Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TFIIH: when transcription met DNA repair

An Erratum to this article was published on 01 June 2012

This article has been updated

Key Points

  • TFIIH is a multiprotein complex that is involved in various cellular processes, including nucleotide excision repair (NER) and transcription, revealing the tight molecular connections between transcription and DNA repair.

  • During NER, TFIIH promotes the opening of DNA around a lesion, which requires the helicase activity of its XPD subunit and the ATPase activity of its XPB subunit.

  • During transcription of protein coding genes, the ATP-dependent helicase activity of XPB is required for promoter opening, and the cyclin-dependent kinase 7 (CDK7) kinase subunit of TFIIH promotes the phosphorylation of RNA polymerase II to initiate transcription. Additionally, CDK7 is involved in transactivation by phosphorylating transcription factors such as nuclear receptors.

  • Mutations in three subunits of TFIIH (XPB, XPD and p8) give rise to the autosomal recessive disorders xeroderma pigmentosum (which is sometimes associated with Cockayne syndrome) and trichothiodystrophy (TTD).

  • Disorders related to TFIIH mutations were initially defined as DNA repair syndromes. However, recent advances reveal the tight connection between transcription and DNA repair, which suggests that the clinical complexity of these syndromes results from defects in both processes.

Abstract

The transcription initiation factor TFIIH is a remarkable protein complex that has a fundamental role in the transcription of protein-coding genes as well as during the DNA nucleotide excision repair pathway. The detailed understanding of how TFIIH functions to coordinate these two processes is also providing an explanation for the phenotypes observed in patients who bear mutations in some of the TFIIH subunits. In this way, studies of TFIIH have revealed tight molecular connections between transcription and DNA repair and have helped to define the concept of 'transcription diseases'.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TFIIH opens DNA to allow the incision and excision of damaged oligonucleotides.
Figure 2: TFIIH is an essential factor of transcription initiation.

Similar content being viewed by others

Change history

  • 01 June 2012

    There was an error in table 1 on page 345 of this article: XPD is a 5' to 3' ATP-dependent helicase and not a 3' to 5' ATP-dependent helicase. This has been corrected online. We apologize for any confusion caused to readers.

References

  1. Bohr, V. A., Smith, C. A., Okumoto, D. S. & Hanawalt, P. C. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40, 359–369 (1985).

    CAS  PubMed  Google Scholar 

  2. Mellon, I., Spivak, G. & Hanawalt, P. C. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51, 241–249 (1987).

    CAS  PubMed  Google Scholar 

  3. Schaeffer, L. et al. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260, 58–63 (1993). Demonstrated that the helicase XPB, which is involved in NER, is closely associated with the TFIIH transcription complex, suggesting that DNA repair and transcription are functionally related.

    CAS  PubMed  Google Scholar 

  4. Feaver, W. J. et al. Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair. Cell 75, 1379–1387 (1993).

    CAS  PubMed  Google Scholar 

  5. Schmitz, K. M. et al. TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation. Mol. Cell 33, 344–353 (2009). Revealed that the DNA repair machinery is recruited to the promoter of active genes, keeping these promoters in a hypomethylated state.

    CAS  PubMed  Google Scholar 

  6. Le May, N. et al. NER factors are recruited to active promoters and facilitate chromatin modification for transcription in the absence of exogenous genotoxic attack. Mol. Cell 38, 54–66 (2010). Showed the sequential recruitment of the NER factors XPC, XPA, RPA, XPG and XPF–ERCC1 to the promoters of inducible genes in the absence of exogenous genotoxic attack. These NER factors (except cockayne syndrome B protein (CSB; also known as ERCC6)) are required to allow histone modifications and active DNA demethylation that are necessary for efficient transcription.

    CAS  PubMed  Google Scholar 

  7. Conaway, R. C. & Conaway, J. W. An RNA polymerase II transcription factor has an associated DNA-dependent ATPase (dATPase) activity strongly stimulated by TATA region of promoters. Proc. Natl Acad. Sci. USA 86, 7356–7360 (1989). Reported the purification of a transcription factor from rat liver that was designated transcription factor-δ, which has an associated DNA-dependent ATPase activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gerard, M. et al. Purification and interaction properties of the human RNA polymerase B(II) general transcription factor BTF2. J. Biol. Chem. 266, 20940–20945 (1991). Described the purification of the human cell transcription factor BTF2, which is required for the transcription of class II genes.

    CAS  PubMed  Google Scholar 

  9. Feaver, W. J., Gileadi, O. & Kornberg, R. Purification and characterization of yeast RNA polymerase II transcription factor b. J. Biol. Chem. 266, 19000–19005 (1991). Reported the purification of a transcription factor from yeast that was designated Tfb, which is required for Pol II transcription.

    CAS  PubMed  Google Scholar 

  10. Flores, O., Lu, H. & Reinberg, D. Factors involved in specific transcription by mammalian RNA polymerase II. Identification and characterization of factor IIH. J. Biol. Chem. 267, 2786–2793 (1992).

    CAS  PubMed  Google Scholar 

  11. Schaeffer, L. et al. The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. EMBO J. 13, 2388–2392 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Weber, C. A., Salazar, E. P., Stewart, S. A. & Thompson, L. H. ERCC2: cDNA cloning and molecular characterization of human nucleotide excision repair gene with high homology to yeast RAD3. EMBO J. 9, 1437–1447 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Weeda, G., Ma, L., van der Ham, R., van der Eb, A. J. & Hoeijmakers, J. H. J. Structure and expression of the human XPBC/ERCC-3 gene involved in DNA repair disorders xeroderma pigmentosum and Cockayne's syndrome. Nucleic Acids Res. 19, 6301–6308 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Feaver, W. J., Gileadi, O., Li, Y. & Kornberg, R. D. CTD kinase associated with yeast RNA polymerase II initiation factor b. Cell 67, 1223–1230 (1991).

    CAS  PubMed  Google Scholar 

  15. Roy, R. et al. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 79, 1093–1101 (1994). Revealed that MO15 (also known as CDK7) kinase is present in the TFIIH transcription complex.

    CAS  PubMed  Google Scholar 

  16. Fisher, R. P. & Morgan, D. O. A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell 78, 713–724 (1994).

    CAS  PubMed  Google Scholar 

  17. Mäkelä, T. P. et al. A cyclin associated with the CDK-associated kinase MO15. Nature 371, 254–257 (1994).

    PubMed  Google Scholar 

  18. Adamczewski, J. P. et al. MAT1, cdk7 and cyclin H form a kinase complex which is UV light-sensitive upon association with TFIIH. EMBO J. 15, 1877–1884 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rossignol, M., Kolb-Cheynel, I. & Egly, J. M. Substrate specificity of the cdk-activating kinase (CAK) is altered upon association with TFIIH. EMBO J. 16, 1628–1637 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Larochelle, S., Pandur, J., Fisher, R. P., Salz, H. K. & Suter, B. Cdk7 is essential for mitosis and for in vivo Cdk-activating kinase activity. Genes Dev. 12, 370–381 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fesquet, D., Morin, N., Doree, M. & Devault, A. Is Cdk7/cyclin H/MAT1 the genuine cdk activating kinase in cycling Xenopus egg extracts? Oncogene 15, 1303–1307 (1997).

    CAS  PubMed  Google Scholar 

  22. Wu, L. et al. RNA antisense abrogation of MAT1 induces G1 phase arrest and triggers apoptosis in aortic smooth muscle cells. J. Biol. Chem. 274, 5564–5572 (1999).

    CAS  PubMed  Google Scholar 

  23. Aprelikova, O., Xiong, Y. & Liu, E. T. Both p16 and p21 families of cyclin-dependent kinase (CDK) inhibitors block the phosphorylation of cyclin-dependent kinases by the CDK-activating kinase. J. Biol. Chem. 270, 18195–18197 (1995).

    CAS  PubMed  Google Scholar 

  24. Fesquet, D. et al. The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. EMBO J. 12, 3111–3121 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Matsuoka, M., Kato, J. Y., Fisher, R. P., Morgan, D. O. & Sherr, C. J. Activation of cyclin-dependent kinase 4 (cdk4) by mouse MO15-associated kinase. Mol. Cell. Biol. 14, 7265–7275 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Poon, R. Y. C., Yamashita, K., Adamczewski, J. P., Hunt, T. & Shuttleworth, J. The cdc2-related protein p40MO15 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2. EMBO J. 12, 3123–3132 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Solomon, M. J., Harper, W. J. & Shuttleworth, J. CAK, the p34cdc2 activating kinase contains a protein kinase identical to or closely related to p40MO15. EMBO J. 12, 3133–3142 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fisher, R. P. Secrets of a double agent: CDK7 in cell-cycle control and transcription. J. Cell Sci. 118, 5171–5180 (2005).

    CAS  PubMed  Google Scholar 

  29. Ito, S. et al. MMXD, a TFIIH-independent XPD–MMS19 protein complex involved in chromosome segregation. Mol. Cell 39, 632–640 (2010).

    CAS  PubMed  Google Scholar 

  30. Sancar, A. Mechanisms of DNA excision repair. Science 266, 1954–1956 (1994).

    CAS  PubMed  Google Scholar 

  31. Aboussekhra, A. et al. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80, 859–868 (1995).

    CAS  PubMed  Google Scholar 

  32. Volker, M. et al. Sequential assembly of the nucleotide excision repair factors in vivo. Mol. Cell 8, 213–224 (2001).

    CAS  PubMed  Google Scholar 

  33. Hanawalt, P. C. & Spivak, G. Transcription-coupled DNA repair: two decades of progress and surprises. Nature Rev. Mol. Cell Biol. 9, 958–970 (2008).

    CAS  Google Scholar 

  34. Clement, F. C. et al. Dynamic two-stage mechanism of versatile DNA damage recognition by xeroderma pigmentosum group C protein. Mutat. Res. 685, 21–28 (2010).

    CAS  PubMed  Google Scholar 

  35. Bunick, C. G., Miller, M. R., Fuller, B. E., Fanning, E. & Chazin, W. J. Biochemical and structural domain analysis of xeroderma pigmentosum complementation group C protein. Biochemistry 45, 14965–14979 (2006).

    CAS  PubMed  Google Scholar 

  36. Min., J. H. & Pavletich, N. P. Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature 449, 570–575 (2007).

    CAS  PubMed  Google Scholar 

  37. Sugasawa, K. et al. A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev. 15, 507–521 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mocquet, V. et al. The human DNA repair factor XPC–HR23B distinguishes stereoisomeric benzo[a]pyrenyl-DNA lesions. EMBO J. 26, 2923–2932 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Keeney, S., Chang, G. J. & Linn, S. Characterization of a human DNA damage binding protein implicated in xeroderma pigmentosum E. J. Biol. Chem. 268, 21293–21300 (1993).

    CAS  PubMed  Google Scholar 

  40. Takao, M. et al. A 127 kDa component of a UV-damaged DNA-binding complex which is defective in some xeroderma pigmentosum group E patients is homologous to a slime mold protein. Nucleic Acids Res. 21, 4111–4118 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fitch, M. E. et al. The DDB2 nucleotide excision repair gene product p48 enhances global genomic repair in p53 deficient human fibroblasts. DNA Repair (Amst.) 2, 819–826 (2003).

    CAS  Google Scholar 

  42. Wang, Q. E., Zhu, Q., Wani, G., Chen, J. & Wani, A. A. UV radiation-induced XPC translocation within chromatin is mediated by damaged-DNA binding protein, DDB2. Carcinogenesis 25, 1033–1043 (2004).

    CAS  PubMed  Google Scholar 

  43. Fei, J. et al. Regulation of nucleotide excision repair by UV-DDB: prioritization of damage recognition to internucleosomal DNA. PLoS Biol. 9, e1001183 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gillette, T. G. et al. Distinct functions of the ubiquitin–proteasome pathway influence nucleotide excision repair. EMBO J. 25, 2529–2538 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Araki, M. et al. Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J. Biol. Chem. 276, 18665–18672 (2001).

    CAS  PubMed  Google Scholar 

  46. Xie, Z., Liu, S., Zhang, Y. & Wang, Z. Roles of Rad23 protein in yeast nucleotide excision repair. Nucleic Acids Res. 32, 5981–5990 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Tapias, A. et al. Ordered conformational changes in damaged DNA induced by nucleotide excision repair factors. J. Biol. Chem. 279, 19074–19083 (2004).

    CAS  PubMed  Google Scholar 

  48. Bernardes de Jesus, B. M., Bjoras, M., Coin, F. & Egly, J. M. Dissection of the molecular defects caused by pathogenic mutations in the DNA repair factor XPC. Mol. Cell. Biol. 28, 7225–7235 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bootsma, D. & Hoeijmakers, J. H. J. DNA repair. Engagement with transcription. Nature 363, 114–115 (1993).

    CAS  PubMed  Google Scholar 

  50. Wood, R. D. DNA damage recognition during nucleotide excision repair in mammalian cells. Biochimie 81, 39–44 (1999).

    CAS  PubMed  Google Scholar 

  51. Coin, F. et al. Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nature Genet. 20, 184–188 (1998). Demonstrated that mutations in the XPD C-terminal domain that are found in most patients with xeroderma pigmentosum and TTD prevent the interaction with p44, thus explaining the observed decrease in XPD helicase activity and the NER defect.

    CAS  PubMed  Google Scholar 

  52. Dubaele, S. et al. Basal transcription defect discriminates between xeroderma pigmentosum and trichothiodystrophy in XPD patients. Mol. Cell 11, 1635–1646 (2003).

    CAS  PubMed  Google Scholar 

  53. Tirode, F., Busso, D., Coin, F. & Egly, J. M. Reconstitution of the transcription factor TFIIH: assignment of functions for the three enzymatic subunits, XPB, XPD, and cdk7. Mol. Cell 3, 87–95 (1999).

    CAS  PubMed  Google Scholar 

  54. Oksenych, V., de Jesus, B. B., Zhovmer, A., Egly, J. M. & Coin, F. Molecular insights into the recruitment of TFIIH to sites of DNA damage. EMBO J. 28, 2971–2980 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Fan, L. et al. Conserved XPB core structure and motifs for DNA unwinding: implications for pathway selection of transcription or excision repair. Mol. Cell 22, 27–37 (2006).

    CAS  PubMed  Google Scholar 

  56. Coin, F., Oksenych, V. & Egly, J. M. Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair. Mol. Cell 26, 245–256 (2007). Revealed that the helicase activity of XPB is not used for damaged DNA opening, which is instead driven by the ATPase activity of XPB in combination with the helicase activity of XPD. Furthermore, TFIIH from patients with mutated XPB is unable to induce DNA opening around the lesion owing to impaired XPB–p52 interaction and ATPase stimulation.

    CAS  PubMed  Google Scholar 

  57. Fregoso, M. et al. DNA repair and transcriptional deficiencies caused by mutations in the Drosophila p52 subunit of TFIIH generate developmental defects and chromosome fragility. Mol. Cell. Biol. 27, 3640–3650 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fan, L. et al. XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell 133, 789–800 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, H. et al. Structure of the DNA repair helicase XPD. Cell 133, 801–812 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wolski, S. C. et al. Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLoS Biol. 6, e149 (2008).

    PubMed  PubMed Central  Google Scholar 

  61. Mathieu, N., Kaczmarek, N. & Naegeli, H. Strand- and site-specific DNA lesion demarcation by the xeroderma pigmentosum group D helicase. Proc. Natl Acad. Sci. USA 107, 17545–17550 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Theis, K., Chen, P. J., Skorvaga, M., Van Houten, B. & Kisker, C. Crystal structure of UvrB, a DNA helicase adapted for nucleotide excision repair. EMBO J. 18, 6899–6907 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Skorvaga, M., Theis, K., Mandavilli, B. S., Kisker, C. & Van Houten, B. The β-hairpin motif of UvrB is essential for DNA binding, damage processing, and UvrC-mediated incisions. J. Biol. Chem. 277, 1553–1559 (2002).

    CAS  PubMed  Google Scholar 

  64. Reardon, J. T. & Sancar, A. Recognition and repair of the cyclobutane thymine dimer, a major cause of skin cancers, by the human excision nuclease. Genes Dev. 17, 2539–2551 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Stefanini, M., Botta, E., Lanzafame, M. & Orioli, D. Trichothiodystrophy: from basic mechanisms to clinical implications. DNA Repair (Amst.) 9, 2–10 (2010).

    CAS  Google Scholar 

  66. Ranish, J. A. et al. Identification of TFB5, a new component of general transcription and DNA repair factor IIH. Nature Genet. 36, 707–713 (2004).

    CAS  PubMed  Google Scholar 

  67. Giglia-Mari, G. et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nature Genet. 36, 714–719 (2004). Demonstrated that p8 is an evolutionarily conserved subunit of TFIIH and identified GTF2H5 as the gene that causes the NER defect in TTD-A.

    CAS  PubMed  Google Scholar 

  68. Coin, F. et al. p8/TTD-A as a repair-specific TFIIH subunit. Mol. Cell 21, 215–226 (2006).

    CAS  PubMed  Google Scholar 

  69. Vermeulen, W. et al. Sublimiting concentration of TFIIH transcription/DNA repair factor causes TTD-A trichothiodystrophy disorder. Nature Genet. 26, 307–313 (2000).

    CAS  PubMed  Google Scholar 

  70. Vitorino, M. et al. Solution structure and self-association properties of the p8 TFIIH subunit responsible for trichothiodystrophy. J. Mol. Biol. 368, 473–480 (2007).

    CAS  PubMed  Google Scholar 

  71. Kainov, D. E., Vitorino, M., Cavarelli, J., Poterszman, A. & Egly, J. M. Structural basis for group A trichothiodystrophy. Nature Struct. Mol. Biol. 15, 980–984 (2008).

    CAS  Google Scholar 

  72. Park, C. H. & Sancar, A. Formation of a ternary complex by human XPA, ERCC1, and ERCC4(XPF) excision repair proteins. Proc. Natl Acad. Sci. USA 91, 5017–5021 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Petruseva, I. O. & Lavrik, O. I. Localization of xeroderma pigmentosum group A protein and replication protein A on damaged DNA in nucleotide excision repair. Nucleic Acids Res. 38, 8083–8094 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ikegami, T. et al. Solution structure of the DNA- and RPA-binding domain of the human repair factor XPA. Nature Struct. Biol. 5, 701–706 (1998).

    CAS  PubMed  Google Scholar 

  75. Saijo, M., Kuraoka, I., Masutani, C., Hanaoka, F. & Tanaka, K. Sequential binding of DNA repair proteins RPA and ERCC1 to XPA in vitro. Nucleic Acids Res. 24, 4719–4724 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Evans, E., Moggs, J. G., Hwang, J. R., Egly, J. M. & Wood, R. D. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J. 16, 6559–6573 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Coin, F. et al. Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol. Cell 31, 9–20 (2008). Showed the release of CAK from the core TFIIH during the engagement of this complex in DNA repair. Following repair, CAK reappears with the core subunit of TFIIH on chromatin, coincident with the resumption of transcription.

    CAS  PubMed  Google Scholar 

  78. Svejstrup, J. Q. et al. Different forms of TFIIH for transcription and DNA repair: holo-TFIIH and a nucleotide excision repairosome. Cell 80, 21–28 (1995).

    CAS  PubMed  Google Scholar 

  79. Araujo, S. J. et al. Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes Dev. 14, 349–359 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Sandrock, B. & Egly, J. M. A yeast four-hybrid system identifies Cdk-activating kinase as a regulator of the XPD helicase, a subunit of transcription factor IIH. J. Biol. Chem. 276, 35328–35333 (2001).

    CAS  PubMed  Google Scholar 

  81. Fan, W. & Luo, J. SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Mol. Cell 39, 247–258 (2010).

    CAS  PubMed  Google Scholar 

  82. Sugasawa, K., Akagi, J., Nishi, R., Iwai, S. & Hanaoka, F. Two-step recognition of DNA damage for mammalian nucleotide excision repair: directional binding of the XPC complex and DNA strand scanning. Mol. Cell 36, 642–653 (2009).

    CAS  PubMed  Google Scholar 

  83. Naegeli, H. & Sugasawa, K. The xeroderma pigmentosum pathway: decision tree analysis of DNA quality. DNA Repair (Amst.) 10, 673–683 (2011).

    CAS  Google Scholar 

  84. Kesseler, K. J., Kaufmann, W. K., Reardon, J. T., Elston, T. C. & Sancar, A. A mathematical model for human nucleotide excision repair: damage recognition by random order assembly and kinetic proofreading. J. Theor. Biol. 249, 361–275 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mocquet, V. et al. Sequential recruitment of the repair factors during NER: the role of XPG in initiating the resynthesis step. EMBO J. 27, 155–167 (2008).

    CAS  PubMed  Google Scholar 

  86. Staresincic, L. et al. Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J. 28, 1111–1120 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Moggs, J. G., Yarema, K. J., Essigmann, J. M. & Wood, R. D. Analysis of incision sites produced by human cell extracts and purified proteins during nucleotide excision repair of a 1,3-intrastrand d(GpTpG)-cisplatin adduct. J. Biol. Chem. 271, 7177–7186 (1996).

    CAS  PubMed  Google Scholar 

  88. Gillet, L. C. & Scharer, O. D. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem. Rev. 106, 253–276 (2006).

    CAS  PubMed  Google Scholar 

  89. Lehmann, A. R. DNA polymerases and repair synthesis in NER in human cells. DNA Repair (Amst.) 10, 730–733 (2011).

    CAS  Google Scholar 

  90. Ogi, T. et al. Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol. Cell 37, 714–727 (2010).

    CAS  PubMed  Google Scholar 

  91. Moser, J. et al. Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase IIIα in a cell-cycle-specific manner. Mol. Cell 27, 311–323 (2007).

    CAS  PubMed  Google Scholar 

  92. Gaillard, P. H. L. et al. Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I. Cell 86, 887–896 (1996).

    CAS  PubMed  Google Scholar 

  93. Polo, S. E., Roche, D. & Almouzni, G. New histone incorporation marks sites of UV repair in human cells. Cell 127, 481–493 (2006).

    CAS  PubMed  Google Scholar 

  94. Ito, S. et al. XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne Syndrome in XP-G/CS Patients. Mol. Cell 26, 231–243 (2007). Showed that XPG forms a stable complex with TFIIH and functions in maintaining the architecture of TFIIH, which underlines the contribution of XPG to transcription.

    CAS  PubMed  Google Scholar 

  95. Coin, F. et al. Phosphorylation of XPB helicase regulates TFIIH nucleotide excision repair activity. EMBO J. 23, 4835–4846 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hoogstraten, D. et al. Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo. Mol. Cell 10, 1163–1174 (2002).

    CAS  PubMed  Google Scholar 

  97. Iben, S. et al. TFIIH plays an essential role in RNA polymerase I transcription. Cell 109, 297–306 (2002). Found that TFIIH serves a function in ribosomal gene transcription. TFIIH is required for productive but not abortive ribosomal DNA transcription, which implies a post-initiation role for TFIIH in transcription.

    CAS  PubMed  Google Scholar 

  98. Assfalg, R. et al. TFIIH is an elongation factor of RNA polymerase I. Nucleic Acids Res. 40, 650–659 (2011).

    PubMed  PubMed Central  Google Scholar 

  99. Barski, A. et al. Pol II and its associated epigenetic marks are present at Pol III-transcribed noncoding RNA genes. Nature Struct. Mol. Biol. 17, 629–634 (2010).

    CAS  Google Scholar 

  100. Oler, A. J. et al. Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors. Nature Struct. Mol. Biol. 17, 620–628 (2010).

    CAS  Google Scholar 

  101. Kornberg, R. D. Eukaryotic transcriptional control. Trends Cell Biol. 9, M46–M49 (1999).

    CAS  PubMed  Google Scholar 

  102. Sims, R. J. 3rd, Mandal, S. S. & Reinberg, D. Recent highlights of RNA-polymerase-II-mediated transcription. Curr. Opin. Cell Biol. 16, 263–271 (2004).

    CAS  PubMed  Google Scholar 

  103. Cairns, B. R. et al. RSC, an essential, abundant chromatin-remodeling complex. Cell 87, 1249–1260 (1996).

    CAS  PubMed  Google Scholar 

  104. Chao, D. M. et al. A mammalian SRB protein associated with an RNA polymerase II holoenzyme. Nature 380, 82–85 (1996).

    CAS  PubMed  Google Scholar 

  105. Kim, Y. J., Bjorklund, S., Li, Y., Sayre, M. H. & Kornberg, R. D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77, 599–608 (1994).

    CAS  PubMed  Google Scholar 

  106. Ossipow, V., Tassan, J. P., Nigg, E. A. & Schibler, U. A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation. Cell 83, 137–146 (1995).

    CAS  PubMed  Google Scholar 

  107. Zawel, L. & Reinberg, D. Common themes in assembly and function of eukaryotic transcription complexes. Annu. Rev. Biochem. 64, 533–561 (1995).

    CAS  PubMed  Google Scholar 

  108. Douziech, M. et al. Mechanism of promoter melting by the xeroderma pigmentosum complementation group B helicase of transcription factor IIH revealed by protein-DNA photo-cross-linking. Mol. Cell. Biol. 20, 8168–8177 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Holstege, F. C., van der Vliet, P. C. & Timmers, H. T. Opening of an RNA polymerase II promoter occurs in two distinct steps and requires the basal transcription factors IIE and IIH. EMBO J. 15, 1666–1677 (1996). Presented a model in which the crucial function of TFIIH-associated DNA helicases is to create an ssDNA region during transcription.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Coin, F., Bergmann, E., Tremeau-Bravard, A. & Egly, J. M. Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH. EMBO J. 18, 1357–1366 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Moreland, R. J. et al. A role for the TFIIH XPB DNA helicase in promoter escape by RNA polymerase II. J. Biol. Chem. 274, 22127–22130 (1999).

    CAS  PubMed  Google Scholar 

  112. Dvir, A. et al. A role for ATP and TFIIH in activation of the RNA polymerase II preinitiation complex prior to transcription initiation. J. Biol. Chem. 271, 7245–7248 (1996).

    CAS  PubMed  Google Scholar 

  113. Dvir, A., Conaway, R. C. & Conaway, J. W. A role for TFIIH in controlling the activity of early RNA polymerase II elongation complexes. Proc. Natl Acad. Sci. USA 94, 9006–9010 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu, J. et al. Defective interplay of activators and repressors with TFIH in xeroderma pigmentosum. Cell 104, 353–363 (2001).

    CAS  PubMed  Google Scholar 

  115. Lu, H., Zawel, L., Fisher, L., Egly, J. M. & Reinberg, D. Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II. Nature 358, 641–645 (1992). Showed that the phosphorylation of the C-terminal domain of the largest subunit of Pol II by CDK7 contributes to the transition from transcription initiation to elongation.

    CAS  PubMed  Google Scholar 

  116. Feaver, W. J., Svejstrup, J. Q., Henry, N. L. & Kornberg, R. D. Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79, 1103–1109 (1994).

    CAS  PubMed  Google Scholar 

  117. Shiekhattar, R. et al. Cdk-activating kinase complex is a component of human transcription factor TFIIH. Nature 374, 283–287 (1995).

    CAS  PubMed  Google Scholar 

  118. Bensaude, O. et al. Regulated phosphorylation of the RNA polymerase II C-terminal domain (CTD). Biochem. Cell Biol. 77, 249–255 (1999).

    CAS  PubMed  Google Scholar 

  119. Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Serizawa, H., Conaway, J. W. & Conaway, R. C. Phosphorylation of C-terminal domain of RNA polymerase II is not required in basal transcription. Nature 363, 371–374 (1993).

    CAS  PubMed  Google Scholar 

  121. Cho, E., Tagaki, T., Moore, C. R. & Buratowski, S. mRNA capping enzyme is recruted to the transcritption complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 11, 3319–3326 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Komarnitsky, P., Cho, E. J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Helenius, K. et al. Requirement of TFIIH kinase subunit Mat1 for RNA Pol II C-terminal domain Ser5 phosphorylation, transcription and mRNA turnover. Nucleic Acids Res. 39, 5025–5035 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Akoulitchev, S., Chuikov, S. & Reinberg, D. TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature 407, 102–106 (2000).

    CAS  PubMed  Google Scholar 

  125. Yakovchuk, P., Goodrich, J. A. & Kugel, J. F. B2 RNA and Alu RNA repress transcription by disrupting contacts between RNA polymerase II and promoter DNA within assembled complexes. Proc. Natl Acad. Sci. USA 106, 5569–5574 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. O'Gorman, W., Thomas, B., Kwek, K. Y., Furger, A. & Akoulitchev, A. Analysis of U1 small nuclear RNA interaction with cyclin H. J. Biol. Chem. 280, 36920–36925 (2005).

    CAS  PubMed  Google Scholar 

  127. Akhtar, M. S. et al. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol. Cell 34, 387–393 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Glover-Cutter, K. et al. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol. Cell. Biol. 29, 5455–5464 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Kim, M., Suh, H., Cho, E. J. & Buratowski, S. Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7. J. Biol. Chem. 284, 26421–26426 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Egloff, S. et al. Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Science 318, 1777–1779 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Cho, E. J., Kobor, M. S., Kim, M., Greenblatt, J. & Buratowski, S. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 15, 3319–3329 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhou, M. et al. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription. Mol. Cell. Biol. 20, 5077–5086 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ahn, S. H., Kim, M. & Buratowski, S. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol. Cell 13, 67–76 (2004).

    CAS  PubMed  Google Scholar 

  134. Gebara, M. M., Sayre, M. H. & Corden, J. L. Phosphorylation of the carboxy-terminal repeat domain in RNA polymerase II by cyclin-dependent kinases is sufficient to inhibit transcription. J. Cell. Biochem. 64, 390–402 (1997).

    CAS  PubMed  Google Scholar 

  135. Hengartner, C. J. et al. Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. Mol. Cell 2, 43–53 (1998).

    CAS  PubMed  Google Scholar 

  136. Bonnet, F., Vigneron, M., Bensaude, O. & Dubois, M. F. Transcription-independent phosphorylation of the RNA polymerase II C-terminal domain (CTD) involves ERK kinases (MEK1/2). Nucleic Acids Res. 27, 4399–4404 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Dvir, A., Peterson, S. R., Knuth, M. W., Lu, H. & Dynan, W. S. Ku autoantigen is the regulatory component of a template-associated protein kinase that phosphorylates RNA polymerase II. Proc. Natl Acad. Sci. USA 89, 11920–11924 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Trigon, S. et al. Characterization of the residues phosphorylated in vitro by different C-terminal domain kinases. J. Biol. Chem. 273, 6769–6775 (1998).

    CAS  PubMed  Google Scholar 

  139. Chambers, R. S. & Kane, C. M. Purification and characterization of an RNA polymerase II phosphatase from yeast. J. Biol. Chem. 271, 24408–24504 (1996).

    Google Scholar 

  140. Lin, P. S., Dubois, M. F. & Dahmus, M. E. TFIIF-associating carboxyl-terminal domain phosphatase dephosphorylates phosphoserines 2 and 5 of RNA polymerase II. J. Biol. Chem. 277, 45949–45956 (2002).

    CAS  PubMed  Google Scholar 

  141. Mosley, A. L. et al. Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation. Mol. Cell 34, 168–178 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Phatnani, H. P. & Greenleaf, A. L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20, 2922–2936 (2006).

    CAS  PubMed  Google Scholar 

  143. Corden, J. L. Transcription. Seven ups the code. Science 318, 1735–1736 (2007).

    CAS  PubMed  Google Scholar 

  144. Egloff, S. & Murphy, S. Cracking the RNA polymerase II CTD code. Trends Genet. 24, 280–288 (2008).

    CAS  PubMed  Google Scholar 

  145. Lu, H., Fisher, R. P., Bailey, P. & Levine, A. J. The CDK7-cycH-p36 complex of transcription factor IIH phosphorylates p53, enhancing its sequence-specific DNA binding activity in vitro. Mol. Cell. Biol. 17, 5923–5934 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Xiao, H. et al. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol. Cell. Biol. 14, 7013–7024 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Tong, X., Drapkin, R., Reinberg, D. & Kieff, E. The 62- and 80-kDa subunits of transcription factor IIH mediate the interaction with Epstein-Barr virus nuclear protein 2. Proc. Natl Acad. Sci. USA 92, 3259–3263 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Qadri, I., Conaway, J. W., Conaway, R. C., Schaack, J. & Siddiqui, A. Hepatitis B virus transactivator protein, HBx, associates with the components of TFIIH and stimulates the DNA helicase activity of TFIIH. Proc. Natl Acad. Sci. USA 93, 10578–10583 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Liu, J. et al. The FBP interacting repressor targets TFIIH to inhibit activated transcription. Mol. Cell 5, 331–341 (2000).

    CAS  PubMed  Google Scholar 

  150. Mitchell, N. C. et al. Hfp inhibits Drosophila myc transcription and cell growth in a TFIIH/Hay-dependent manner. Development 137, 2875–2884 (2010).

    CAS  PubMed  Google Scholar 

  151. Chymkowitch, P., Le May, N., Charneau, P., Compe, E. & Egly, J. M. The phosphorylation of the androgen receptor by TFIIH directs the ubiquitin/proteasome process. EMBO J. 30, 468–479 (2011).

    CAS  PubMed  Google Scholar 

  152. Bastien, J. et al. TFIIH interacts with the retinoic acid receptor-γ and phosphorylates its AF-1-activating domain through cdk7. J. Biol. Chem. 275, 21896–21904 (2000).

    CAS  PubMed  Google Scholar 

  153. Rochette-Egly, C., Adam, S., Rossignol, M., Egly, J. M. & Chambon, P. Stimulation of RARα activation function AF-1 through binding to the general transcription factor TFIIH and phosphorylation by CDK7. Cell 90, 97–107 (1997). Revealed that RARα is targeted by the CDK7 subunit of TFIIH, suggesting that the activity of a transactivator could be modulated through its interaction with a general transcription factor.

    CAS  PubMed  Google Scholar 

  154. Lee, D. K., Duan, H. O. & Chang, C. From androgen receptor to the general transcription factor TFIIH. Identification of cdk activating kinase (CAK) as an androgen receptor NH2-terminal associated coactivator. J. Biol. Chem. 275, 9308–9313 (2000).

    CAS  PubMed  Google Scholar 

  155. Compe, E. et al. Dysregulation of the peroxisome proliferator-activated receptor target genes by XPD mutations. Mol. Cell. Biol. 25, 6065–6076 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Compe, E. et al. Neurological defects in trichothiodystrophy reveal a coactivator function of TFIIH. Nature Neurosci. 10, 1414–1422 (2007). Reported hypomyelination in the central nervous system of mice with TTD, which is related to the dysregulation of various thyroid hormone target genes. Proposed that such a dysregulation is likely to result from the inability of the mutated TFIIH to fully participate in the recruitment of thyroid hormone receptors to their response elements.

    CAS  PubMed  Google Scholar 

  157. Chen, D. et al. Activation of estrogen receptor-α by S118 phosphorylation involves a ligand-dependent interaction with TFIIH and participation of CDK7. Mol. Cell 6, 127–137 (2000).

    CAS  PubMed  Google Scholar 

  158. Liu, Y. et al. p62, a TFIIH subunit, directly interacts with thyroid hormone receptor and enhances T3-mediated transcription. Mol. Endocrinol. 19, 879–884 (2005).

    CAS  PubMed  Google Scholar 

  159. Drane, P., Compe, E., Catez, P., Chymkowitch, P. & Egly, J. M. Selective regulation of vitamin D receptor-responsive genes by TFIIH. Mol. Cell 16, 187–197 (2004).

    CAS  PubMed  Google Scholar 

  160. Nigg, E. A. Cyclin-dependent kinase 7: at the cross-roads of transcription, DNA repair and cell cycle control? Curr. Opin. Cell Biol. 8, 312–317 (1996).

    CAS  PubMed  Google Scholar 

  161. Morgan, D. O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261–291 (1997).

    CAS  PubMed  Google Scholar 

  162. Schwartz, B. E., Larochelle, S., Suter, B. & Lis, J. T. Cdk7 is required for full activation of Drosophila heat shock genes and RNA polymerase II phosphorylation in vivo. Mol. Cell. Biol. 23, 6876–6886 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Larochelle, S. et al. Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of Cdk2 revealed by chemical genetics in human cells. Mol. Cell 25, 839–850 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Rochette-Egly, C. Nuclear receptors: integration of multiple signalling pathways through phosphorylation. Cell Signal. 15, 355–366 (2003).

    CAS  PubMed  Google Scholar 

  165. Keriel, A., Stary, A., Sarasin, A., Rochette-Egly, C. & Egly, J. M. XPD mutations prevent TFIIH-dependent transactivation by nuclear receptors and phosphorylation of RARα. Cell 109, 125–135 (2002). Demonstrated that mutations in XPD result in the decreased ability of nuclear receptors to be phosphorylated by TFIIH and to stimulate expression of target genes.

    CAS  PubMed  Google Scholar 

  166. Kioka, N. et al. Vinexin: a novel vinculin-binding protein with multiple SH3 domains enhances actin cytoskeletal organization. J. Cell Biol. 144, 59–69 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Bour, G., Plassat, J. L., Bauer, A., Lalevee, S. & Rochette-Egly, C. Vinexin-β interacts with the non-phosphorylated AF-1 domain of retinoid receptor-γ (RARγ) and represses RARγ-mediated transcription. J. Biol. Chem. 280, 17027–17037 (2005).

    CAS  PubMed  Google Scholar 

  168. Sano, M. et al. Menage-a-trois 1 is critical for the transcriptional function of PPARγ coactivator 1. Cell. Metab. 5, 129–142 (2007).

    CAS  PubMed  Google Scholar 

  169. Puigserver, P. & Spiegelman, B. M. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocr. Rev. 24, 78–90 (2003).

    CAS  PubMed  Google Scholar 

  170. Talukder, A. H. et al. MTA1 interacts with MAT1, a cyclin-dependent kinase-activating kinase complex ring finger factor, and regulates estrogen receptor transactivation functions. J. Biol. Chem. 278, 11676–11685 (2003).

    CAS  PubMed  Google Scholar 

  171. Conaway, R. C. & Conaway, J. W. Function and regulation of the Mediator complex. Curr. Opin. Genet. Dev. 21, 225–230 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Esnault, C. et al. Mediator-dependent recruitment of TFIIH modules in preinitiation complex. Mol. Cell 31, 337–346 (2008). Reported a direct interaction between a Mediator 'head' subunit and a TFIIH core subunit and concluded that the Mediator 'head' module has a crucial role in TFIIH and TFIIE recruitment to the PIC.

    CAS  PubMed  Google Scholar 

  173. Moriel-Carretero, M., Tous, C. & Aguilera, A. Control of the function of the transcription and repair factor TFIIH by the action of the cochaperone Ydj1. Proc. Natl Acad. Sci. USA 108, 15300–15305 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Manuguerra, M. et al. XRCC3 and XPD/ERCC2 single nucleotide polymorphisms and the risk of cancer: a HuGE review. Am. J. Epidemiol. 164, 297–302 (2006).

    PubMed  Google Scholar 

  175. Zhang, J., Gu, S. Y., Zhang, P., Jia, Z. & Chang, J. H. ERCC2 Lys751Gln polymorphism is associated with lung cancer among Caucasians. Eur. J. Cancer 46, 2479–2484 (2010).

    CAS  PubMed  Google Scholar 

  176. Le May, N. et al. TFIIH transcription factor, a target for the Rift Valley hemorrhagic fever virus. Cell 116, 541–550 (2004).

    CAS  PubMed  Google Scholar 

  177. Jaitovich-Groisman, I. et al. Transcriptional regulation of the TFIIH transcription repair components XPB and XPD by the hepatitis B virus x protein in liver cells and transgenic liver tissue. J. Biol. Chem. 276, 14124–14132 (2001).

    CAS  PubMed  Google Scholar 

  178. Kraemer, K. H. et al. Xeroderma pigmentosum and related disorders: examining the linkage between defective DNA repair and cancer. J. Invest. Dermatol. 103, 96S–101S (1994).

    CAS  PubMed  Google Scholar 

  179. Cleaver, J. E. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nature Rev. Cancer 5, 564–573 (2005).

    CAS  Google Scholar 

  180. de Boer, J. & Hoeijmakers, J. H. Nucleotide excision repair and human syndromes. Carcinogenesis 21, 453–460 (2000).

    CAS  PubMed  Google Scholar 

  181. Nance, M. A. & Berry, S. A. Cockayne syndrome: review of 140 cases. Am. J. Med. Genet. 84, 42–68 (1992).

    Google Scholar 

  182. Itin, P. H., Sarasin, A. & Pittelkow, M. R. Trichothiodystrophy: update on the sulfur-deficient brittle hair syndromes. J. Am. Acad. Dermatol. 44, 891–920 (2001).

    CAS  PubMed  Google Scholar 

  183. Hashimoto, S. & Egly, J. M. Trichothiodystrophy view from the molecular basis of DNA repair/transcription factor TFIIH. Hum. Mol. Genet. 18, R224–R230 (2009).

    CAS  PubMed  Google Scholar 

  184. Berneburg, M. & Lehmann, A. R. Xeroderma pigmentosum and related disorders: defects in DNA repair and transcription. Adv. Genet. 43, 71–102 (2001).

    CAS  PubMed  Google Scholar 

  185. Ueda, T., Compe, E., Catez, P., Kraemer, K. H. & Egly, J. M. Both XPD alleles contribute to the phenotype of compound heterozygote xeroderma pigmentosum patients. J. Exp. Med. 206, 3031–3046 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Botta, E. et al. Reduced level of the repair/transcription factor TFIIH in trichothiodystrophy. Hum. Mol. Genet. 11, 2919–2928 (2002). Showed that alterations in any of the gene products that result in the clinical phenotype of TTD specifically reduce the cellular content of the TFIIH complex.

    CAS  PubMed  Google Scholar 

  187. de Boer, J. et al. A mouse model for the basal transcription/DNA repair syndrome trichothiodystrophy. Mol. Cell 1, 981–990 (1998).

    CAS  PubMed  Google Scholar 

  188. Bergmann, E. & Egly, J. M. Trichothiodystrophy, a transcription syndrome. Trends Genet. 17, 279–286 (2001).

    CAS  PubMed  Google Scholar 

  189. Takagi, Y. et al. Ubiquitin ligase activity of TFIIH and the transcriptional response to DNA damage. Mol. Cell 18, 237–243 (2005).

    CAS  PubMed  Google Scholar 

  190. Frit, P. et al. Transcriptional activators stimulate DNA repair. Mol. Cell 10, 1391–1401 (2002).

    CAS  PubMed  Google Scholar 

  191. Fong, Y. W. et al. A DNA repair complex functions as an oct4/sox2 coactivator in embryonic stem cells. Cell 147, 120–131 (2011). Revealed a selective co-activator role of an NER complex in transcription in the context of embryonic stem cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Gibbons, B. J. et al. Subunit architecture of general transcription factor TFIIH. Proc. Natl Acad. Sci. USA 109, 1949–1954 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Chang, W. H. & Kornberg, R. D. Electron crystal structure of the transcription factor and DNA repair complex, core TFIIH. Cell 102, 609–613 (2000).

    CAS  PubMed  Google Scholar 

  194. Schultz, P. et al. Molecular structure of human TFIIH. Cell 102, 599–607 (2000). References 193 and 194 showed the electron crystal structure of the yeast core TFIIH and the human TFIIH complex, respectively.

    CAS  PubMed  Google Scholar 

  195. Rabut, G. et al. The TFIIH subunit Tfb3 regulates cullin neddylation. Mol. Cell 43, 488–495 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Guzder, S. N., Sung, P., Prakash, L. & Prakash, S. Nucleotide excision repair in yeast is mediated by sequential assembly of repair factors and not by a pre-assembled repairosome. J. Biol. Chem. 271, 8903–8910 (1996).

    CAS  PubMed  Google Scholar 

  197. Matsui, T., Segall, J., Weil, P. & Roeder, R. Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. J. Biol. Chem. 255, 11992–11996 (1980).

    CAS  PubMed  Google Scholar 

  198. Samuels, M., Fire, A. & Sharp, P. A. Separation and characterization of factors mediating accurate transcription by RNA polymerase II. J. Biol. Chem. 257, 14419–14427 (1982).

    CAS  PubMed  Google Scholar 

  199. Sawadogo, M. & Roeder, R. Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell 43, 165–175 (1985).

    CAS  PubMed  Google Scholar 

  200. Reinberg, D. & Roeder, R. G. Factors involved in specific transcription by mammalian RNA polymerase II. Purification and functional analysis of initiation factors IIB and IIE. J. Biol. Chem. 262, 3310–3321 (1987).

    CAS  PubMed  Google Scholar 

  201. Buratowski, S., Hahn, S., Guarente, L. & Sharp, P. A. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56, 549–561 (1989).

    CAS  PubMed  Google Scholar 

  202. Conaway, J. W., Hanley, J. P., Garrett, K. P. & Conaway, R. C. Transcription initiated by RNA polymerase II and transcription factors from liver. Structure and action of transcription factors epsilon and tau. J. Biol. Chem. 266, 7804–7811 (1991).

    CAS  PubMed  Google Scholar 

  203. Perissi, V. & Rosenfeld, M. G. Controlling nuclear receptors: the circular logic of cofactor cycles. Nature Rev. Mol. Cell Biol. 6, 542–554 (2005).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all of their past and present associates who have participated to the TFIIH adventure. The authors especially would like to thank R. Conaway and H. Naegeli for critical reading of the manuscript and F. Coin for helpful discussions. The authors apologize to all their colleagues whose important findings could not be included in this Review because of space limitations. This study was supported by a European Research Council advanced grant, the Agence Nationale de la Recherche (N#ANR-08MIEN-022-03), the Association pour la Recherche sur le Cancer and the Institut National du Cancer (INCA-2008-041). E.C. and J.M.E. are supported by the Institut National de la Santé et de la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emmanuel Compe or Jean-Marc Egly.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Team's homepage

Glossary

Nucleotide excision repair

(NER). The repair pathway that is used to remove the vast majority of lesions that are located on a DNA single strand, including lesions caused by ultraviolet (UV) light and cisplatin damage.

Helicases

Enzymes that move directionally along a nucleic acid phosphodiester backbone and separate two annealed nucleic acid strands by using energy derived from ATP hydrolysis.

Transfer RNAs

(tRNAs). The ribonucleic acids that transport specific amino acids to the ribosome for incorporation into the growing polypeptide chain.

Ribosomal RNA

(rRNA). The ribonucleic acid element of the ribosome, which orchestrates protein synthesis.

Small nuclear RNAs

(snRNAs). Small ribonucleic acids, which are located in the nucleus and are involved in different molecular processes such as transcriptional regulation and RNA splicing.

MicroRNAs

(miRNAs). Short ribonucleic acids that are post-transcriptional regulators able to recognize complementary sequences on target mRNA transcripts.

Spliceosomal snRNAs

Small ribonucleic acids that participate in the removal of introns from pre-mRNA.

Nuclear receptors

Ligand-dependent and -independent transcription factors that are highly conserved evolutionarily from invertebrates to higher organisms. The nuclear receptor superfamily includes receptors for thyroid and steroid hormones, retinoids and vitamin D, as well as 'orphan' receptors of unknown ligands.

Ubiquitin–proteasome machinery

A selective system of protein degradation. This first requires the ubiquitin conjugation of the target protein via three types of enzymes: E1 (ubiquitin-activation enzyme), E2 (ubiquitin-conjugation enzyme) and E3 (ubiquitin ligase). Polyubiquitylated substrates are then recognized and degraded by the 26S proteasome in an ATP-dependent manner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Compe, E., Egly, JM. TFIIH: when transcription met DNA repair. Nat Rev Mol Cell Biol 13, 343–354 (2012). https://doi.org/10.1038/nrm3350

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3350

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing