Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A giant molecular proton pump: structure and mechanism of respiratory complex I

Key Points

  • The electron transport chain (ETC) is crucial for life, as it is essential for cellular ATP production.

  • Most ETC enzymes are large multi-subunit protein assemblies. Of these, complex I is the largest and most elaborate, and such complexity has made it difficult to elucidate the details of its function.

  • The bacterial complex I represents the minimal version of the enzyme and has 14 conserved subunits that are necessary and essential for function. The subunits are shared between the peripheral arm (where electron transfer takes place) and the membrane arm (which carries out proton translocation).

  • The mitochondrial enzyme shares this structure and has acquired supernumerary subunits.

  • Novel insights have recently been obtained on the evolution of antiporter-like subunits of complex I, which are part of the membrane arm, from the Mrp family of antiporters.

  • The mechanism of complex I is unique in that it must couple the spatially separated electron transfer and proton translocation pathways.

  • The mechanism of coupling between electron transfer and proton translocation probably involves long-range conformational changes driven mainly by quinone redox reactions.

Abstract

The mitochondrial respiratory chain, also known as the electron transport chain (ETC), is crucial to life, and energy production in the form of ATP is the main mitochondrial function. Three proton-translocating enzymes of the ETC, namely complexes I, III and IV, generate proton motive force, which in turn drives ATP synthase (complex V). The atomic structures and basic mechanisms of most respiratory complexes have previously been established, with the exception of complex I, the largest complex in the ETC. Recently, the crystal structure of the entire complex I was solved using a bacterial enzyme. The structure provided novel insights into the core architecture of the complex, the electron transfer and proton translocation pathways, as well as the mechanism that couples these two processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The electron transport chain.
Figure 2: Structure of Thermus thermophilus complex I.
Figure 3: Proton translocation channels.
Figure 4: Proposed coupling mechanism of complex I.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Margulis, L. Origin of Eukaryotic Cells (Yale University Press, 1970).

    Google Scholar 

  2. Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144–148 (1961).

    CAS  PubMed  Google Scholar 

  3. Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J. E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).

    CAS  PubMed  Google Scholar 

  4. Watt, I. N., Montgomery, M. G., Runswick, M. J., Leslie, A. G. & Walker, J. E. Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc. Natl Acad. Sci. USA 107, 16823–16827 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376, 660–669 (1995).

    CAS  PubMed  Google Scholar 

  6. Tsukihara, T. et al. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272, 1136–1144 (1996).

    CAS  PubMed  Google Scholar 

  7. Iwata, S. et al. Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281, 64–71 (1998).

    CAS  PubMed  Google Scholar 

  8. Sun, F. et al. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121, 1043–1057 (2005).

    CAS  PubMed  Google Scholar 

  9. Baradaran, R., Berrisford, J. M., Minhas, G. S. & Sazanov, L. A. Crystal structure of the entire respiratory complex I. Nature 494, 443–448 (2013). The first atomic structure of the entire complex I, revealing the structure of the junction between the two main arms, including the unique quinone-binding site.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jackson, J. B. A review of the binding-change mechanism for proton-translocating transhydrogenase. Biochim. Biophys. Acta 1817, 1839–1846 (2012).

    CAS  PubMed  Google Scholar 

  11. Comte, B., Vincent, G., Bouchard, B., Benderdour, M. & Des Rosiers, C. Reverse flux through cardiac NADP+-isocitrate dehydrogenase under normoxia and ischemia. Am. J. Physiol. Heart Circ. Physiol. 283, H1505–H1514 (2002).

    CAS  PubMed  Google Scholar 

  12. Sazanov, L. A. & Jackson, J. B. Proton-translocating transhydrogenase and NAD- and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic acid cycle activity in mitochondria. FEBS Lett. 344, 109–116 (1994).

    CAS  PubMed  Google Scholar 

  13. Belogrudov, G. & Hatefi, Y. Catalytic sector of complex I (NADH:ubiquinone oxidoreductase): subunit stoichiometry and substrate-induced conformation changes. Biochemistry 33, 4571–4576 (1994).

    CAS  PubMed  Google Scholar 

  14. Mamedova, A. A., Holt, P. J., Carroll, J. & Sazanov, L. A. Substrate-induced conformational change in bacterial complex I. J. Biol. Chem. 279, 23830–23836 (2004).

    CAS  PubMed  Google Scholar 

  15. Berrisford, J. M., Thompson, C. J. & Sazanov, L. A. Chemical and NADH-induced, ROS-dependent, cross-linking between subunits of complex I from Escherichia coli and Thermus thermophilus. Biochemistry 47, 10262–10270 (2008).

    CAS  PubMed  Google Scholar 

  16. Baranova, E. A., Morgan, D. J. & Sazanov, L. A. Single particle analysis confirms distal location of subunits NuoL and NuoM in Escherichia coli complex I. J. Struct. Biol. 159, 238–242 (2007).

    CAS  PubMed  Google Scholar 

  17. Holt, P. J., Morgan, D. J. & Sazanov, L. A. The location of NuoL and NuoM subunits in the membrane domain of the Escherichia coli complex I: implications for the mechanism of proton pumping. J. Biol. Chem. 278, 43114–43120 (2003).

    CAS  PubMed  Google Scholar 

  18. Sazanov, L. A., Peak-Chew, S. Y., Fearnley, I. M. & Walker, J. E. Resolution of the membrane domain of bovine complex I into subcomplexes: implications for the structural organization of the enzyme. Biochemistry 39, 7229–7235 (2000).

    CAS  PubMed  Google Scholar 

  19. Sazanov, L. A. & Walker, J. E. Cryo-electron crystallography of two sub-complexes of bovine complex I reveals the relationship between the membrane and peripheral arms. J. Mol. Biol. 302, 455–464 (2000).

    CAS  PubMed  Google Scholar 

  20. Morgan, D. J. & Sazanov, L. A. Three-dimensional structure of respiratory complex I from Escherichia coli in ice in the presence of nucleotides. Biochim. Biophys. Acta 1777, 711–718 (2008).

    CAS  PubMed  Google Scholar 

  21. Grigorieff, N. Three-dimensional structure of bovine NADH:ubiquinone oxidoreductase (complex I) at 22 Å in ice. J. Mol. Biol. 277, 1033–1046 (1998).

    CAS  PubMed  Google Scholar 

  22. Guenebaut, V., Schlitt, A., Weiss, H., Leonard, K. & Friedrich, T. Consistent structure between bacterial and mitochondrial NADH:ubiquinone oxidoreductase (complex I). J. Mol. Biol. 276, 105–112 (1998).

    CAS  PubMed  Google Scholar 

  23. Yip, C. Y., Harbour, M. E., Jayawardena, K., Fearnley, I. M. & Sazanov, L. A. Evolution of respiratory complex I: “supernumerary” subunits are present in the alpha-proteobacterial enzyme. J. Biol. Chem. 286, 5023–5033 (2011).

    CAS  PubMed  Google Scholar 

  24. Brandt, U. Energy converting NADH:quinone oxidoreductase (complex I). Annu. Rev. Biochem. 75, 69–92 (2006).

    CAS  PubMed  Google Scholar 

  25. Walker, J. E. The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q. Rev. Biophys. 25, 253–324 (1992).

    CAS  PubMed  Google Scholar 

  26. Hirst, J., Carroll, J., Fearnley, I. M., Shannon, R. J. & Walker, J. E. The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim. Biophys. Acta 1604, 135–150 (2003).

    CAS  PubMed  Google Scholar 

  27. Vinothkumar, K. R., Zhu, J. & Hirst, J. Architecture of mammalian respiratory complex I. Nature 515, 80–84 (2014). Cryo-EM study of bovine complex I at 5 Å resolution, showing the arrangement of all core and, for the first time, of about 14 supernumerary subunits.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zickermann, V., Angerer, H., Ding, M. G., Nubel, E. & Brandt, U. Small single transmembrane domain (STMD) proteins organize the hydrophobic subunits of large membrane protein complexes. FEBS Lett. 584, 2516–2525 (2010).

    CAS  PubMed  Google Scholar 

  29. Hunte, C., Zickermann, V. & Brandt, U. Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329, 448–451 (2010). First study of mitochondrial complex I by X-ray crystallography, at 6.3 Å resolution, showing the arrangement of functional modules.

    CAS  PubMed  Google Scholar 

  30. Efremov, R. G. & Sazanov, L. A. Respiratory complex I: 'steam engine' of the cell? Curr. Opin. Struct. Biol. 21, 532–540 (2011).

    CAS  PubMed  Google Scholar 

  31. Fearnley, I. M. & Walker, J. E. Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins. Biochim. Biophys. Acta 1140, 105–134 (1992).

    CAS  PubMed  Google Scholar 

  32. Zickermann, V. et al. Mechanistic insight from the crystal structure of mitochondrial complex I. Science 347, 44–49 (2015). X-ray crystallography study of mitochondrial complex I from Y. lipolytica at 3.8 Å resolution, revealing the structure of the large parts of the core subunits.

    CAS  PubMed  Google Scholar 

  33. Berrisford, J. M. & Sazanov, L. A. Structural basis for the mechanism of respiratory complex I. J. Biol. Chem. 284, 29773–29783 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sazanov, L. A. & Hinchliffe, P. Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311, 1430–1436 (2006). First atomic structure of the peripheral arm of complex I, showing the arrangement of subunits and redox cofactors, including uniquely long chain of Fe–S clusters.

    CAS  PubMed  Google Scholar 

  35. Efremov, R. G. & Sazanov, L. A. Structure of the membrane domain of respiratory complex I. Nature 476, 414–420 (2011). First atomic structure of the membrane arm of complex I, revealing the novel fold of antiporter-like subunits.

    CAS  PubMed  Google Scholar 

  36. Efremov, R. G., Baradaran, R. & Sazanov, L. A. The architecture of respiratory complex I. Nature 465, 441–445 (2010). First study of the entire complex I and of the isolated membrane domain by X-ray crystallography, revealing the arrangement of antiporter-like subunits and the traverse coupling helix in the membrane arm.

    CAS  PubMed  Google Scholar 

  37. Sazanov, L. A. Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Biochemistry 46, 2275–2288 (2007).

    CAS  PubMed  Google Scholar 

  38. Ohnishi, T. Iron–sulfur clusters/semiquinones in complex I. Biochim. Biophys. Acta 1364, 186–206 (1998).

    CAS  PubMed  Google Scholar 

  39. Page, C. C., Moser, C. C., Chen, X. & Dutton, P. L. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402, 47–52 (1999).

    CAS  PubMed  Google Scholar 

  40. Pohl, T. et al. Iron-sulfur cluster N7 of the NADH:ubiquinone oxidoreductase (complex I) is essential for stability but not involved in electron transfer. Biochemistry 46, 6588–6596 (2007).

    CAS  PubMed  Google Scholar 

  41. Mathiesen, C. & Hagerhall, C. Transmembrane topology of the NuoL, M and N subunits of NADH:quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. Biochim. Biophys. Acta 1556, 121–132 (2002).

    CAS  PubMed  Google Scholar 

  42. Vinothkumar, K. R. & Henderson, R. Structures of membrane proteins. Q. Rev. Biophys. 43, 65–158 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Screpanti, E. & Hunte, C. Discontinuous membrane helices in transport proteins and their correlation with function. J. Struct. Biol. 159, 261–267 (2007).

    CAS  PubMed  Google Scholar 

  44. Cooley, R. B., Arp, D. J. & Karplus, P. A. Evolutionary origin of a secondary structure: π-helices as cryptic but widespread insertional variations of α-helices that enhance protein functionality. J. Mol. Biol. 404, 232–246 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Efremov, R. G. & Sazanov, L. A. The coupling mechanism of respiratory complex I — a structural and evolutionary perspective. Biochim. Biophys. Acta 1817, 1785–1795 (2012).

    CAS  PubMed  Google Scholar 

  46. Vinogradov, A. D. Catalytic properties of the mitochondrial NADH–ubiquinone oxidoreductase (complex I) and the pseudo-reversible active/inactive enzyme transition. Biochim. Biophys. Acta 1364, 169–185 (1998).

    CAS  PubMed  Google Scholar 

  47. Moser, C. C., Farid, T. A., Chobot, S. E. & Dutton, P. L. Electron tunneling chains of mitochondria. Biochim. Biophys. Acta 1757, 1096–1109 (2006).

    CAS  PubMed  Google Scholar 

  48. Verkhovskaya, M. L., Belevich, N., Euro, L., Wikstrom, M. & Verkhovsky, M. I. Real-time electron transfer in respiratory complex I. Proc. Natl Acad. Sci. USA 105, 3763–3767 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kotlyar, A. B., Sled, V. D., Burbaev, D. S., Moroz, I. A. & Vinogradov, A. D. Coupling site I and the rotenone-sensitive ubisemiquinone in tightly coupled submitochondrial particles. FEBS Lett. 264, 17–20 (1990).

    CAS  PubMed  Google Scholar 

  50. Bridges, H. R., Bill, E. & Hirst, J. Mossbauer spectroscopy on respiratory complex I: the iron–sulfur cluster ensemble in the NADH-reduced enzyme is partially oxidized. Biochemistry 51, 149–158 (2012).

    CAS  PubMed  Google Scholar 

  51. Roessler, M. M. et al. Direct assignment of EPR spectra to structurally defined iron–sulfur clusters in complex I by double electron–electron resonance. Proc. Natl Acad. Sci. USA 107, 1930–1935 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chartron, J. et al. Substrate recognition, protein dynamics, and iron-sulfur cluster in Pseudomonas aeruginosa adenosine 5′-phosphosulfate reductase. J. Mol. Biol. 364, 152–169 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Buch-Pedersen, M. J., Pedersen, B. P., Veierskov, B., Nissen, P. & Palmgren, M. G. Protons and how they are transported by proton pumps. Pflugers Arch. 457, 573–579 (2009).

    CAS  PubMed  Google Scholar 

  54. Shaffer, P. L., Goehring, A., Shankaranarayanan, A. & Gouaux, E. Structure and mechanism of a Na+-independent amino acid transporter. Science 325, 1010–1014 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Morino, M. et al. Single site mutations in the hetero-oligomeric Mrp antiporter from alkaliphilic Bacillus pseudofirmus OF4 that affect Na+/H+ antiport activity, sodium exclusion, individual Mrp protein levels, or Mrp complex formation. J. Biol. Chem. 285, 30942–30950 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee, C. et al. A two-domain elevator mechanism for sodium/proton antiport. Nature 501, 573–577 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hunte, C. et al. Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435, 1197–1202 (2005).

    CAS  PubMed  Google Scholar 

  58. Krishnamurthy, H., Piscitelli, C. L. & Gouaux, E. Unlocking the molecular secrets of sodium-coupled transporters. Nature 459, 347–355 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kalayil, S., Schulze, S. & Kuhlbrandt, W. Arginine oscillation explains Na+ independence in the substrate/product antiporter CaiT. Proc. Natl Acad. Sci. USA 110, 17296–17301 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Roberts, P. G. & Hirst, J. The deactive form of respiratory complex I from mammalian mitochondria is a Na+/H+ antiporter. J. Biol. Chem. 287, 34743–34751 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gemperli, A. C., Dimroth, P. & Steuber, J. The respiratory complex I (NDH-1) from Klebsiella pneumoniae, a sodium pump. J. Biol. Chem. 277, 33811–33817 (2002).

    CAS  PubMed  Google Scholar 

  62. Flocco, M. M. & Mowbray, S. L. Strange bedfellows: interactions between acidic side-chains in proteins. J. Mol. Biol. 254, 96–105 (1995).

    CAS  PubMed  Google Scholar 

  63. Verkhovskaya, M. & Bloch, D. A. Energy-converting respiratory complex I: on the way to the molecular mechanism of the proton pump. Int. J. Biochem. Cell Biol. 45, 491–511 (2013).

    CAS  PubMed  Google Scholar 

  64. Sato, M., Sinha, P. K., Torres-Bacete, J., Matsuno-Yagi, A. & Yagi, T. Energy transducing roles of antiporter-like subunits in Escherichia coli NDH-1 with main focus on subunit NuoN (ND2). J. Biol. Chem. 288, 24705–24716 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kaila, V. R., Wikstrom, M. & Hummer, G. Electrostatics, hydration, and proton transfer dynamics in the membrane domain of respiratory complex I. Proc. Natl Acad. Sci. USA 111, 6988–6993 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Verkhovskaya, M. & Wikstrom, M. Oxidoreduction properties of bound ubiquinone in complex I from Escherichia coli. Biochim. Biophys. Acta 1837, 246–250 (2014).

    CAS  PubMed  Google Scholar 

  67. Brandt, U. A two-state stabilization-change mechanism for proton-pumping complex I. Biochim Biophys. Acta 1807, 1364–1369 (2011).

    CAS  PubMed  Google Scholar 

  68. Sazanov, L. A. The mechanism of coupling between electron transfer and proton translocation in respiratory complex I. J. Bioenerg. Biomembr. 46, 247–253 (2014).

    CAS  PubMed  Google Scholar 

  69. Ohnishi, T., Nakamaru-Ogiso, E. & Ohnishi, S. T. A new hypothesis on the simultaneous direct and indirect proton pump mechanisms in NADH-quinone oxidoreductase (complex I). FEBS Lett. 584, 4131–4137 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Galkin, A. et al. Identification of the mitochondrial ND3 subunit as a structural component involved in the active/deactive enzyme transition of respiratory complex I. J. Biol. Chem. 283, 20907–20913 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Nakamaru-Ogiso, E. et al. The membrane subunit NuoL (ND5) is involved in the indirect proton pumping mechanism of Escherichia coli complex I. J. Biol. Chem. 285, 39070–39078 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Torres-Bacete, J., Sinha, P. K., Matsuno-Yagi, A. & Yagi, T. Structural contribution of C-terminal segments of NuoL (ND5) and NuoM (ND4) subunits of complex I from Escherichia coli. J. Biol. Chem. 286, 34007–34014 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Belevich, G., Knuuti, J., Verkhovsky, M. I., Wikstrom, M. & Verkhovskaya, M. Probing the mechanistic role of the long α-helix in subunit L of respiratory complex I from Escherichia coli by site-directed mutagenesis. Mol. Microbiol. 82, 1086–1095 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Steimle, S. et al. Asp563 of the horizontal helix of subunit NuoL is involved in proton translocation by the respiratory complex I. FEBS Lett. 586, 699–704 (2012).

    CAS  PubMed  Google Scholar 

  75. Schapira, A. H. Human complex I defects in neurodegenerative diseases. Biochim. Biophys. Acta 1364, 261–270 (1998).

    CAS  PubMed  Google Scholar 

  76. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009).

    CAS  PubMed  Google Scholar 

  77. Dawson, T. M. & Dawson, V. L. Molecular pathways of neurodegeneration in Parkinson's disease. Science 302, 819–822 (2003).

    CAS  PubMed  Google Scholar 

  78. Balaban, R. S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell 120, 483–495 (2005).

    CAS  PubMed  Google Scholar 

  79. Brown, M. D., Voljavec, A. S., Lott, M. T., MacDonald, I. & Wallace, D. C. Leber's hereditary optic neuropathy: a model for mitochondrial neurodegenerative diseases. FASEB J. 6, 2791–2799 (1992).

    CAS  PubMed  Google Scholar 

  80. Majander, A., Huoponen, K., Savontaus, M. L., Nikoskelainen, E. & Wikstrom, M. Electron transfer properties of NADH:ubiquinone reductase in the ND1/3460 and the ND4/11778 mutations of the Leber hereditary optic neuroretinopathy (LHON). FEBS Lett. 292, 289–292 (1991).

    CAS  PubMed  Google Scholar 

  81. Bonnet, S. et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11, 37–51 (2007).

    CAS  PubMed  Google Scholar 

  82. Emami Riedmaier, A., Fisel, P., Nies, A. T., Schaeffeler, E. & Schwab, M. Metformin and cancer: from the old medicine cabinet to pharmacological pitfalls and prospects. Trends Pharmacol. Sci. 34, 126–135 (2013).

    PubMed  Google Scholar 

  83. Mitchell, P. The protonmotive Q cycle: a general formulation. FEBS Lett. 59, 137–139 (1975).

    CAS  PubMed  Google Scholar 

  84. Wikstrom, M. & Verkhovsky, M. I. Towards the mechanism of proton pumping by the haem-copper oxidases. Biochim. Biophys. Acta 1757, 1047–1051 (2006).

    PubMed  Google Scholar 

  85. Hedderich, R. Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I. J. Bioenerg. Biomembr. 36, 65–75 (2004).

    CAS  PubMed  Google Scholar 

  86. Moparthi, V. K. & Hagerhall, C. The evolution of respiratory chain complex I from a smaller last common ancestor consisting of 11 protein subunits. J. Mol. Evol. 72, 484–497 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Friedrich, T. & Scheide, D. The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett. 479, 1–5 (2000).

    CAS  PubMed  Google Scholar 

  88. Fontecilla-Camps, J. C., Volbeda, A., Cavazza, C. & Nicolet, Y. Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem. Rev. 107, 4273–4303 (2007).

    CAS  PubMed  Google Scholar 

  89. Baker, L. A., Watt, I. N., Runswick, M. J., Walker, J. E. & Rubinstein, J. L. Arrangement of subunits in intact mammalian mitochondrial ATP synthase determined by cryo-EM. Proc. Natl Acad. Sci. USA 109, 11675–11680 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Eswar, N. et al. Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinformatics 15, 5.6.1–5.6.30 (2006).

    Google Scholar 

Download references

Acknowledgements

The work in the author's laboratory in the Medical Research Council Mitochondrial Biology Unit (Cambridge, UK) was funded by the UK Medical Research Council. Additional funding was provided by the Royal Society and the European Molecular Biology Organization (EMBO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid A. Sazanov.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary information S1 (figure)

Central hydrophilic axis. (PDF 3048 kb)

Supplementary information S2 (figure)

Detailed analysis of possible pathways for proton translocation. (PDF 3329 kb)

Supplementary information S3 (figure)

Conservation of surface-exposed residues in the membrane domain of complex I. (PDF 5142 kb)

Supplementary information S4 (figure)

The most common primary human LHON mutations, mapped onto bacterial complex I structures. (PDF 2704 kb)

PowerPoint slides

Glossary

Chemiosmotic coupling

A process that links the electron transport chain to ATP synthesis.

Midpoint redox potential

(Em). A measure of the tendency of a chemical species to acquire electrons and thereby be reduced. The species with large positive potential have high affinity for electrons and vice versa. Em denotes the potential at which the compound is half oxidized and half reduced.

Molybdopterin

A class of redox cofactors found in molybdenum- and tungsten-containing enzymes, such as nitrate reductase.

[NiFe] hydrogenases

The class of hydrogenases with the most members. [NiFe] hydrogenases catalyse the reversible 2H+ + 2e ↔ H2 reaction; their core comprises the large subunit hosting the Ni–Fe active site and the small subunit hosting the Fe–S clusters.

π-bulge

(Also known as π–helix). A protein feature created by the insertion of a single additional amino acid into a pre-existing α-helix, destabilizing secondary structure in potential functional sites.

Grotthuss-type mechanism

A proton-hopping mechanism, whereby protons travel through networks of water molecules and protonatable side chains via the formation and cleavage of hydrogen bonds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazanov, L. A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat Rev Mol Cell Biol 16, 375–388 (2015). https://doi.org/10.1038/nrm3997

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3997

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing