6, e311 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Williams, A. C. & Dunbar, R. I. Big brains, meat, tuberculosis and the nicotinamide switches: co-evolutionary relationships with modern repercussions on longevity and disease? Med. Hypotheses 83, 79–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Supply, P. et al. Linkage disequilibrium between minisatellite loci supports clonal evolution of Mycobacterium tuberculosis in a high tuberculosis incidence area. Mol. Microbiol. 47, 529–538 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Gagneux, S. & Small, P. M. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect. Dis. 7, 328–337 (2007).

    Article  PubMed  Google Scholar 

  97. Comas, I., Homolka, S., Niemann, S. & Gagneux, S. Genotyping of genetically monomorphic bacteria: DNA sequencing in mycobacterium tuberculosis highlights the limitations of current methodologies. PLOS ONE 4, e7815 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Comas, I. et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat. Genet. 44, 106–110 (2012). In this study, the authors use a combination of experimental evolution and molecular epidemiological data to identify fitness compensatory mutations in the RNA polymerase of rifampicin-resistant MTBC.

    Article  CAS  Google Scholar 

  99. Farhat, M. R. et al. Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat. Genet. 45, 1183–1189 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Namouchi, A., Didelot, X., Schock, U., Gicquel, B. & Rocha, E. P. After the bottleneck: genome-wide diversification of the Mycobacterium tuberculosis complex by mutation, recombination, and natural selection. Genome Res. 22, 721–734 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu, X., Gutacker, M. M., Musser, J. M. & Fu, Y. X. Evidence for recombination in Mycobacterium tuberculosis. J. Bacteriol. 188, 8169–8177 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Smith, N. H., Gordon, S. V., de la Rua-Domenech, R., Clifton-Hadley, R. S. & Hewinson, R. G. Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis. Nat. Rev. Microbiol. 4, 670–681 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Maynard Smith, J. & Haigh, J. The hitch-hiking effect of a favourable gene. Genet. Res. 23, 23–35 (1974).

    Article  Google Scholar 

  104. Eldholm, V. et al. Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible ancestor in a single patient. Genome Biol. 15, 490 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Charlesworth, B. Background selection 20 years on: the Wilhelmine, E. Key 2012 invitational lecture. J. Hered. 104, 161–171 (2013).

    Article  PubMed  Google Scholar 

  106. Pepperell, C. et al. Bacterial genetic signatures of human social phenomena among M. tuberculosis from an Aboriginal Canadian population. Mol. Biol. Evol. 27, 427–440 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Trauner, A. et al. The within-host population dynamics of Mycobacterium tuberculosis vary with treatment efficacy. Genome Biol. 18, 71 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Keinan, A. & Clark, A. G. Recent explosive human population growth has resulted in an excess of rare genetic variants. Science 336, 740–743 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Luo, T. et al. Southern East Asian origin and coexpansion of Mycobacterium tuberculosis Beijing family with Han Chinese. Proc. Natl Acad. Sci. USA 112, 8136–8141 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Merker, M. et al. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat. Genet. 47, 242–249 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Lieberman, T. D. et al. Genomic diversity in autopsy samples reveals within-host dissemination of HIV-associated Mycobacterium tuberculosis. Nat. Med. 22, 1470–1474 (2016). This paper provides a detailed view into the within-host diversity and evolution of the MTBC, using thousands of genome sequences obtained from individuals co-infected with HIV and TB who died before treatment initiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dean, G. S. et al. Minimum infective dose of Mycobacterium bovis in cattle. Infect. Immun. 73, 6467–6471 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Charlesworth, B. Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10, 195–205 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Eldholm, V. & Balloux, F. Antimicrobial resistance in Mycobacterium tuberculosis: the odd one out. Trends Microbiol. 24, 637–648 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Bloemberg, G. V. et al. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N. Engl. J. Med. 373, 1986–1988 (2015). This is the first report of the acquisition of resistance to the two new tuberculosis drugs bedaquiline and delamanid during the treatment of a single patient.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Gygli, S. M., Borrell, S., Trauner, A. & Gagneux, S. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol. Rev. 41, 354–373 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Muller, B., Borrell, S., Rose, G. & Gagneux, S. The heterogeneous evolution of multidrug-resistant Mycobacterium tuberculosis. Trends Genet. 29, 160–169 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Middlebrook, G. & Cohn, M. L. Some observations on the pathogenicity of isoniazid-resistant variants of tubercle bacilli. Science 118, 297–299 (1953).

    Article  CAS  PubMed  Google Scholar 

  119. Manson, A. L. et al. Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance. Nat. Genet. 49, 395–402 (2017). This study is the largest whole-genome-based analysis of MTBC drug resistance to date.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sander, P. et al. Fitness cost of chromosomal drug resistance-conferring mutations. Antimicrob. Agents Chemother. 46, 1204–1211 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gagneux, S. et al. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312, 1944–1946 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Sherman, D. R. et al. Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 272, 1641–1643 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Song, T. et al. Fitness costs of rifampicin resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and compensated by mutation in the β' subunit of RNA polymerase. Mol. Microbiol. 91, 1106–1119 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. de Vos, M. et al. Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob. Agents Chemother. 57, 827–832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Borrell, S. et al. Epistasis between antibiotic resistance mutations drives the evolution of extensively drug-resistant tuberculosis. Evol. Med. Public Health 2013, 65–74 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Fenner, L. et al. Effect of mutation and genetic background on drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 56, 3047–3053 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Borrell, S. & Gagneux, S. Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis. Int. J. Tuberc Lung Dis. 13, 1456–1466 (2009).

    CAS  PubMed  Google Scholar 

  128. Werngren, J. & Hoffner, S. E. Drug-susceptible Mycobacterium tuberculosis Beijing genotype does not develop mutation-conferred resistance to rifampin at an elevated rate. J. Clin. Microbiol. 41, 1520–1524 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ford, C. B. et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat. Genet. 45, 784–790 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Copin, R. et al. Sequence diversity in the pe_pgrs genes of Mycobacterium tuberculosis is independent of human T cell recognition. mBio 5, e00960–e00913 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kwan, C. K. & Ernst, J. D. HIV and tuberculosis: a deadly human syndemic. Clin. Microbiol. Rev. 24, 351–376 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Rappuoli, R., Bottomley, M. J., D'Oro, U., Finco, O. & De Gregorio E. Reverse vaccinology 2.0: human immunology instructs vaccine antigen design. J. Exp. Med. 213, 469–481 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tameris, M. D. et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381, 1021–1028 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Eldholm, V. et al. Impact of HIV co-infection on the evolution and transmission of multidrug-resistant tuberculosis. eLife 213, 469–481 (2016).

    Google Scholar 

  135. Koch, A. S. et al. The influence of HIV on the evolution of Mycobacterium tuberculosis. Mol. Biol. Evol. 34, 1654–1668 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Copin, R. et al. Within host evolution selects for a dominant genotype of Mycobacterium tuberculosis while T cells increase pathogen genetic diversity. PLOS Pathog. 12, e1006111 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Brites, D. & Gagneux, S. The nature and evolution of genomic diversity in the Mycobacterium tuberculosis complex. Adv. Exp. Med. Biol. 1019, 1–26 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Casali, N. et al. Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat. Genet. 46, 279–286 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks all the members of his group for the stimulating discussions over the years. Work in the author's laboratory is supported by the Swiss National Science Foundation (grants 310030_166687, IZRJZ3_164171 and IZLSZ3_170834), the European Research Council (309540-EVODRTB) and SystemsX.ch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastien Gagneux.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

Acid-fast bacilli

Mycobacteria that have a thick, lipid-rich cell wall that retains staining despite acid treatment; hence 'acid-fast'.

Multilocus sequence typing

A standard genotyping method based on sequence data from approximately seven housekeeping genes, which together define strain-specific sequence types.

Professional pathogen

A pathogen with no environmental reservoir that has to cause disease to transmit from host to host.

Fast-growers

Mycobacteria that form colonies in less than 7 days.

Slow-growers

Mycobacteria that form colonies in more than 7 days.

PhoPR two-component system

Mycobacterial transcription factors involved in Mycobacterium tuberculosis complex virulence.

DosR/S/T regulon

A set of mycobacterial genes involved in latent tuberculosis infection.

mce-associated genes

Mycobacterial genes originally identified as being involved in macrophage entry.

ESAT6 secretion

(ESX). A protein secretion apparatus that, in the case of the Mycobacterium tuberculosis complex, exports many virulence determinants.

Toxin–antitoxin system genes

Regulatory systems comprised of two linked genes, one encoding the toxin and the other encoding the neutralizing antitoxin.

Smooth tubercle bacilli

(STB). Organisms that produce smooth colonies on agar plates, which is in contrast to the Mycobacterium tuberculosis complex, which produces rough colonies.

Distributive conjugal transfer

A phage-dependent mechanism of DNA transfer between bacteria.

Transconjugants

Bacterial variants that have incorporated DNA from other bacteria through conjugation.

Spillover events

The occasional transfer of a particular Mycobacterium tuberculosis complex variant from its primary host species into another host species.

Ecotypes

An alternative classification of bacterial genotypes that incorporates ecological characteristics.

Sympatric

Host and pathogen variants that co-occur in a given geographical setting.

Allopatric

Host and pathogen variants that usually occur in geographically separate settings.

T cell epitopes

Parts of the Mycobacterium tuberculosis complex proteome (that is, peptides) that are recognized by T lymphocytes.

Founder effects

The random introduction of a particular bacterial variant into a given setting.

Homoplasies

Characters acquired independently by two or more bacterial variants that do not share an immediate common ancestor.

Selective sweeps

Positive selection that leads to the fixation of a new beneficial mutation.

Background selection

Selection against a deleterious mutation that leads to the elimination of any mutation linked to the target of selection.

Purifying selection

Selection against detrimental mutations.

Transmission bottlenecks

A type of population bottleneck in which only a subset of the bacterial diversity present in one host is transmitted to the next.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagneux, S. Ecology and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol 16, 202–213 (2018). https://doi.org/10.1038/nrmicro.2018.8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2018.8

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology