Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Codon optimality, bias and usage in translation and mRNA decay

Key Points

  • Synonymous codons are used non-randomly in the transcriptome to shape multiple aspects of translation.

  • Optimal codons are associated with more efficient translation and correspond to cognate tRNA species that are more abundant and that are readily accommodated by the ribosome during translation.

  • The use of non-optimal codons can influence protein production by reducing ribosome translocation rates and causing ribosome collisions that can feed back to the translation initiation site.

  • Conserved, specific patterns of optimal and non-optimal codon use help to guide efficient co-translational folding and to minimize errors in translation.

  • Codon usage affects mRNA stability, and codon-influenced elongation stalling is sensed by the DEAD-box helicase Dhh1, which mediates codon-dependent variation in mRNA stability.

  • The interdependence between variable codon usage and the composition, charge status and post-transcriptional modifications of the tRNA pool enables global control of translation, which can be used to shape protein production to favour specific cellular programmes and to maintain homeostasis in conditions of stress or changes in nutritional status.

Abstract

The advent of ribosome profiling and other tools to probe mRNA translation has revealed that codon bias — the uneven use of synonymous codons in the transcriptome — serves as a secondary genetic code: a code that guides the efficiency of protein production, the fidelity of translation and the metabolism of mRNAs. Recent advancements in our understanding of mRNA decay have revealed a tight coupling between ribosome dynamics and the stability of mRNA transcripts; this coupling integrates codon bias into the concept of codon optimality, or the effects that specific codons and tRNA concentrations have on the efficiency and fidelity of the translation machinery. In this Review, we first discuss the evidence for codon-dependent effects on translation, beginning with the basic mechanisms through which translation perturbation can affect translation efficiency, protein folding and transcript stability. We then discuss how codon effects are leveraged by the cell to tailor the proteome to maintain homeostasis, execute specific gene expression programmes of growth or differentiation and optimize the efficiency of protein production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The codon content of an mRNA can influence translation via tRNA-dependent mechanisms.
Figure 2: Codon optimality in a transcript can be used to optimize protein folding.
Figure 3: Non-optimal codons decrease mRNA stability in a Dhh1-dependent mechanism.
Figure 4: Codon content and mRNA stability are matched in transcripts encoding functionally-related proteins.
Figure 5: Various conditions can alter tRNA pools in different ways to support the translation of mRNAs necessary to maintain homeostasis or to favour the current gene expression programme.

Similar content being viewed by others

References

  1. Ikemura, T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J. Mol. Biol. 151, 389–409 (1981).

    Article  CAS  PubMed  Google Scholar 

  2. dos Reis, M., Savva, R. & Wernisch, L. Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res. 32, 5036–5044 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Duret, L. tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. Trends Genet. 16, 287–289 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Moriyama, E. N. & Powell, J. R. Codon usage bias and tRNA abundance in Drosophila. J. Mol. Evol. 45, 514–523 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Sabi, R. & Tuller, T. Modelling the efficiency of codon–tRNA interactions based on codon usage bias. DNA Res. 21, 511–526 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sharp, P. M. & Li, W.-H. An evolutionary perspective on synonymous codon usage in unicellular organisms. J. Mol. Evol. 24, 28–38 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Dong, H., Nilsson, L. & Kurland, C. G. Co-variation of trna abundance and codon usage in Escherichia coli at different growth rates. J. Mol. Biol. 260, 649–663 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Roth, A. C. Decoding properties of tRNA leave a detectable signal in codon usage bias. Bioinformatics 28, i340–i348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bazzini, A. A. et al. Codon identity regulates mRNA stability and translation efficiency during the maternal-to-zygotic transition. EMBO J. 35, 2087–2103 (2016). Codon usage varies between maternal and zygotic mRNAs in X. laevis and zebrafish and contributes to the MZT by targeting maternally loaded transcripts for degradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rocha, E. P. C. Codon usage bias from tRNA's point of view: redundancy, specialization, and efficient decoding for translation optimization. Genome Res. 14, 2279–2286 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chamary, J. V., Parmley, J. L. & Hurst, L. D. Hearing silence: non-neutral evolution at synonymous sites in mammals. Nat. Rev. Genet. 7, 98–108 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Gingold, H. & Pilpel, Y. Determinants of translation efficiency and accuracy. Mol. Syst. Biol. 7, 481 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Plotkin, J. B. & Kudla, G. Synonymous but not the same: the causes and consequences of codon bias. Nat. Rev. Genet. 12, 32–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Novoa, E. M. & Ribas de Pouplana, L. Speeding with control: codon usage, tRNAs, and ribosomes. Trends Genet. 28, 574–581 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Quax, Tessa, E. F., Claassens, Nico, J., Söll, D. & van der Oost, J. Codon bias as a means to fine-tune gene expression. Mol. Cell 59, 149–161 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Presnyak, V. et al. Codon optimality is a major determinant of mRNA stability. Cell 160, 1111–1124 (2015). Codon usage within a transcript determines mRNA stability. Codons corresponding to abundant tRNA species are enriched in more stable mRNAs, whereas rare codons are enriched in unstable mRNAs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harigaya, Y. & Parker, R. Analysis of the association between codon optimality and mRNA stability in Schizosaccharomyces pombe. BMC Genomics 17, 895 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Radhakrishnan, A. et al. The DEAD-box protein Dhh1p couples mRNA decay and translation by monitoring codon optimality. Cell 167, 122.e9–132.e9 (2016). The DEAD-box helicase Dhh1 is a necessary link between non-optimal codon content and RNA decay.

    Article  CAS  Google Scholar 

  19. Li, G.-W., Oh, E. & Weissman, J. S. The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 484, 538–541 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mohammad, F., Woolstenhulme, C. J., Green, R. & Buskirk, A. R. Clarifying the translational pausing landscape in bacteria by ribosome profiling. Cell Rep. 14, 686–694 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, S. L., Lee, W., Hottes, A. K., Shapiro, L. & McAdams, H. H. Codon usage between genomes is constrained by genome-wide mutational processes. Proc. Natl Acad. Sci. USA 101, 3480–3485 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Galtier, N., Piganeau, G., Mouchiroud, D. & Duret, L. GC-content evolution in mammalian genomes: the biased gene conversion hypothesis. Genetics 159, 907–911 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sørensen, M. A. & Pedersen, S. Absolute in vivo translation rates of individual codons in Escherichia coli. J. Mol. Biol. 222, 265–280 (1991).

    Article  PubMed  Google Scholar 

  24. Koutmou, K. S., Radhakrishnan, A. & Green, R. Synthesis at the speed of codons. Trends Biochem. Sci. 40, 717–718 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Chu, D., Barnes, D. J. & von der Haar, T. The role of tRNA and ribosome competition in coupling the expression of different mRNAs in Saccharomyces cerevisiae. Nucleic Acids Res. 39, 6705–6714 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ingolia, N. T. Ribosome profiling: new views of translation, from single codons to genome scale. Nat. Rev. Genet. 15, 205–213 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. S. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qian, W., Yang, J.-R., Pearson, N. M., Maclean, C. & Zhang, J. Balanced codon usage optimizes eukaryotic translational efficiency. PLoS Genet. 8, e1002603 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hussmann, J. A., Patchett, S., Johnson, A., Sawyer, S. & Press, W. H. Understanding biases in ribosome profiling experiments reveals signatures of translation dynamics in yeast. PLOS Genet. 11, e1005732 (2015). Cycloheximide pretreatment, which is common in ribosome profiling, is shown to markedly distort the true distribution of ribosomes over transcripts, thereby explaining earlier findings of a lack of a relationship between rare codons and ribosome density.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gerashchenko, M. V. & Gladyshev, V. N. Translation inhibitors cause abnormalities in ribosome profiling experiments. Nucleic Acids Res. 42, e134 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gardin, J. et al. Measurement of average decoding rates of the 61 sense codons in vivo. ELife 3, e03735 (2014).

    Article  PubMed Central  Google Scholar 

  32. Lareau, L. F., Hite, D. H., Hogan, G. J. & Brown, P. O. Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. ELife 3, e01257 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Weinberg, D. E. et al. Improved ribosome-footprint and mRNA measurements provide insights into dynamics and regulation of yeast translation. Cell Rep. 14, 1787–1799 (2016). This paper shows how ribosome sequencing data can be used to gain a quantitative understanding of translation, revealing that ribosomes do in fact spend more time on average over non-optimal codons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chekulaeva, M. & Landthaler, M. Eyes on translation. Mol. Cell 63, 918–925 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Iwasaki, S. & Ingolia, N. T. Seeing translation. Science 352, 1391–1392 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Yu, C.-H. et al. Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Mol. Cell 59, 744–754 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yan, X., Hoek, Tim, A., Vale, Ronald, D. & Tanenbaum, Marvin, E. Dynamics of translation of single mRNA molecules in vivo. Cell 165, 976–989 (2016). Leveraging a novel system for probing translation rates of single molecules in real time, this study reveals that codon composition has a marked impact on elongation rates in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Akashi, H. Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 136, 927–935 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Powell, J. R. & Moriyama, E. N. Evolution of codon usage bias in Drosophila. Proc. Natl Acad. Sci. USA 94, 7784–7790 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Urrutia, A. O. & Hurst, L. D. Codon usage bias covaries with expression breadth and the rate of synonymous evolution in humans, but this is not evidence for selection. Genetics 159, 1191–1199 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang, Z. & Nielsen, R. Mutation-selection models of codon substitution and their use to estimate selective strengths on codon usage. Mol. Biol. Evol. 25, 568–579 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Gustafsson, C., Govindarajan, S. & Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol. 22, 346–353 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Burgess-Brown, N. A. et al. Codon optimization can improve expression of human genes in Escherichia coli: a multi-gene study. Protein Expr. Purif. 59, 94–102 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Lithwick, G. & Margalit, H. Hierarchy of sequence-dependent features associated with prokaryotic translation. Genome Res. 13, 2665–2673 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Lu, P., Vogel, C., Wang, R., Yao, X. & Marcotte, E. M. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol. 25, 117–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Li, G.-W., Burkhardt, D., Gross, C. & Weissman, Jonathan, S. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157, 624–635 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vogel, C. et al. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol. Syst. Biol. 6, 400 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kudla, G., Murray, A. W., Tollervey, D. & Plotkin, J. B. Coding-sequence determinants of gene expression in Escherichia coli. Science 324, 255–258 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goodman, D. B., Church, G. M. & Kosuri, S. Causes and effects of N-terminal codon bias in bacterial genes. Science 342, 475–479 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Tuller, T. et al. An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 141, 344–354 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Gu, W., Zhou, T. & Wilke, C. O. A. Universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes. PLoS Comput. Biol. 6, e1000664 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tsao, D., Shabalina, S. A., Gauthier, J., Dokholyan, N. V. & Diatchenko, L. Disruptive mRNA folding increases translational efficiency of catechol-O-methyltransferase variant. Nucleic Acids Res. 39, 6201–6212 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Morisaki, T. et al. Real-time quantification of single RNA translation dynamics in living cells. Science 352, 1425–1429 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Wu, B., Eliscovich, C., Yoon, Y. J. & Singer, R. H. Translation dynamics of single mRNAs in live cells an neurons. Science 352, 1430–1435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shah, P., Ding, Y., Niemczyk, M., Kudla, G. & Plotkin, Joshua, B. Rate-limiting steps in yeast protein translation. Cell 153, 1589–1601 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zarai, Y., Margaliot, M. & Tuller, T. On the ribosomal density that maximizes protein translation rate. PLoS ONE 11, e0166481 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mitarai, N., Sneppen, K. & Pedersen, S. Ribosome collisions and translation efficiency: optimization by codon usage and mrna destabilization. J. Mol. Biol. 382, 236–245 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Potapov, I., Mäkelä, J., Yli-Harja, O. & Ribeiro, A. S. Effects of codon sequence on the dynamics of genetic networks. J. Theor. Biol. 315, 17–25 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Chu, D. et al. Translation elongation can control translation initiation on eukaryotic mRNAs. EMBO J. 33, 21–34 (2014). This paper shows that non-optimal codon usage can create a backlog of ribosomes that effectively feeds back on translation initiation by preventing new ribosome assembly near the start codon.

    Article  CAS  PubMed  Google Scholar 

  61. Rosenberg, A. H., Goldman, E., Dunn, J. J., Studier, F. W. & Zubay, G. Effects of consecutive AGG codons on translation in Escherichia coli, demonstrated with a versatile codon test system. J. Bacteriol. 175, 716–722 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ciandrini, L., Stansfield, I. & Romano, M. C. Ribosome traffic on mRNAs maps to gene ontology: genome-wide quantification of translation initiation rates and polysome size regulation. PLoS Comput. Biol. 9, e1002866 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Curran, J. F. Decoding with the A:I wobble pair is inefficient. Nucleic Acids Res. 23, 683–688 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bulmer, M. The selection-mutation-drift theory of synonymous codon usage. Genetics 129, 897–907 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hartl, D. L., Moriyama, E. N. & Sawyer, S. A. Selection intensity for codon bias. Genetics 138, 227–234 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gamble, C. E., Brule, C. E., Dean, K. M., Fields, S. & Grayhack, E. J. Adjacent codons act in concert to modulate translation efficiency in yeast. Cell 166, 679–690 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Coleman, J. R. et al. Virus attenuation by genome-scale changes in codon pair bias. Science 320, 1784–1787 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Charneski, C. A. & Hurst, L. D. Positively charged residues are the major determinants of ribosomal velocity. PLoS Biol. 11, e1001508 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sabi, R. & Tuller, T. A comparative genomics study on the effect of individual amino acids on ribosome stalling. BMC Genomics 16, S5 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lu, J. & Deutsch, C. Electrostatics in the ribosomal tunnel modulate chain elongation rates. J. Mol. Biol. 384, 73–86 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pavlov, M. Y. et al. Slow peptide bond formation by proline and other N-alkylamino acids in translation. Proc. Natl Acad. Sci. 106, 50–54 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Wilson, D. N. & Beckmann, R. The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Curr. Opin. Struct. Biol. 21, 274–282 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Peil, L. et al. Distinct XPPX sequence motifs induce ribosome stalling, which is rescued by the translation elongation factor EF-P. Proc. Natl Acad. Sci. 110, 15265–15270 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Purvis, I. J. et al. The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. J. Mol. Biol. 193, 413–417 (1987).

    Article  CAS  PubMed  Google Scholar 

  75. Thanaraj, T. & Argos, P. Protein secondary structural types are differentially coded on messenger RNA. Protein Sci. 5, 1973–1983 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Komar, A. A., Lesnik, T. & Reiss, C. Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation. FEBS Lett. 462, 387–391 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Zhang, G., Hubalewska, M. & Ignatova, Z. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat. Struct. Mol. Biol. 16, 274–280 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Cortazzo, P. et al. Silent mutations affect in vivo protein folding in Escherichia coli. Biochem. Biophys. Res. Commun. 293, 537–541 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Buhr, F. et al. Synonymous codons direct cotranslational folding toward different protein conformations. Mol. Cell 61, 341–351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Spencer, P. S., Siller, E., Anderson, J. F. & Barral, J. M. Silent substitutions predictably alter translation elongation rates and protein folding efficiencies. J. Mol. Biol. 422, 328–335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pechmann, S. & Frydman, J. Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding. Nat. Struct. Mol. Biol. 20, 237–243 (2013). The interdependence of tRNA supply and demand helps to shape codon optimality, and optimal and non-optimal codons are distributed in stereotyped patterns throughout elements encoding protein secondary structures.

    Article  CAS  PubMed  Google Scholar 

  82. Zhou, M., Wang, T., Fu, J., Xiao, G. & Liu, Y. Nonoptimal codon usage influences protein structure in intrinsically disordered regions. Mol. Microbiol. 97, 974–987 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang, G. & Ignatova, Z. Generic algorithm to predict the speed of translational elongation: implications for protein biogenesis. PLoS ONE 4, e5036 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Saunders, R. & Deane, C. M. Synonymous codon usage influences the local protein structure observed. Nucleic Acids Res. 38, 6719–6728 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chaney, J. L. et al. Widespread position-specific conservation of synonymous rare codons within coding sequences. PLOS Comput. Biol. 13, e1005531 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stoletzki, N. & Eyre-Walker, A. Synonymous codon usage in Escherichia coli: selection for translational accuracy. Mol. Biol. Evol. 24, 374–381 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Drummond, D. A. & Wilke, C. O. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134, 341–352 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhou, T., Weems, M. & Wilke, C. O. Translationally optimal codons associate with structurally sensitive sites in proteins. Mol. Biol. Evol. 26, 1571–1580 (2009). Optimal codons are found disproportionately in structurally important sites in proteins, often within the solvent-isolated core. This tendency is conserved across multiple domains of life.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dix, D. B. & Thompson, R. C. Codon choice and gene expression: synonymous codons differ in translational accuracy. Proc. Natl Acad. Sci. USA 86, 6888–6892 (1989).

    Article  CAS  PubMed  Google Scholar 

  90. Thomas, L. K., Dix, D. B. & Thompson, R. C. Codon choice and gene expression: synonymous codons differ in their ability to direct aminoacylated-transfer RNA binding to ribosomes in vitro. Proc. Natl Acad. Sci. USA 85, 4242–4246 (1988).

    Article  CAS  PubMed  Google Scholar 

  91. Kramer, E. B. & Farabaugh, P. J. The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA 13, 87–96 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Huang, Y., Koonin, E. V., Lipman, D. J. & Przytycka, T. M. Selection for minimization of translational frameshifting errors as a factor in the evolution of codon usage. Nucleic Acids Res. 37, 6799–6810 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kramer, E. B., Vallabhaneni, H., Mayer, L. M. & Farabaugh, P. J. A comprehensive analysis of translational missense errors in the yeast Saccharomyces cerevisiae. RNA 16, 1797–1808 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fluitt, A., Pienaar, E. & Viljoen, H. Ribosome kinetics and aa-tRNA competition determine rate and fidelity of peptide synthesis. Comput. Biol. Chem. 31, 335–346 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shah, P. & Gilchrist, M. A. Effect of correlated tRNA abundances on translation errors and evolution of codon usage bias. PLOS Genet. 6, e1001128 (2010). The ratio of cognate:near-cognate tRNA species is much more influential in dictating translation fidelity than the abundance of cognate tRNAs, as high levels of near-cognate tRNAs will compete for incorporation even if the cognate tRNA is also highly abundant.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Warnecke, T. & Hurst, L. D. GroEL dependency affects codon usage — support for a critical role of misfolding in gene evolution. Mol. Syst. Biol. 6, 340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jacobson, G. N. & Clark, P. L. Quality over quantity: optimizing co-translational protein folding with non-'optimal' synonymous codons. Curr. Opin. Struct. Biol. 38, 102–110 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Komar, A. A. A pause for thought along the co-translational folding pathway. Trends Biochem. Sci. 34, 16–24 (2009). This paper provides a comprehensive appraisal of the ways in which codon usage can influence protein folding dynamics, with an emphasis on the interplay between codon usage, tRNA pools and co-translational folding.

    Article  CAS  PubMed  Google Scholar 

  99. Angov, E. Codon usage: nature's roadmap to expression and folding of proteins. Biotechnol. J. 6, 650–659 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rodnina, M. V. The ribosome in action: tuning of translational efficiency and protein folding. Protein Sci. 25, 1390–1406 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chaney, J. L. & Clark, P. L. Roles for synonymous codon usage in protein biogenesis. Annu. Rev. Biophys. 44, 143–166 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Wang, Y. et al. Precision and functional specificity in mRNA decay. Proc. Natl Acad. Sci. USA 99, 5860–5865 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Fabian, M. R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Djuranovic, S., Nahvi, A. & Green, R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336, 237–240 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Grosset, C. et al. A mechanism for translationally coupled mRNA turnover: interaction between the poly(A) tail and a c-fos RNA coding determinant via a protein complex. Cell 103, 29–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Geisberg, Joseph, V., Moqtaderi, Z., Fan, X., Ozsolak, F. & Struhl, K. Global analysis of mRNA isoform half-lives reveals stabilizing and destabilizing elements in yeast. Cell 156, 812–824 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen, C.-Y. A. & Shyu, A.-B. Emerging themes in regulation of global mRNA turnover in cis. Trends Biochem. Sci. 42, 16–27 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Hoekema, A., Kastelein, R. A., Vasser, M. & de Boer, H. A. Codon replacement in the PGK1 gene of Saccharomyces cerevisiae: experimental approach to study the role of biased codon usage in gene expression. Mol. Cell. Biol. 7, 2914–2924 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Caponigro, G., Muhlrad, D. & Parker, R. A small segment of the MATα1 transcript promotes mRNA decay in Saccharomyces cerevisiae: a stimulatory role for rare codons. Mol. Cell. Biol. 13, 5141–5148 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hu, W., Sweet, T. J., Chamnongpol, S., Baker, K. E. & Coller, J. Co-translational mRNA decay in Saccharomyces cerevisiae. Nature 461, 225–229 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sweet, T., Kovalak, C. & Coller, J. The DEAD-box protein Dhh1 promotes decapping by slowing ribosome movement. PLoS Biol. 10, e1001342 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Carlini, D. B. Context-dependent codon bias and messenger RNA longevity in the yeast transcriptome. Mol. Biol. Evol. 22, 1403–1411 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Boël, G. et al. Codon influence on protein expression in E. coli correlates with mRNA levels. Nature 529, 358–363 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mishima, Y. & Tomari, Y. Codon usage and 3′ UTR length determine maternal mRNA stability in zebrafish. Mol. Cell 61, 874–885 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Tuller, T., Kupiec, M. & Ruppin, E. Determinants of protein abundance and translation efficiency in S. cerevisiae. PLoS Comput. Biol. 3, e248 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Akashi, H. Translational selection and yeast proteome evolution. Genetics 164, 1291–1303 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Xu, Y. et al. Non-optimal codon usage is a mechanism to achieve circadian clock conditionality. Nature 495, 116–120 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhou, M. et al. Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 495, 111–115 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Najafabadi, H. S., Goodarzi, H. & Salavati, R. Universal function-specificity of codon usage. Nucleic Acids Res. 37, 7014–7023 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Olivares-Hernández, R., Bordel, S. & Nielsen, J. Codon usage variability determines the correlation between proteome and transcriptome fold changes. BMC Syst. Biol. 5, 33 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Plotkin, J. B., Robins, H. & Levine, A. J. Tissue-specific codon usage and the expression of human genes. Proc. Natl Acad. Sci. USA 101, 12588–12591 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Dittmar, K. A., Goodenbour, J. M. & Pan, T. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2, e221 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Camiolo, S., Farina, L. & Porceddu, A. The relation of codon bias to tissue-specific gene expression in Arabidopsis thaliana. Genetics 192, 641–649 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Elf, J., Nilsson, D., Tenson, T. & Ehrenberg, M. Selective charging of tRNA isoacceptors explains patterns of codon usage. Science 300, 1718–1722 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Dittmar, K. A., Sørensen, M. A., Elf, J., Ehrenberg, M. & Pan, T. Selective charging of tRNA isoacceptors induced by amino-acid starvation. EMBO Rep. 6, 151 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wohlgemuth, S. E., Gorochowski, T. E. & Roubos, J. A. Translational sensitivity of the Escherichia coli genome to fluctuating tRNA availability. Nucleic Acids Res. 41, 8021–8033 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Saikia, M. et al. Codon optimality controls differential mRNA translation during amino acid starvation. RNA 22, 1719–1727 (2016). The translation of gene products involved in protein recycling and amino acid mobilization in conditions of amino acid deprivation is maintained through the use of rare codons in ubiquitin–proteasome mRNAs and the uncharacteristic stability of the levels of charged tRNAs complementary to these rare codons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nedialkova, Danny, D. & Leidel, Sebastian, A. Optimization of codon translation rates via tRNA modifications maintains proteome integrity. Cell 161, 1606–1618 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zinshteyn, B. & Gilbert, W. V. Loss of a conserved tRNA anticodon modification perturbs cellular signaling. PLoS Genet. 9, e1003675 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Deng, W. et al. Trm9-catalyzed tRNA modifications regulate global protein expression by codon-biased translation. PLoS Genet. 11, e1005706 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ranjan, N. & Rodnina, M. V. tRNA wobble modifications and protein homeostasis. Translation 4, e1143076 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Chan, C. T. et al. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat. Commun. 3, 937 (2012). Under conditions of oxidative stress, Trm4-dependent methylation of the wobble cytidine in tRNALeu(CAA) is upregulated, thereby enhancing the translation of the TTG Leu codon, which is enriched in genes required for effective resistance to oxidative conditions. A defect in this tRNA modification pathway increases susceptibility to oxidative damage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chan, C. T. Y. et al. a quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet. 6, e1001247 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fernández-Vázquez, J. et al. Modification of tRNALysUUU by elongator is essential for efficient translation of stress mRNAs. PLoS Genet. 9, e1003647 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Endres, L., Dedon, P. C. & Begley, T. J. Codon-biased translation can be regulated by wobble-base tRNA modification systems during cellular stress responses. RNA Biol. 12, 603–614 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Pavon-Eternod, M. et al. tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res. 37, 7268–7280 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Shin, S.-H. et al. Implication of leucyl-tRNA synthetase 1 (LARS1) over-expression in growth and migration of lung cancer cells detected by siRNA targeted knock-down analysis. Exp. Mol. Med. 40, 229–236 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hsieh, A. C. et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485, 55–61 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gingold, H. et al. A dual program for translation regulation in cellular proliferation and differentiation. Cell 158, 1281–1292 (2014). Proliferating cells express a tRNA pool that favours the translation of pro-growth mRNAs, whereas differentiated cells express a different tRNA pool, which favours the translation of mRNAs that support cell–cell adhesion and communication.

    Article  CAS  PubMed  Google Scholar 

  140. Grewal, S. S. Why should cancer biologists care about tRNAs? tRNA synthesis, mRNA translation and the control of growth. Biochim. Biophys. Acta 1849, 898–907 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Richter, Joel, D. & Coller, J. Pausing on polyribosomes: make way for elongation in translational control. Cell 163, 292–300 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bazzini, A. A., Lee, M. T. & Giraldez, A. J. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the laboratories of K. E. Baker and J.C. for their helpful discussions. Funding was provided by NIGMS to J.C. (GM118018 and GM125086) and to G.H. (GM007250).

Author information

Authors and Affiliations

Authors

Contributions

Both G.H. and J.C. were responsible for background research, content discussion, and writing and editing of this article.

Corresponding authors

Correspondence to Gavin Hanson or Jeff Coller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Ribosome A-site

The part of the ribosome where the amino acid-charged tRNA complex initially binds and is recognized by the mRNA codon triplet.

Open reading frame

(ORF). The portion of a transcript with the potential to be translated and yield a protein; it is flanked by a start codon (AUG) and a stop codon (UAG, UAA or UGA).

tRNA adaptation index

(tAI). A normalized measure of how well a codon or a set of codons is adapted to the cellular tRNA pool.

Ribonucleoprotein

(RNP). RNA in association with its binding proteins. In the context of polysome analysis, this excludes the ribosome.

80S

The fully assembled eukaryotic ribosome, named after its sedimentation coefficient. In the context of polysome analysis, this is taken to include the associated mRNA.

Polysome

A complex of mRNA and two or more ribosomes. In polysome analysis, the polysome fraction is often further divided into sub-fractions based on sedimentation rate, with faster sedimentation rates corresponding to mRNAs with more ribosomes.

Shotgun proteomics

A method for assaying the identities and quantities of proteins within a complex protein mixture using high-performance liquid chromatography and mass spectrometry (HPLC–MS).

Coding DNA sequence

(CDS). The portion of a gene or transcript that is translated in the cell to yield a functional protein.

Missense translation errors

The incorporation of an incorrect amino acid into a protein due to the accommodation of a non-cognate tRNA species during translation.

Codon adaptation index

(CAI). A measure of the extent to which a transcript is biased towards the use of codons enriched in the transcriptome as a whole, over less commonly used synonymous codons.

Maternal-to-zygotic transition

(MZT). The activation of zygotic gene expression, which is accompanied by the degradation of the maternally supplied transcripts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanson, G., Coller, J. Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol 19, 20–30 (2018). https://doi.org/10.1038/nrm.2017.91

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2017.91

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing