Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular defects in T- and B-cell primary immunodeficiency diseases

Key Points

  • More than 120 primary immunodeficiency diseases have been described, and the genetic basis of many of these has now been determined. Antibody deficiencies constitute the largest group within the primary immunodeficiencies.

  • Severe combined immunodeficiency (SCID) is characterized by lack of an adaptive immune response and is fatal if untreated. The early diagnosis of SCID through a newborn-screening programme would allow life-saving haematopoietic stem-cell transplantation to occur in the neonatal period.

  • T-cell immunodysregulation involved in self-recognition is seen in three conditions: IPEX (immunodysregulation, polyendocrinopathy and enteropathy, X-linked syndrome), APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal-dystrophy syndrome) and ALPS (autoimmune lymphoproliferative syndrome).

  • Seven defects that are known to be involved in the hyper-IgM syndromes (HIGMs) have been characterized: defects in the CD40 ligand gene, classified as HIGM type 1 (HIGM1; also known as X-linked HIGM); defects in the activation-induced cytidine deaminase (AID) gene, classified as HIGM2; defects in CD40, classified as HIGM3; defective class-switch recombination with preserved somatic hypermutation, classified as HIGM4; defects in the uracil-DNA glycosylase (UNG) gene; defects in IKKG (IκB (inhibitor of nuclear factor-κB, NF-κB) kinase-γ); and defects in NFKBIA (which encodes IκBα).

  • There is an emerging understanding of the importance of components of the innate immune system in the aetiology of primary immunodeficiency, including mutations in NFKBIA, IRAK4 (interleukin-1-receptor-associated kinase 4) and the caspase-12 gene. The innate and adaptive immune systems, which were historically thought of as segregated, do not function as distinct entities; instead, they are interdependent and function together to coordinate the host immune response.

  • Common variable immunodeficiency (CVID) is characterized by a defect in antibody production. The mutated genes that produce the CVID phenotype are known only for a minority of patients, and they are diverse in their influence on immune function and include ICOS (inducible T-cell co-stimulator), SH2D1A — which encodes SAP (signalling lymphocytic activation molecule (SLAM)-associated protein) and is involved in X-linked lymphoproliferative syndrome — and three genes that have recently been described to be involved: CD19, BAFFR (B-cell-activating-factor receptor) and TACI (transmembrane activator and calcium-modulating cyclophilin-ligand interactor).

  • Haematopoietic stem-cell transplantation has been attempted for the treatment of patients with several types of primary immunodeficiency, most successfully for individuals with SCID.

  • Clinical trials have been carried out using gene therapy for the treatment of patients with X-linked, recessive SCID (which is caused by common cytokine-receptor γ-chain deficiency) and patients with adenosine-deaminase deficiency. Insertional mutagenesis proved to be a serious adverse event in some patients, and further insight is needed for the design and delivery of retroviral vectors before this life-saving therapy can be provided in the future.

Abstract

More than 120 inherited primary immunodeficiency diseases have been discovered in the past five decades, and the precise genetic defect in many of these diseases has now been identified. Increasing understanding of these molecular defects has considerably influenced both basic and translational research, and this has extended to many branches of medicine. Recent advances in both diagnosis and therapeutic modalities have allowed these defects to be identified earlier and to be more precisely defined, and they have also resulted in more promising long-term outcomes. The prospect of gene therapy continues to be included in the armamentarium of treatment considerations, because these conditions could be among the first to benefit from gene-therapy trials in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein and gene defects in T-cell development and function.
Figure 2: Protein and gene defects in B-cell development and function.

Similar content being viewed by others

References

  1. Notarangelo, L. et al. Primary immunodeficiency diseases: an update. J. Allergy Clin. Immunol. 114, 677–687 (2004). This is an updated summary and classification scheme of primary immunodeficiency diseases that is based on the most recent consensus of the Primary Immunodeficiency Disease Classification Committee of the International Union of Immunological Societies.

    Article  CAS  PubMed  Google Scholar 

  2. Puel, A., Ziegler, S. F., Buckley, R. H. & Leonard, W. J. Defective IL7R expression in TB+NK+ severe combined immunodeficiency. Nature Genet. 20, 394–397 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Dadi, H. K., Simon, A. J. & Roifman, C. M. Effect of CD3δ deficiency on maturation of α/β and γ/δ T-cell lineages in severe combined immunodeficiency. N. Engl. J. Med. 349, 1821–1828 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. de Saint Basile, G. et al. Severe combined immunodeficiency caused by deficiency in either the δ or the ε subunit of CD3. J. Clin. Invest. 114, 1512–1517 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Noguchi, M. et al. Interleukin-2 receptor γ chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147–157 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Kung, C. et al. Mutations in the tyrosine phosphatase CD45 gene in a child with severe combined immunodeficiency disease. Nature Med. 6, 343–345 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Russell, S. M. et al. Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270, 797–800 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Moshous, D. et al. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105, 177–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Schwarz, K. et al. RAG mutations in human B cell-negative SCID. Science 274, 97–99 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Giblett, E., Anderson, J., Cohen, F., Pollara, B. & Meuwissen, H. Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet 2, 1067–1069 (1972).

    Article  CAS  PubMed  Google Scholar 

  11. Buckley, R. H. Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu. Rev. Immunol. 22, 625–655 (2004). This paper reviews SCID and the outcomes of bone-marrow transplantation of 132 patients over two decades.

    Article  CAS  PubMed  Google Scholar 

  12. Patel, D. D. et al. Thymic function after hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N. Engl. J. Med. 342, 1325–1332 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Myers, L. A., Patel, D. D., Puck, J. M. & Buckley, R. H. Hematopoietic stem cell transplantation for severe combined immunodeficiency in the neonatal period leads to superior thymic output and improved survival. Blood 99, 872–878 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Lindegren, M. L. et al. Applying public health strategies to primary immunodeficiency diseases: a potential approach to genetic disorders. MMWR Recomm. Rep. 53, 1–29 (2004).

    PubMed  Google Scholar 

  15. Chan, K. & Puck, J. M. Development of population-based newborn screening for severe combined immunodeficiency. J. Allergy Clin. Immunol. 115, 391–398 (2005). This paper describes the novel approach of measuring the number of TRECs in DNA isolated from dried blood spots to screen infants for SCID.

    Article  PubMed  Google Scholar 

  16. Yagi, H. et al. Role of TBX1 in human del22q11.2 syndrome. Lancet 362, 1366–1373 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Stoller, J. Z. & Epstein, J. A. Identification of a novel nuclear localization signal in Tbx1 that is deleted in DiGeorge syndrome patients harboring the 1223delC mutation. Hum. Mol. Genet. 14, 885–892 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Arnaiz-Villena, A. et al. Primary immunodeficiency caused by mutations in the gene encoding the CD3-γ subunit of the T-lymphocyte receptor. N. Engl. J. Med. 327, 529–533 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Soudais, C., de Villartay, J. -P., Le Deist, F., Fischer, A. & Lisowska-Grospierre, B. Independent mutations of the human CD3-ε gene resulting in a T cell receptor/CD3 complex immunodeficiency. Nature Genet. 3, 77–81 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. de la Salle, H. et al. HLA class I deficiencies due to mutations in subunit 1 of the peptide transporter TAP1. J. Clin. Invest. 103, R9–R13 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Donato, L. et al. Association of HLA class I antigen deficiency related to a TAP2 gene mutation with familial bronchiectasis. J. Pediatr. 127, 895–900 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Masternak, K., Muhlethaler-Mottet, A., Villard, J., Peretti, M. & Reith, W. Molecular genetics of the bare lymphocyte syndrome. Rev. Immunogenet. 2, 267–282 (2000).

    CAS  PubMed  Google Scholar 

  23. Goldman, F. D. et al. Defective expression of p56lck in an infant with severe combined immunodeficiency. J. Clin. Invest. 102, 421–429 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arpaia, E., Shahar, M., Dadi, H., Cohen, A. & Rolfman, C. M. Defective T cell receptor signaling and CD8+ thymic selection in humans lacking Zap-70 kinase. Cell 76, 947–958 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. de la Calle-Martin, O. et al. Familial CD8 deficiency due to a mutation in the CD8α gene. J. Clin. Invest. 108, 117–123 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Engel, P., Eck, M. J. & Terhorst, C. The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease. Nature Rev. Immunol. 3, 813–821 (2003).

    Article  CAS  Google Scholar 

  27. Ochs, H. D., Ziegler, S. F. & Torgerson, T. R. FOXP3 acts as a rheostat of the immune response. Immunol. Rev. 203, 156–164 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Gambineri, E., Torgerson, T. R. & Ochs, H. D. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr. Opin. Rheumatol. 15, 430–435 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature Genet. 27, 20–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Baecher-Allan, C., Brown, J. A., Freeman, G. J. & Hafler, D. A. CD4+CD25high regulatory cells in human peripheral blood. J. Immunol. 167, 1245–1253 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Kobayashi, I., Nakanishi, M., Okano, M., Sakiyama, Y. & Matsumoto, S. Combination therapy with tacrolimus and betamethasone for a patient with X-linked auto-immune enteropathy. Eur. J. Pediatr. 154, 594–595 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Baud, O. et al. Treatment of the immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) by allogeneic bone marrow transplantation. N. Engl. J. Med. 344, 1758–1762 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Wildin, R. S., Smyk-Pearson, S. & Filipovich, A. H. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. J. Med. Genet. 39, 537–545 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aaltonen, J. et al. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nature Genet. 17, 399–403 (1997).

    Article  Google Scholar 

  35. Su, M. A. & Anderson, M. S. Aire: an update. Curr. Opin. Immunol. 16, 746–752 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Gotter, J., Brors, B., Hergenhahn, M. & Kyewski, B. Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. J. Exp. Med. 199, 155–166 (2004). This study investigates the expression of self-proteins at the surface of human thymic epithelial cells, and the authors postulate a role for AIRE in regulating the expression of these self-proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Watanabe, N. et al. Human thymic stromal lymphopoietin promotes dendritic cell-mediated CD4+ T cell homeostatic expansion. Nature Immunol. 5, 426–434 (2004).

    Article  CAS  Google Scholar 

  38. Uchida, D. et al. AIRE functions as an E3 ubiquitin ligase. J. Exp. Med. 199, 167–172 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Le Deist, F. et al. Clinical, immunological, and pathological consequences of Fas-deficient conditions. Lancet 348, 719–723 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Rieux-Laucat, F., Fischer, A. & Le Deist, F. L. Cell-death signaling and human disease. Curr. Opin. Immunol. 15, 325–331 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Rieux-Laucat, F. et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268, 1347–1349 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Vaishnaw, A. K. et al. The molecular basis for apoptotic defects in patients with CD95 (Fas/Apo-1) mutations. J. Clin. Invest. 103, 355–363 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chun, H. J. et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419, 395–399 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, J., Chun, H. J., Wong, W., Spencer, D. M. & Lenardo, M. J. Caspase-10 is an initiator caspase in death receptor signaling. Proc. Natl Acad. Sci. USA 98, 13884–13888 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu, J. et al. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J. Clin. Invest. 98, 1107–1113 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ramenghi, U. et al. Deficiency of the Fas apoptosis pathway without Fas gene mutations is a familial trait predisposing to development of autoimmune diseases and cancer. Blood 95, 3176–3182 (2000).

    CAS  PubMed  Google Scholar 

  47. Holzelova, E. et al. Autoimmune lymphoproliferative syndrome with somatic Fas mutations. N. Engl. J. Med. 351, 1409–1418 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Kenter, A. L. Class-switch recombination: after the dawn of AID. Curr. Opin. Immunol. 15, 190–198 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Papavasiliou, F. N. & Schatz, D. G. Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Cell 109, S35–S44 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Aruffo, A. et al. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell 72, 291–300 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Imai, K. et al. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nature Immunol. 4, 1023–1028 (2003).

    Article  CAS  Google Scholar 

  53. Ferrari, S. et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc. Natl Acad. Sci. USA 98, 12614–12619 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kutukculer, N. et al. Disseminated Cryptosporidium infection in an infant with hyper-IgM syndrome caused by CD40 deficiency. J. Pediatr. 142, 194–196 (2003).

    Article  PubMed  Google Scholar 

  55. Imai, K. et al. Hyper-IgM syndrome type 4 with a B lymphocyte-intrinsic selective deficiency in Ig class-switch recombination. J. Clin. Invest. 112, 136–142 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Doffinger, R. et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling. Nature Genet. 27, 277–285 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Jain, A. et al. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nature Immunol. 2, 223–228 (2001).

    Article  CAS  Google Scholar 

  58. Orange, J. S. et al. The presentation and natural history of immunodeficiency caused by nuclear factor κB essential modulator mutation. J. Allergy Clin. Immunol. 113, 725–733 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Courtois, G. et al. A hypermorphic IκBα mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J. Clin. Invest. 112, 1108–1115 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Minegishi, Y. et al. Mutations in activation-induced cytidine deaminase in patients with hyper IgM syndrome. Clin. Immunol. 97, 203–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Catalan, N. et al. The block in immunoglobulin class switch recombination caused by activation-induced cytidine deaminase deficiency occurs prior to the generation of DNA double strand breaks in switch μ region. J. Immunol. 171, 2504–2509 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Chaudhuri, J., Khuong, C. & Alt, F. W. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 430, 992–998 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Etzioni, A. & Ochs, H. D. The hyper IgM syndrome — an evolving story. Pediatr. Res. 56, 1–7 (2004).

    Article  CAS  Google Scholar 

  64. Puel, A., Picard, C., Ku, C. -L., Smahi, A. & Casanova, J. L. Inherited disorders of NF-κB-mediated immunity in man. Curr. Opin. Immunol. 16, 34–41 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Ochs, H. D. & Notarangelo, L. X-linked immunodeficiencies. Curr. Allergy Asthma Rep. 4, 339–348 (2004).

    Article  PubMed  Google Scholar 

  66. Akira, S. & Takeda, K. Toll-like receptor signalling. Nature Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  Google Scholar 

  67. Medvedev, A. E. et al. Distinct mutations in IRAK-4 confer hyporesponsiveness to lipopolysaccharide and interleukin-1 in a patient with recurrent bacterial infections. J. Exp. Med. 198, 521–531 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Picard, C. et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299, 2076–2079 (2003). This report describes three children with a defect in TLR signalling and their susceptibility to infection.

    Article  CAS  PubMed  Google Scholar 

  69. Saleh, M. et al. Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429, 75–79 (2004). References 67–69 show the emerging role of defects in the innate immune system as an aetiology for primary immunodeficiency diseases.

    Article  CAS  PubMed  Google Scholar 

  70. Buckley, R. H. Primary immunodeficiency diseases due to defects in lymphocytes. N. Engl. J. Med. 343, 1313–1324 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Bruton, O. Agammaglobulinemia. Pediatrics 9, 722–728 (1952).

    CAS  PubMed  Google Scholar 

  72. Vetrie, D. et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361, 226–233 (1993).

    Article  CAS  PubMed  Google Scholar 

  73. Buckley, R. H. Pulmonary complications of primary immunodeficiencies. Paediatr. Respir. Rev. 5, S225–S233 (2004).

    Article  PubMed  Google Scholar 

  74. Curtin, J. J., Webster, A. D., Farrant, J. & Katz, D. Bronchiectasis in hypogammaglobulinaemia — a computed tomography assessment. Clin. Radiol. 44, 82–84 (1991).

    Article  CAS  PubMed  Google Scholar 

  75. McKinney, R. E. Jr, Katz, S. L. & Wilfert, C. M. Chronic enteroviral meningoencephalitis in agammaglobulinemic patients. Rev. Infect. Dis. 9, 334–356 (1987).

    Article  PubMed  Google Scholar 

  76. Minegishi, Y. et al. Mutations in the human λ5/14.1 gene result in B cell deficiency and agammaglobulinemia. J. Exp. Med. 187, 71–77 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Minegishi, Y. et al. Mutations in Igα (CD79a) result in a complete block in B-cell development. J. Clin. Invest. 104, 1115–1121 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yel, L. et al. Mutations in the μ heavy-chain gene in patients with agammaglobulinemia. N. Engl. J. Med. 335, 1486–1493 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Meffre, E. et al. Immunoglobulin heavy chain expression shapes the B cell receptor repertoire in human B cell development. J. Clin. Invest. 108, 879–886 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Aoki, Y., Isselbacher, K. & Pillai, S. Bruton tyrosine kinase is tyrosine phosphorylated and activated in pre-B lymphocytes and receptor-ligated B cells. Proc. Natl Acad. Sci USA 91, 10606–10609 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Genevier, H. C. & Callard, R. E. Impaired Ca2+ mobilization by X-linked agammaglobulinaemia (XLA) B cells in response to ligation of the B cell receptor (BCR). Clin. Exp. Immunol. 110, 386–391 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ng, Y. -S., Wardemann, H., Chelnis, J., Cunningham-Rundles, C. & Meffre, E. Bruton's tyrosine kinase is essential for human B cell tolerance. J. Exp. Med. 200, 927–934 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sawada, A. et al. A congenital mutation of the novel gene LRRC8 causes agammaglobulinemia in humans. J. Clin. Invest. 112, 1707–1713 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Primary Immunodeficiency Diseases. Report of an IUIS Scientific Committee. International Union of Immunological Societies. Clin. Exp. Immunol. 118, 1–28 (1999).

  85. Warnatz, K. et al. Severe deficiency of switched memory B cells (CD27+IgMIgD) in subgroups of patients with common variable immunodeficiency: a new approach to classify a heterogeneous disease. Blood 99, 1544–1551 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Cunningham-Rundles, C. & Bodian, C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin. Immunol. 92, 34–48 (1999). This is the largest case study so far of patients with CVID.

    Article  CAS  PubMed  Google Scholar 

  87. Morra, M. et al. Alterations of the X-linked lymphoproliferative disease gene SH2D1A in common variable immunodeficiency syndrome. Blood 98, 1321–1325 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Grimbacher, B. et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nature Immunol. 4, 261–268 (2003).

    Article  CAS  Google Scholar 

  89. Salzer, U. et al. ICOS deficiency in patients with common variable immunodeficiency. Clin. Immunol. 113, 234–240 (2004). References 88 and 89 report that a defect in ICOS is the cause of CVID in nine individuals.

    Article  CAS  PubMed  Google Scholar 

  90. Choe, J. & Choi, Y. S. IL-10 interrupts memory B cell expansion in the germinal center by inducing differentiation into plasma cells. Eur. J. Immunol. 28, 508–515 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Lee, W. -I. et al. Inducible CO-stimulator molecule, a candidate gene for defective isotype switching, is normal in patients with hyper-IgM syndrome of unknown molecular diagnosis. J. Allergy Clin. Immunol. 112, 958–964 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Gross, J. A. et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404, 995–999 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Thompson, J. S. et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 293, 2108–2111 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Rennert, P. et al. A soluble form of B cell maturation antigen, a receptor for the tumor necrosis factor family member APRIL, inhibits tumor cell growth. J. Exp. Med. 192, 1677–1684 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Litinskiy, M. B. et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nature Immunol. 3, 822–829 (2002).

    Article  CAS  Google Scholar 

  96. Cunningham-Rundles, C. Physiology of IgA and IgA deficiency. J. Clin. Immunol. 21, 303–309 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Burrows, P. D. & Cooper, M. D. IgA deficiency. Adv. Immunol. 65, 245–276 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Vorechovsky, I. et al. Family and linkage study of selective IgA deficiency and common variable immunodeficiency. Clin. Immunol. Immunopathol. 77, 185–192 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Vorechovsky, I., Webster, A. D. B., Plebani, A. & Hammarstrom, L. Genetic linkage of IgA deficiency to the major histocompatibility complex: evidence for allele segregation distortion, parent-of-origin penetrance differences, and the role of anti-IgA antibodies in disease predisposition. Am. J. Hum. Genet. 64, 1096–1109 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kralovicova, J., Hammarstrom, L., Plebani, A., Webster, A. D. B. & Vorechovsky, I. Fine-scale mapping at IGAD1 and genome-wide genetic linkage analysis implicate HLA-DQ/DR as a major susceptibility locus in selective IgA deficiency and common variable immunodeficiency. J. Immunol. 170, 2765–2775 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Hershfield, M. S. PEG-ADA replacement therapy for adenosine deaminase deficiency: an update after 8.5 years. Clin. Immunol. Immunopathol. 76, S228–S232 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Buckley, R. H. A historical review of bone marrow transplantation for immunodeficiencies. J. Allergy Clin. Immunol. 113, 793–800 (2004).

    Article  PubMed  Google Scholar 

  103. Antoine, C. et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968–99. Lancet 361, 553–560 (2003). This paper details the outcomes of 475 patients in Europe who, over three decades, received a haematopoietic stem-cell transplant.

    Article  PubMed  Google Scholar 

  104. Buckley, R. H. et al. Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N. Engl. J. Med. 340, 508–516 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Sarzotti, M. et al. T cell repertoire development in humans with SCID after nonablative allogeneic marrow transplantation. J. Immunol. 170, 2711–2718 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Cavazzana-Calvo, M. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672 (2000). This report was the first description of successful gene therapy for patients with X-linked SCID.

    Article  CAS  PubMed  Google Scholar 

  107. Hacein-Bey-Abina, S. et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N. Engl. J. Med. 346, 1185–1193 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Aiuti, A. et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296, 2410–2413 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. McCormack, M. P. & Rabbitts, T. H. Activation of the T-cell oncogene LMO2 after gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 350, 913–922 (2004). This study details the role of LMO2 in the development of the insertional mutagenesis that was seen in several patients with X-linked SCID after gene therapy.

    Article  CAS  PubMed  Google Scholar 

  111. Handgretinger, R. et al. Megadose transplantation of purified peripheral blood CD34+ progenitor cells from HLA-mismatched parental donors in children. Bone Marrow Transplant. 27, 777–783 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Kohn, D. B. et al. American Society of Gene Therapy (ASGT) ad hoc subcommittee on retroviral-mediated gene transfer to hematopoietic stem cells. Mol. Ther. 8, 180–187 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Frank, J. et al. Exposing the human nude phenotype. Nature 398, 473–474 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Fu, C., Turck, C. W., Kurosaki, T. & Chan, A. C. BLNK: a central linker protein in B cell activation. Immunity 9, 93–103 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Minegishi, Y. et al. An essential role for BLNK in human B cell development. Science 286, 1954–1957 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Salzer, U. et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nature Genet. 37, 820–828 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Castigli, E. et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nature Genet. 37, 829–834 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Cunningham-Rundles.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

ALPS1a

ALPS1b

APECED

CVID

DiGeorge syndrome

HIGM1

HIGM2

HIGM3

HIGM4

IPEX

XLA

XLP

FURTHER INFORMATION

Charlotte Cunningham-Rundles homepage

Glossary

T-CELL-RECEPTOR EXCISION CIRCLES

(TRECs). DNA episomes that are normally produced during the thymic maturation of T cells, specifically during recombination of the T-cell-receptor genes.

X-LINKED LYMPHOPROLIFERATIVE SYNDROME

(XLP). A rare, often fatal, primary immunodeficiency disease that is characterized by an inability to mount an effective immune response to Epstein–Barr virus. This can lead to lymphoma or hypogammaglobulinaemia.

CD4+CD25hi REGULATORY T CELLS

A thymus-derived subpopulation of T cells that expresses the transcription factor forkhead box P3 (FOXP3) and is involved in the suppression of immune responses, either by cell–cell contact or cytokine release.

CYCLOSPORIN A AND TACROLIMUS

Calcineurin inhibitors that are used to prevent transplant rejection and that function by inhibiting nuclear factor of activated T cells (NFAT).

CLASS-SWITCH RECOMBINATION

(CSR). A switch in the DNA that encodes the constant region of the immunoglobulin heavy chain, from Cμ (which encodes the constant region of IgM) to DNA that is further downstream and encodes the constant region of another immunoglobulin class: that is, to Cγ, Cα or Cε, which encode the constant region of IgG, IgA and IgE, respectively. This is accomplished through an intrachromosomal deletional rearrangement.

SOMATIC HYPERMUTATION

(SHM). The introduction of point mutations at a high frequency in the variable regions of immunoglobulin genes.

HYPOMORPHIC MUTATION

A type of mutation that results in either diminished quantity of a normal gene product or diminished function of a gene product.

HYPODONTIA

The partial congenital absence of one or more teeth.

TOLL-LIKE RECEPTORS

(TLRs). A family of evolutionarily conserved pattern-recognition receptors. These molecules are located intracellularly and at the cell surface of macrophages, dendritic cells, B cells and intestinal epithelial cells. Their natural ligands are conserved molecular patterns, known as pathogen-associated molecular patterns, that are found in bacteria, viruses and fungi.

BRONCHIECTASIS

A permanent dilation of the bronchi, owing to chronic inflammation, that increases susceptibility to recurrent infections.

TERMINAL DEOXY-NUCLEOTIDYLTRANSFERASE

(TdT). An enzyme that inserts nucleotides into the variable regions of T-cell receptor and immunoglobulin genes, thereby creating junctional diversity.

INDUCIBLE T-CELL COSTIMULATOR

(ICOS). A homodimeric transmembrane protein that is selectively expressed at the surface of activated T cells. It specifically interacts with ICOS ligand (also known as B7-H2), which is expressed by many cell types, including professional antigen-presenting cells, fibroblasts, epithelial cells and endothelial cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cunningham-Rundles, C., Ponda, P. Molecular defects in T- and B-cell primary immunodeficiency diseases. Nat Rev Immunol 5, 880–892 (2005). https://doi.org/10.1038/nri1713

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1713

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing