Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organization and function of the 3D genome

A Corrigendum to this article was published on 31 October 2016

This article has been updated

Key Points

  • Chromosomes fold in a hierarchy of structures with increasing complexity, from nucleosomes and chromatin fibres to chromatin loops, chromosome domains, chromosome compartments and, finally, chromosome territories

  • A limited set of components, including architectural proteins, chromatin regulators and non-coding RNAs (ncRNAs) regulate three-dimensional (3D) chromosome organization

  • Chromosome architecture is globally stable, but able to receive regulatory cues to undergo local and global reorganization in specific portions of the genome

  • 3D organization can have causative roles in the regulation of gene expression, whereas in other cases it is modulated by gene expression

  • 3D chromatin structure transitions are typical of development and cell differentiation, and are often dysregulated in disease processes

  • Chromosome architecture evolved considerably across evolutionary kingdoms, but remains robust in species of the distal branches of the evolutionary tree

Abstract

Understanding how chromatin is organized within the nucleus and how this 3D architecture influences gene regulation, cell fate decisions and evolution are major questions in cell biology. Despite spectacular progress in this field, we still know remarkably little about the mechanisms underlying chromatin structure and how it can be established, reset and maintained. In this Review, we discuss the insights into chromatin architecture that have been gained through recent technological developments in quantitative biology, genomics and cell and molecular biology approaches and explain how these new concepts have been used to address important biological questions in development and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 3C-based approaches to study chromatin architecture.
Figure 2: Hierarchical organization of chromatin structure.
Figure 3: Establishing and maintaining 3D chromatin organization.
Figure 4: Importance of CTCF polarity on 3D chromatin organization.
Figure 5: Static and dynamic components of chromatin organization.
Figure 6: 3D genome organization and gene expression.

Similar content being viewed by others

Change history

  • 31 October 2016

    In the original version of this article, the statement that CCCTC-binding factor (CTCF) is conserved in most bilaterians was incorrectly referenced. Reference 58 has now been corrected in the online version of the article to cite Heger, P., Marin, B., Bartkuhn, M., Schierenberg, E. & Wiehe, T. The chromatin insulator CTCF and the emergence of metazoan diversity. Proc. Natl Acad. Sci. USA 109, 17507–17512 (2012). The authors apologize for this error.

References

  1. Bickmore, W. A. & van Steensel, B. Genome architecture: domain organization of interphase chromosomes. Cell 152, 1270–1284 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Sexton, T. & Cavalli, G. The role of chromosome domains in shaping the functional genome. Cell 160, 1049–1059 (2015).

    CAS  PubMed  Google Scholar 

  3. Pombo, A. & Dillon, N. Three-dimensional genome architecture: players and mechanisms. Nat. Rev. Mol. Cell Biol. 16, 245–257 (2015).

    CAS  PubMed  Google Scholar 

  4. Therizols, P. et al. Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells. Science 346, 1238–1242 (2014). In this paper, transcriptional activation or chromatin decondensation alone is sufficient to cause a translocation of the underlying locus from the nuclear periphery towards the nuclear core.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gonzalez-Sandoval, A. et al. Perinuclear anchoring of H3K9-Methylated chromatin stabilizes induced cell fate in C. elegans embryos. Cell 163, 1333–1347 (2015).

    CAS  PubMed  Google Scholar 

  6. Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    CAS  PubMed  Google Scholar 

  7. Sexton, T. T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012). This paper describes the discovery of TADs in Drosophila melanogaster and shows that TADs overlap extensively with distinct patterns of epigenetic marks.

    CAS  PubMed  Google Scholar 

  8. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012). In this study, the authors describe the discovery of TADs in the X chromosome using 5C and show that the boundaries of those TADs are defined by cis -acting genetic elements.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dixon, J. R. J. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012). In this paper, the global organization of the mammalian genomes into TADs is reported and TAD boundaries are shown to be relatively constant between cell types and enriched in CTCF.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dixon, J. R. et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331–336 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014). The authors use Hi-C to characterize the chromatin organization in nine different human and mouse cell lines with very high resolution. They show that chromatin loops are often established between two CTCF sites with convergent motif orientation.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Schuettengruber, B. et al. Cooperativity, specificity, and evolutionary stability of Polycomb targeting in Drosophila. Cell Rep. 9, 219–233 (2014).

    CAS  PubMed  Google Scholar 

  13. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Giorgetti, L. et al. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157, 950–963 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2014). In this paper, the authors use single cell Hi-C to examine the heterogeneity of 3D genome organization within a population of cells.

    Google Scholar 

  16. Naumova, N. et al. Organization of the mitotic chromosome. Science 342, 948–953 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Marsden, M. P. & Laemmli, U. K. Metaphase chromosome structure: evidence for a radial loop model. Cell 17, 849–858 (1979).

    CAS  PubMed  Google Scholar 

  18. Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015).

    CAS  PubMed  Google Scholar 

  20. Schalch, T., Duda, S., Sargent, D. F. & Richmond, T. J. X-Ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436, 138–141 (2005).

    CAS  PubMed  Google Scholar 

  21. Tremethick, D. J. Higher-order structures of chromatin: the elusive 30 nm fiber. Cell 128, 651–654 (2007).

    CAS  PubMed  Google Scholar 

  22. Ricci, M. A., Manzo, C., García-Parajo, M. F., Lakadamyali, M. & Cosma, M. P. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160, 1145–1158 (2015).

    CAS  PubMed  Google Scholar 

  23. Hsieh, T.-H. S. et al. Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell 162, 108–119 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fussner, E. et al. Open and closed domains in the mouse genome are configured as 10-nm chromatin fibres. 13, 992–926 (2012).

  25. Palstra, R.-J. et al. The β-globin nuclear compartment in development and erythroid differentiation. Nat. Genet. 35, 190–194 (2003).

    CAS  PubMed  Google Scholar 

  26. Schoenfelder, S. et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat. Genet. 42, 53–61 (2010).

    CAS  PubMed  Google Scholar 

  27. Bantignies, F. et al. Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. Cell 144, 214–226 (2011).

    CAS  PubMed  Google Scholar 

  28. Denholtz, M. et al. Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and Polycomb proteins in genome organization. Cell Stem Cell 13, 602–616 (2013).

    CAS  PubMed  Google Scholar 

  29. Vieux-Rochas, M., Fabre, P. J., Leleu, M., Duboule, D. & Noordermeer, D. Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain. Proc. Natl Acad. Sci. USA 112, 4672–4677 (2015).

    CAS  PubMed  Google Scholar 

  30. Schoenfelder, S. et al. Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nat. Genet. 47, 1179–1186 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. O'Sullivan, J. M. et al. Gene loops juxtapose promoters and terminators in yeast. Nat. Genet. 36, 1014–1018 (2004).

    CAS  PubMed  Google Scholar 

  32. Tan-Wong, S. M. et al. Gene loops enhance transcriptional directionality. Science 338, 671–675 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116–120 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Eagen, K. P., Hartl, T. A. & Kornberg, R. D. Stable chromosome condensation revealed by chromosome conformation capture. Cell 163, 934–946 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ulianov, S. V. et al. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Genome Res. 26, 70–84 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 1281–1295 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wijchers, P. J. et al. Cause and consequence of tethering a subTAD to different nuclear compartments. Mol. Cell 61, 461–473 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, S. et al. Spatial organization of chromatin domains and compartments in single chromosomes. Science 353, 598–602 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Boettiger, A. N. et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529, 418–422 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lichter, P., Cremer, T., Borden, J., Manuelidis, L. & Ward, D. C. Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum. Genet. 80, 224–234 (1988).

    CAS  PubMed  Google Scholar 

  41. Pinkel, D. et al. Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc. Natl Acad. Sci. USA 85, 9138–9142 (1988).

    CAS  PubMed  Google Scholar 

  42. Van Bortle, K. et al. Insulator function and topological domain border strength scale with architectural protein occupancy. Genome Biol. 15, R82 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. Schwartz, Y. B. et al. Nature and function of insulator protein binding sites in the Drosophila genome. Genome Res. 22, 2188–2198 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Giorgetti, L., Servant, N. & Heard, E. Changes in the organization of the genome during the mammalian cell cycle. Genome Biol. 14, 142 (2013).

    PubMed  PubMed Central  Google Scholar 

  45. Heath, H. et al. CTCF regulates cell cycle progression of αβ T cells in the thymus. EMBO J. 27, 2839–2850 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Allen, B. L. & Taatjes, D. J. The mediator complex: a central integrator of transcription. Nat. Rev. Mol. Cell Biol. 16, 155–166 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nasmyth, K. & Haering, C. H. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43, 525–558 (2009).

    CAS  PubMed  Google Scholar 

  48. Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Splinter, E. et al. CTCF mediates long-range chromatin looping and local histone modification in the β-globin locus. Genes Dev. 20, 2349–2354 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hadjur, S. et al. Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 460, 410–413 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lai, F. F. et al. Activating RNAs associate with mediator to enhance chromatin architecture and transcription. Nature 494, 497–501 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rubio, E. D. et al. CTCF physically links cohesin to chromatin. Proc. Natl Acad. Sci. USA 105, 8309–8314 (2008).

    CAS  PubMed  Google Scholar 

  53. Seitan, V. C. et al. Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments. Genome Res. 23, 2066–2077 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sofueva, S. et al. Cohesin-mediated interactions organize chromosomal domain architecture. EMBO J. 32, 3119–3129 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ong, C.-T. & Corces, V. G. CTCF: an architectural protein bridging genome topology and function. Nat. Rev. Genet. 15, 234–246 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kurukuti, S. et al. CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc. Natl Acad. Sci. USA 103, 10684–10689 (2006).

    CAS  PubMed  Google Scholar 

  57. Xie, X. et al. Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites. Proc. Natl Acad. Sci. USA 104, 7145–7150 (2007).

    CAS  PubMed  Google Scholar 

  58. Heger, P., Marin, B., Bartkuhn, M., Schierenberg, E. & Wiehe, T. The chromatin insulator CTCF and the emergence of metazoan diversity. Proc. Natl Acad. Sci. USA 109, 17507–17512 (2012).

    CAS  PubMed  Google Scholar 

  59. Soshnikova, N., Montavon, T., Leleu, M., Galjart, N. & Duboule, D. Functional analysis of CTCF during mammalian limb development. Dev. Cell 19, 819–830 (2010).

    CAS  PubMed  Google Scholar 

  60. Wan, L. B. et al. Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development. Development 135, 2729–2738 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Narendra, V. et al. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 347, 1017–1021 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Handoko, L. et al. CTCF-mediated functional chromatin interactome in pluripotent cells. Nat. Genet. 43, 630–638 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zuin, J. et al. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc. Natl Acad. Sci. USA 111, 996–1001 (2014).

    CAS  PubMed  Google Scholar 

  64. Chen, H., Tian, Y., Shu, W., Bo, X. & Wang, S. Comprehensive identification and annotation of cell type-specific and ubiquitous CTCF-binding sites in the human genome. PLoS ONE 7, e41374 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bell, A. C. & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the IGF2 gene. Nature 405, 482–485 (2000).

    CAS  PubMed  Google Scholar 

  66. Hark, A. T. et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/IGF2 locus. Nature 405, 486–489 (2000).

    CAS  PubMed  Google Scholar 

  67. Wang, H. et al. Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res. 22, 1680–1688 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    CAS  PubMed  Google Scholar 

  69. Feldmann, A. et al. Transcription factor occupancy can mediate active turnover of DNA methylation at regulatory regions. PLoS Genet. 9, e1003994 (2013).

    PubMed  PubMed Central  Google Scholar 

  70. Vietri Rudan, M. et al. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep. 10, 1297–1309 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tang, Z. et al. CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell 163, 1611–1627 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. de Wit, E. et al. CTCF binding polarity determines chromatin looping. Mol. Cell 60, 676–684 (2015).

    CAS  PubMed  Google Scholar 

  73. Guo, Y. et al. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162, 900–910 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Trimarchi, T. et al. Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia. Cell 158, 593–606 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kung, J. T. et al. Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF. Mol. Cell 57, 361–375 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Saldana-Meyer, R. et al. CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53. Genes Dev. 28, 723–734 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Donohoe, M. E., Zhang, L.-F., Xu, N., Shi, Y. & Lee, J. T. Identification of a CTCF cofactor, YY1, for the X chromosome binary switch. Mol. Cell 25, 43–56 (2007).

    CAS  PubMed  Google Scholar 

  78. Sigova, A. A. et al. Transcription factor trapping by RNA in gene regulatory elements. Science 350, 978–981 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hacisuleyman, E. et al. Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat. Struct. Mol. Biol. 21, 198–206 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Engreitz, J. M. et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341, 1237973 (2013).

    PubMed  PubMed Central  Google Scholar 

  81. Simon, M. D. et al. High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature 504, 465–469 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Deng, X. et al. Bipartite structure of the inactive mouse X chromosome. Genome Biol. 16, 152 (2015).

    PubMed  PubMed Central  Google Scholar 

  83. Horakova, A. H., Moseley, S. C., McLaughlin, C. R., Tremblay, D. C. & Chadwick, B. P. The macrosatellite DXZ4 mediates CTCF-dependent long-range intrachromosomal interactions on the human inactive X chromosome. Hum. Mol. Genet. 21, 4367–4377 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Giorgetti, L. et al. Structural organization of the inactive X chromosome in the mouse. Nature 535, 575–579 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Darrow, E. M. et al. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture. Proc. Natl Acad. Sci. USA 113, E4504–E4512 (2016).

    CAS  PubMed  Google Scholar 

  86. Ramírez, F. et al. High-affinity sites form an interaction network to facilitate spreading of the MSL complex across the X chromosome in Drosophila. Mol. Cell 60, 146–162 (2015).

    PubMed  PubMed Central  Google Scholar 

  87. Crane, E. et al. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523, 240–244 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sabbattini, P. et al. A novel role for the Aurora B kinase in epigenetic marking of silent chromatin in differentiated postmitotic cells. EMBO J. 26, 4657–4669 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Solovei, I. et al. LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152, 584–598 (2013).

    CAS  PubMed  Google Scholar 

  90. Rehen, S. K. et al. Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc. Natl Acad. Sci. USA 98, 13361–13366 (2001).

    CAS  PubMed  Google Scholar 

  91. Rutledge, M. T., Russo, M., Belton, J.-M., Dekker, J. & Broach, J. R. The yeast genome undergoes significant topological reorganization in quiescence. Nucleic Acids Res. 43, 8299–8313 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Shah, P. P. et al. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev. 27, 1787–1799 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Sadaie, M. et al. Redistribution of the lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence. Genes Dev. 27, 1800–1808 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Chandra, T. et al. Global reorganization of the nuclear landscape in senescent cells. Cell Rep. 10, 471–483 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Joshi, O. et al. Dynamic reorganization of extremely long-range promoter-promoter interactions between two states of pluripotency. Cell Stem Cell 17, 748–757 (2015).

    CAS  PubMed  Google Scholar 

  96. Lin, Y. C. et al. Global changes in the nuclear positioning of genes and intra- and interdomain genomic interactions that orchestrate B cell fate. Nat. Immunol. 13, 1196–1204 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Le Dily, F. et al. Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation. Genes Dev. 28, 2151–2162 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Amano, T. et al. Chromosomal dynamics at the Shh locus: limb bud-specific differential regulation of competence and active transcription. Dev. Cell 16, 47–57 (2009).

    CAS  PubMed  Google Scholar 

  99. Andrey, G. et al. A switch between topological domains underlies HoxD genes collinearity in mouse limbs. Science 340, 1234167 (2013).

    PubMed  Google Scholar 

  100. Montavon, T. et al. A regulatory archipelago controls Hox genes transcription in digits. Cell 147, 1132–1145 (2011).

    CAS  PubMed  Google Scholar 

  101. Ghavi-Helm, Y. et al. Enhancer loops appear stable during development and are associated with paused polymerase. Nature 512, 96–100 (2014). In this paper, 4C is used to interrogate the interaction from approximately 100 enhancers in two developmental stages in Drosophila melanogaster . Surprisingly, most interactions seem unchanged and the authors suggest that transcriptional activation is accompanied by a release of paused RNAPII from pre-formed enhancer–promoter loops.

    CAS  PubMed  Google Scholar 

  102. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    CAS  PubMed  Google Scholar 

  103. Kind, J. et al. Single-cell dynamics of genome-nuclear lamina interactions. Cell 153, 178–192 (2013).

    CAS  PubMed  Google Scholar 

  104. Peric-Hupkes, D. et al. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell 38, 603–613 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Shachar, S., Voss, T. C., Pegoraro, G., Sciascia, N. & Misteli, T. Identification of gene positioning factors using high-throughput imaging mapping. Cell 162, 911–923 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Deng, W. et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149, 1233–1244 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Deng, W. et al. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 158, 849–860 (2014). In this paper, forced chromatin looping between the β-globin gene and its LCR cause upregulation of β-globin transcription, establishing a causal relationship between chromatin looping and gene expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Lupiáñez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012–1025 (2015).

    PubMed  PubMed Central  Google Scholar 

  109. Flavahan, W. A. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110–114 (2016). In this study, mutations in TAD boundaries are shown to rewire long-range enhance–promoter interactions and to result in pathogenic phenotypes.

    CAS  PubMed  Google Scholar 

  110. Hnisz, D. et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351, 1454–1458 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Grubert, F. et al. Genetic control of chromatin states in humans involves local and distal chromosomal interactions. Cell 162, 1051–1065 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Waszak, S. M. et al. Population variation and genetic control of modular chromatin architecture in humans. Cell 162, 1039–1050 (2015).

    CAS  PubMed  Google Scholar 

  113. Phillips-Cremins, J. E. & Corces, V. G. Chromatin insulators: linking genome organization to cellular function. Mol. Cell 50, 461–474 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Fanucchi, S., Shibayama, Y., Burd, S., Weinberg, M. S. & Mhlanga, M. M. Chromosomal contact permits transcription between coregulated genes. Cell 155, 606–620 (2013).

    CAS  PubMed  Google Scholar 

  115. Duan, Z. et al. A three-dimensional model of the yeast genome. Nature 465, 363–367 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Le, T. B. K., Imakaev, M. V., Mirny, L. A. & Laub, M. T. High-resolution mapping of the spatial organization of a bacterial chromosome. Science 342, 731–734 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Mizuguchi, T. et al. Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe. Nature 516, 432–435 (2015).

    Google Scholar 

  118. Grob, S., Schmid, M. W. & Grossniklaus, U. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol. Cell 55, 678–693 (2014).

    CAS  PubMed  Google Scholar 

  119. Feng, S. et al. Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol. Cell 55, 694–707 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Véron, A. S., Lemaitre, C., Gautier, C., Lacroix, V. & Sagot, M.-F. Close 3D proximity of evolutionary breakpoints argues for the notion of spatial synteny. BMC Genomics 12, 303 (2011).

    PubMed  PubMed Central  Google Scholar 

  121. Murphy, W. J. et al. Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309, 613–617 (2005).

    CAS  PubMed  Google Scholar 

  122. Hinsch, H. & Hannenhalli, S. Recurring genomic breaks in independent lineages support genomic fragility. BMC Evol. Biol. 6, 90 (2006).

    PubMed  PubMed Central  Google Scholar 

  123. Gordon, L. et al. Comparative analysis of chicken chromosome 28 provides new clues to the evolutionary fragility of gene-rich vertebrate regions. Genome Res. 17, 1603–1613 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Berthelot, C., Muffato, M., Abecassis, J. & Roest Crollius, H. The 3D organization of chromatin explains evolutionary fragile genomic regions. Cell Rep. 10, 1913–1924 (2015).

    CAS  PubMed  Google Scholar 

  125. Fabre, P. J. et al. Nanoscale spatial organization of the HoxD gene cluster in distinct transcriptional states. Proc. Natl Acad. Sci. USA 112, 13964–13969 (2015).

    CAS  PubMed  Google Scholar 

  126. Williamson, I. et al. Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization. Genes Dev. 28, 2778–2791 (2014).

    PubMed  PubMed Central  Google Scholar 

  127. Zhu, J. et al. Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152, 642–654 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Wright, A. V., Nuñez, J. K. & Doudna, J. A. Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell 164, 29–44 (2016).

    CAS  PubMed  Google Scholar 

  129. Beliveau, B. J. et al. Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc. Natl Acad. Sci. USA 109, 21301–21306 (2012).

    CAS  PubMed  Google Scholar 

  130. Beliveau, B. J. et al. Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat. Commun. 6, 7147 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    CAS  PubMed  Google Scholar 

  133. Loïodice, I., Dubarry, M. & Taddei, A. Scoring and manipulating gene position and dynamics using FROS in budding yeast. Curr. Protoc. Cell Biol 62, 22.17.1–22.17.14 (2014).

    Google Scholar 

  134. Saad, H. et al. DNA dynamics during early double-strand break processing revealed by non-intrusive imaging of living cells. PLoS Genet. 10, e1004187 (2014).

    PubMed  PubMed Central  Google Scholar 

  135. Cullen, K., Kladde, M. & Seyfred, M. Interaction between transcription regulatory regions of prolactin chromatin. Science 261, 203–206 (1993).

    CAS  PubMed  Google Scholar 

  136. Dekker, J. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    CAS  PubMed  Google Scholar 

  137. Fullwood, M. J. et al. An oestrogen-receptor-α-bound human chromatin interactome. Nature 462, 58–64 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Ma, W. et al. Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes. Nat. Methods 12, 71–78 (2015).

    PubMed  Google Scholar 

  139. van de Werken, H. J. G. et al. Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat. Methods 9, 969–972 (2012).

    CAS  PubMed  Google Scholar 

  140. Dostie, J. & Dekker, J. Mapping networks of physical interactions between genomic elements using 5C technology. Nat. Protoc. 2, 988–1002 (2007).

    CAS  PubMed  Google Scholar 

  141. Hughes, J. R. et al. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat. Genet. 46, 205–212 (2014).

    CAS  PubMed  Google Scholar 

  142. Mifsud, B. et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet. 47, 598–606 (2015).

    CAS  PubMed  Google Scholar 

  143. Sati, S. & Cavalli, G. Chromosome conformation capture technologies and their impact in understanding genome function. Chromosoma http://dx.doi.org/10.1007/s00412-016-0593-6 (2016).

  144. Durand, N. C. et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3, 99–101 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the laboratory of G.C. was supported by grants from the European Horizon 2020 (H2020) MuG project under grant agreement No 676556, the Centre National de la Recherche Scientifique (CNRS), the European Network of Excellence EpiGeneSys, the Agence Nationale de la Recherche (EpiDevoMath), the Fondation pour la Recherche Médicale (DEI20151234396), the INSERM/Plan Cancer Epigenetics and cancer program (grant acronym “MM&TT”), the Laboratory of Excellence EpiGenMed, and the Fondation ARC pour la Recherche sur le Cancer. B.B. was funded by Sir Henry Wellcome Postdoctoral Fellowship WT100136MA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Cavalli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

DATABASES

Protein Data Bank

FURTHER INFORMATION

The Cancer Genome Atlas

PowerPoint slides

Glossary

Xist region

Region on the X chromosome, which contains the long non-coding RNA Xist and is essential for X chromosome inactivation in placental mammals.

Carbon copy chromosome conformation capture

(5C). Combines a proximity ligation chromosome conformation capture (3C) approach with amplification of interactions involving preselected sets of regions (typically two sets of hundreds to thousands of restriction fragments) to improve resolution.

Locus control region

(LCR). Regulatory element that brings together multiple genes into an active chromatin hub and facilitates transcription in a cell-type-specific manner.

Insulator proteins

Often present at, but not limited to, domain boundaries, insulator proteins are thought to block the interactions between regulatory elements such as enhancers and promoters. In mammals the main insulator protein is CCCTC-binding factor (CTCF), whereas in Drosophila melanogaster at least five different classes of insulator are known.

Pre-initiation complex

(PIC). Large, multi-subunit protein complex that helps recruit RNA polymerase II (RNAPII) to transcription start sites and that is required for transcription.

Bilaterians

All multicellular animals with bilateral symmetry.

X chromosome inactivation

Dosage compensation mechanism in mammals in which one of a pair of X chromosomes is silenced.

Boundary elements

DNA or epigenetic elements that are localized between two topological domains and that prevent or minimize inter-domain interactions.

Dosage compensation

The process of equalizing expression output from genes located on the sex-specific chromosomes.

Polyploidy

An increase in the number of chromosomes in a cell by whole-number multiples of the entire set.

Aneuploidy

Aberrations in the number of chromosomes, usually accompanied by structural rearrangements.

DNA adenine methyltransferase identification

(DamID). Technique to identify the binding sites of DNA- and chromatin-binding proteins in eukaryotes by fusing them to the bacterial methyltransferase enzyme Dam.

Quantitative trait loci

(QTL). Regions in the genome that correlate with phenotypic variation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonev, B., Cavalli, G. Organization and function of the 3D genome. Nat Rev Genet 17, 661–678 (2016). https://doi.org/10.1038/nrg.2016.112

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2016.112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing