Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Familial forms of diabetes insipidus: clinical and molecular characteristics

Abstract

Over the past two decades, the genetic and molecular basis of familial forms of diabetes insipidus has been elucidated. Diabetes insipidus is a clinical syndrome characterized by the excretion of abnormally large volumes of diluted urine (polyuria) and increased fluid intake (polydipsia). The most common type of diabetes insipidus is caused by lack of the antidiuretic hormone arginine vasopressin (vasopressin), which is produced in the hypothalamus and secreted by the neurohypophysis. This type of diabetes insipidus is referred to here as neurohypophyseal diabetes insipidus. The syndrome can also result from resistance to the antidiuretic effects of vasopressin on the kidney, either at the level of the vasopressin 2 receptor or the aquaporin 2 water channel (which mediates the re-absorption of water from urine), and is referred to as renal or nephrogenic diabetes insipidus. Differentiation between these two types of diabetes insipidus and primary polydipsia can be difficult owing to the existence of partial as well as complete forms of vasopressin deficiency or resistance. Seven different familial forms of diabetes insipidus are known to exist. The clinical presentation, genetic basis and cellular mechanisms responsible for them vary considerably. This information has led to improved methods of differential diagnosis and could provide the basis of new forms of therapy.

Key Points

  • Diabetes insipidus is characterized by polyuria and polydipsia and caused by a deficiency in either the neurohypophyseal production or the renal action of the antidiuretic hormone arginine vasopressin (AVP)

  • The defects in AVP secretion or action are most commonly acquired as a result of various injuries or diseases but can also be idiopathic or genetic in origin

  • Genetic deficiencies of AVP production are caused by dominant mutations in the AVP gene or less commonly due to recessive mutations of the AVP, Wolframin or an X-linked gene

  • Genetic defects in AVP action are caused by recessive mutations in the X-linked AVP2 receptor gene or by recessive or dominant mutations of the gene for the aquaporin-2 water channel

  • The antidiuretic defects in both types of familial diabetes insipidus vary greatly in severity, which makes differential diagnosis by traditional indirect methods difficult in many patients

  • Desmopressin corrects diabetes insipidus caused by AVP deficiency, but is not useful in patients with defects in AVP action, who use other treatments that alleviate but rarely correct their disease

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of vasopressin-neurophysin 2-copeptide precursor protein showing location and types of mutations most often associated with familial neurohypophyseal diabetes insipidus.
Figure 2: Schematic sequence of events leading to antidiuresis in response to vasopressin.
Figure 3: Relationship of plasma vasopressin to plasma and urine osmolality in patients with neurohypophyseal (pituitary) diabetes insipidus, nephrogenic diabetes insipidus and primary polydipsia.
Figure 4: Progressive decline in the plasma vasopressin response to osmotic stimulation before onset of autosomal dominant familial neurohypophyseal diabetes insipidus in three siblings with a signal peptide mutation.
Figure 5: Progressive loss of vasopressin-producing cells in the supraoptic and paraventricular nucleus in a murine knock-in model of human autosomal dominant familial neurohypophyseal diabetes insipidus.
Figure 6: Schematic diagram of the vasopressin V2 receptor with mutations associated with severe and partial forms of X-linked recessive nephrogenic diabetes insipidus.
Figure 7: Effect of various forms of therapy on 24 h urine osmolarity in 42 patients with familial nephrogenic diabetes insipidus.
Figure 8: Schematic diagram of aquaporin 2 showing mutations associated with severe and partial forms of autosomal recessive and dominant forms of nephrogenic diabetes insipidus.

Similar content being viewed by others

Mirjam Christ-Crain, Daniel G. Bichet, … Alan S. Verkman

Amélie Bonnefond, Ranjit Unnikrishnan, … Philippe Froguel

References

  1. Robertson, G. L. Antidiuretic hormone. Normal and disordered function. Endocrinol. Metab. Clin. North Am. 30, 671–694 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Gainer, H., Yamashita, M., Fields, R. L., House, S. B. & Rusnak, M. The magnocellular neuronal phenotype: cell-specific gene expression in the hypothalamo–neurohypophysial system. Prog. Brain Res. 139, 1–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Land, H. et al. Deduced amino acid sequence from the bovine oxytocin-neurophysin I precursor cDNA. Nature 302, 342–344 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. Land, H., Schütz, G., Schmale, H. & Richter, D. Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysinII precursor. Nature 295, 299–303 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. Acher, R., Chauvet, J. & Rouille, Y. Dynamic processing of neuropeptides: sequential conformation shaping of neurohypophysial preprohormones during intraneuronal secretory transport. J. Mol. Neurosci. 18, 223–228 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. de Bree, F. M. & Burbach, J. P. Structure-function relationships of the vasopressin prohormone domains. Cell. Mol. Neurobiol. 18, 173–191 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Robertson, G. L. Physiology of ADH secretion. Kidney Int. Suppl. 21, S20–S26 (1987).

    CAS  PubMed  Google Scholar 

  8. Robertson, G. L., Shelton, R. L. & Athar, S. The osmoregulation of vasopressin. Kidney Int. 10, 25–37 (1976).

    Article  CAS  PubMed  Google Scholar 

  9. Zerbe, R. L. & Robertson, G. L. Osmoregulation of thirst and vasopressin secretion in human subjects: effects of various solutes. Am. J. Physiol. 244, E607–E614 (1983).

    CAS  PubMed  Google Scholar 

  10. Baylis, P. H. Osmoregulation and control of vasopressin secretion in healthy humans. Am. J. Physiol. 253, R671–R678 (1987).

    CAS  PubMed  Google Scholar 

  11. Koch, K. L. Nausea and vasopressin. Lancet 338, 1023 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Robertson, G. L. The use of vasopressin assays in physiology and pathophysiology. Semin. Nephrol. 14, 368–383 (1994).

    CAS  PubMed  Google Scholar 

  13. Nonoguchi, H. et al. Immunohistochemical localization of V2 vasopressin receptor along the nephron and functional role of luminal V2 receptor in terminal inner medullary collecting ducts. J. Clin. Invest. 96, 1768–1778 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Birnbaumer, M. et al. Molecular cloning of the receptor for human antidiuretic hormone. Nature 357, 333–335 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Deen, P. M. et al. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264, 92–95 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Ward, D. T., Hammond, T. G. & Harris, H. W. Modulation of vasopressin-elicited water transport by trafficking of aquaporin2-containing vesicles. Annu. Rev. Physiol. 61, 683–697 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Fushimi, K., Sasaki, S. & Marumo, F. Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J. Biol. Chem. 272, 14800–14804 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. van Balkom, B. W. et al. The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel. J. Biol. Chem. 277, 41473–41479 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Nielsen, S. et al. Aquaporins in the kidney: from molecules to medicine. Physiol. Rev. 82, 205–244 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Sasaki, S. et al. Cloning, characterization, and chromosomal mapping of human aquaporin of collecting duct. J. Clin. Invest. 93, 1250–1256 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ishibashi, K. et al. Immunolocalization and effect of dehydration on AQP3, a basolateral water channel of kidney collecting ducts. Am. J. Physiol. 272, F235–F241 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Kim, S. W. et al. Decreased expression of AQP2 and AQP4 water channels and Na,K-ATPase in kidney collecting duct in AQP3 null mice. Biol. Cell 97, 765–778 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Gottschalk, C. W. & Mylle, M. Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis. Am. J. Physiol. 196, 927–936 (1959).

    Article  CAS  PubMed  Google Scholar 

  24. Robertson, G. L. Diabetes insipidus. Endocrinol. Metab. Clin. North Am. 24, 549–572 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Robinson, A. G. DDAVP in the treatment of central diabetes insipidus. N. Engl. J. Med. 294, 507–511 (1976).

    Article  CAS  PubMed  Google Scholar 

  26. Weitzman, R. E. & Kleeman, C. R. The clinical physiology of water metabolism. Part II: Renal mechanisms for urinary concentration; diabetes insipidus. West J. Med. 131, 486–515 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Crawford, J. D. & Kennedy, G. C. Animal physiology: Chlorothiazide in diabetes insipidus. Nature 183, 891 (1959).

    Article  CAS  PubMed  Google Scholar 

  28. Brown, D., Hasler, U., Nunes, P., Bouley, R. & Lu, H. A. J. Phosphorylation events and the modulation of aquaporin 2 cell surface expression. Curr. Opin. Nephrol. Hypertens. 17, 491–498 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aleksandrov, N. et al. Gestational diabetes insipidus: a review of an underdiagnosed condition. J. Obstet. Gynaecol. Can. 32, 225–231 (2010).

    Article  PubMed  Google Scholar 

  30. Robertson, G. L. Dipsogenic diabetes insipidus: a newly recognized syndrome caused by a selective defect in the osmoregulation of thirst. Trans. Assoc. Am. Physicians 100, 241–249 (1987).

    CAS  PubMed  Google Scholar 

  31. Zerbe, R. L. & Robertson, G. L. A comparison of plasma vasopressin measurements with a standard indirect test in the differential diagnosis of polyuria. N. Engl. J. Med. 305, 1539–1546 (1981).

    Article  CAS  PubMed  Google Scholar 

  32. Kurokawa, H. et al. Posterior lobe of the pituitary gland: correlation between signal intensity on T1-weighted MR images and vasopressin concentration. Radiology 207, 79–83 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Morgenthaler, N. G., Struck, J., Alonso, C. & Bergmann, A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin. Chem. 52, 112–119 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Levinger, E. L. & Escamilla, R. F. Hereditary diabetes insipidus: report of 20 cases in seven generations. J. Clin. Endocrinol. Metab. 15, 547–552 (1955).

    Article  CAS  PubMed  Google Scholar 

  35. McIlraith, C. Notes on some cases of diabetes insipidus with marked family and hereditary tendencies. Lancet 140, 767–768 (1892).

    Article  Google Scholar 

  36. Chase, L. A. Hereditary diabetes insipidus. Can. Med. Assoc. J. 17, 212–214 (1927).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Forssman, H. On hereditary diabetes insipidus with special regard to a sex-linked form. Acta Med. Scand. 159 (Suppl.), 1–196 (1945).

    Google Scholar 

  38. Robertson, G., Nayak, S., Kopp, P., Johansson,J. O. & Rittig, S. The cause of vasopressin responsive familial diabetes insipidus in a large Swedish kindred with X-linked recessive mode of transmission [abstract]. J. Invest. Med. 49, 58A (2001).

  39. Bockenhauer, D. et al. Secondary nephrogenic diabetes insipidus as a complication of inherited renal diseases. Nephron Physiol. 116, 23–29 (2010).

    Article  Google Scholar 

  40. Christensen, J. H. & Rittig, S. Familial neurohypophyseal diabetes insipidus—an update. Semin. Nephrol. 26, 209–223 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Hansen, L. K., Rittig, S. & Robertson, G. L. Genetic basis of familial neurohypophyseal diabetes insipidus. Trends Endocrinol. Metab. 8, 363–372 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. McLeod, J. F. et al. Familial neurohypophyseal diabetes insipidus associated with a signal peptide mutation. J. Clin. Endocrinol. Metab. 77, 599A–599G (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Elias, P. C. et al. Progressive decline of vasopressin secretion in familial autosomal dominant neurohypophyseal diabetes insipidus presenting a novel mutation in the vasopressin-neurophysin II gene. Clin. Endocrinol. (Oxf.) 59, 511–518 (2003).

    Article  CAS  Google Scholar 

  44. Robertson, G. L. et al. in Vasopressin (eds Gross, P., Richter, D. & Robertson, G. L.) 493–503 (John Libbey Eurotext, Paris, 1993).

    Google Scholar 

  45. Stenson, P. D. et al. The Human Gene Mutation Database: 2008 update. Genome Med. 1, 13 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rittig, S. et al. Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus. Am. J. Hum. Genet. 58, 107–117 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Russell, T. A. et al. A murine model of autosomal dominant neurohypophyseal diabetes insipidus reveals progressive loss of vasopressin-producing neurons. J. Clin. Invest. 112, 1697–1706 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hayashi, M. et al. Progressive polyuria without vasopressin neuron loss in a mouse model for familial neurohypophysial diabetes insipidus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R1641–R1649 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Hiroi, M. et al. Activation of vasopressin neurons leads to phenotype progression in a mouse model for familial neurohypophysial diabetes insipidus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R486–R493 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Willcutts, M. D., Felner, E. & White, P. C. Autosomal recessive familial neurohypophyseal diabetes insipidus with continued secretion of mutant weakly active vasopressin. Hum. Mol. Genet. 8, 1303–1307 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Abu Libdeh, A. et al. Autosomal recessive familial neurohypophyseal diabetes insipidus: onset in early infancy. Eur. J. Endocrinol. 162, 221–226 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Barrett, T. G. & Bundey, S. E. Wolfram (DIDMOAD) syndrome. J. Med. Genet. 34, 838–841 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thompson, C. J. et al. Vasopressin secretion in the DIDMOAD (Wolfram) syndrome. Q. J. Med. 71, 333–345 (1989).

    CAS  PubMed  Google Scholar 

  54. Gabreëls, B. A. et al. The vasopressin precursor is not processed in the hypothalamus of Wolfram syndrome patients with diabetes insipidus: evidence for the involvement of PC2 and 7B2. J. Clin. Endocrinol. Metab. 83, 4026–4033 (1998).

    Article  PubMed  Google Scholar 

  55. Cano, A. et al. Identification of novel mutations in WFS1 and genotype-phenotype correlation in Wolfram syndrome. Am. J. Med. Genet. A 143A, 1605–1612 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Habiby, R., Robertson, G. L., Kaplowitz, P. B. & Rittig, S. A novel X-linked form of familial neurohypophyseal diabetes insipidus [abstract]. J. Invest. Med. 44, 341A (1996).

    Google Scholar 

  57. Bichet, D. G. Nephrogenic diabetes insipidus. Adv. Chronic Kidney Dis. 13, 96–104 (2006).

    Article  PubMed  Google Scholar 

  58. van Lieburg, A. F., Knoers, N. V. & Monnens, L. A. Clinical presentation and follow-up of 30 patients with congenital nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 10, 1958–1964 (1999).

    CAS  PubMed  Google Scholar 

  59. Satoh, M., Ogikubo, S. & Yoshizawa-Ogasawara, A. Correlation between clinical phenotypes and X-inactivation patterns in six female carriers with heterozygote vasopressin type 2 receptor gene mutations. Endocr. J. 55, 277–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Lolait, S. J. et al. Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature 357, 336–339 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Spanakis, E., Milord, E. & Gragnoli, C. AVPR2 variants and mutations in nephrogenic diabetes insipidus: review and missense mutation significance. J. Cell. Physiol. 217, 605–617 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Robben, J. H., Knoers, N. V. & Deen, P. M. Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus. Am. J. Physiol. Renal Physiol. 291, F257–F270 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Sadeghi, H., Robertson, G. L., Bichet, D. G., Innamorati, G. & Birnbaumer, M. Biochemical basis of partial nephrogenic diabetes insipidus phenotypes. Mol. Endocrinol. 11, 1806–1813 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Ala, Y. et al. Functional studies of twelve mutant V2 vasopressin receptors related to nephrogenic diabetes insipidus: molecular basis of a mild clinical phenotype. J. Am. Soc. Nephrol. 9, 1861–1872 (1998).

    CAS  PubMed  Google Scholar 

  65. Bockenhauer, D. et al. Vasopressin type 2 receptor V88M mutation: molecular basis of partial and complete nephrogenic diabetes insipidus. Nephron Physiol. 114, 1–10 (2009).

    Article  CAS  Google Scholar 

  66. Rochdi, M. D. et al. Functional characterization of vasopressin type 2 receptor substitutions (R137H/C/L) leading to nephrogenic diabetes insipidus and nephrogenic syndrome of inappropriate antidiuresis: implications for treatments. Mol. Pharmacol. 77, 836–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Feldman, B. J. et al. Nephrogenic syndrome of inappropriate antidiuresis. N. Engl. J. Med. 352, 1884–1890 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gitelman, S. E., Feldman, B. J. & Rosenthal, S. M. Nephrogenic syndrome of inappropriate antidiuresis: a novel disorder in water balance in pediatric patients. Am. J. Med. 119 (Suppl. 1), S54–S58 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Soylu, A. et al. Efficacy of COX-2 inhibitors in a case of congenital nephrogenic diabetes insipidus. Pediatr. Nephrol. 20, 1814–1817 (2005).

    Article  PubMed  Google Scholar 

  70. Pattaragarn, A. & Alon, U. S. Treatment of congenital nephrogenic diabetes insipidus by hydrochlorothiazide and cyclooxygenase-2 inhibitor. Pediatr. Nephrol. 18, 1073–1076 (2003).

    Article  PubMed  Google Scholar 

  71. Okayasu, T. et al. A family case of nephrogenic diabetes insipidus. Tohoku J. Exp. Med. 162, 137–145 (1990).

    Article  CAS  PubMed  Google Scholar 

  72. Hochberg, Z., Even, L. & Danon, A. Amelioration of polyuria in nephrogenic diabetes insipidus due to aquaporin-2 deficiency. Clin. Endocrinol. (Oxf.) 49, 39–44 (1998).

    Article  CAS  Google Scholar 

  73. Jakobsson, B. & Berg, U. Effect of hydrochlorothiazide and indomethacin treatment on renal function in nephrogenic diabetes insipidus. Acta Paediatr. 83, 522–525 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Morello, J. P. et al. Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J. Clin. Invest. 105, 887–895 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jean-Alphonse, F. et al. Biased agonist pharmacochaperones of the AVP V2 receptor may treat congenital nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 20, 2190–2203 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Robben, J. H. et al. Intracellular activation of vasopressin V2 receptor mutants in nephrogenic diabetes insipidus by nonpeptide agonists. Proc. Natl Acad. Sci. USA 106, 12195–12200 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Oueslati, M. et al. Rescue of a nephrogenic diabetes insipidus-causing vasopressin V2 receptor mutant by cell-penetrating peptides. J.Biol. Chem. 282, 20676–20685 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Bouley, R., Hasler, U., Lu, H. A., Nunes, P. & Brown, D. Bypassing vasopressin receptor signaling pathways in nephrogenic diabetes insipidus. Semin. Nephrol. 28, 266–278 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Canfield, M. C., Tamarappoo, B. K., Moses, A. M., Verkman, A. S. & Holtzman, E. J. Identification and characterization of aquaporin-2 water channel mutations causing nephrogenic diabetes insipidus with partial vasopressin response. Hum. Mol. Genet. 6, 1865–1871 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Guyon, C. et al. Characterization of D150E and G196D aquaporin-2 mutations responsible for nephrogenic diabetes insipidus: importance of a mild phenotype. Am. J. Physiol. Renal Physiol. 297, F489–F498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mulders, S. M. et al. New mutations in the AQP2 gene in nephrogenic diabetes insipidus resulting in functional but misrouted water channels. J. Am. Soc. Nephrol. 8, 242–248 (1997).

    CAS  PubMed  Google Scholar 

  82. Kamsteeg, E. J. et al. Reversed polarized delivery of an aquaporin-2 mutant causes dominant nephrogenic diabetes insipidus. J. Cell Biol. 163, 1099–1109 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. de Mattia, F. et al. Lack of arginine vasopressin-induced phosphorylation of aquaporin-2 mutant AQP2–R254L explains dominant nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 16, 2872–2880 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Savelkoul, P. J. et al. p.R254Q mutation in the aquaporin-2 water channel causing dominant nephrogenic diabetes insipidus is due to a lack of arginine vasopressin-induced phosphorylation. Hum. Mutat. 30, E891–E903 (2009).

    Article  PubMed  Google Scholar 

  85. Robertson, G. L. & Scheidler, J. A. A newly recognized variant of familial nephrogenic diabetes insipidus distinguished by partial resistance to vasopressin (Type II) [abstract]. Clin. Res. 29, 555A (1981).

    Google Scholar 

  86. Robertson, G. L., Kopp, P. & Bichet, D. G. Variations in clinical phenotype associated with different mutations of the V2 receptor gene in X-linked recessive congenital nephrogenic DI (xCNDI) [abstract]. Program of NDI Foundation Global Conference Page 11 (2000).

  87. Mizuno, H. et al. Clinical characteristics of eight patients with congenital nephrogenic diabetes insipidus. Endocrine 24, 55–59 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Faerch, M. et al. Partial nephrogenic diabetes insipidus caused by a novel mutation in the AVPR2 gene. Clin. Endocrinol. (Oxf.) 68, 395–403 (2008).

    Article  CAS  Google Scholar 

  89. Marr, N. et al. Cell-biologic and functional analyses of five new aquaporin-2 missense mutations that cause recessive nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 13, 2267–2277 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Kuwahara, M. et al. Three families with autosomal dominant nephrogenic diabetes insipidus caused by aquaporin-2 mutations in the C-terminus. Am. J. Hum. Genet. 69, 738–748 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mulders, S. M. et al. An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. J. Clin. Invest. 102, 57–66 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by research fellowships to M. B. from the Swiss National Research Foundation, Janggen-Pöhn-Foundation and Novartis Foundation, in part by grant R03 HD061901 from NIH/NICHD to P. K. and by NIH grant M01 RR-00048 to the Clinical Research Center at Northwestern University Medical School, with G. L. R. as Program Director.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided a substantial contribution to discussions of the content, wrote the review and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Peter Kopp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babey, M., Kopp, P. & Robertson, G. Familial forms of diabetes insipidus: clinical and molecular characteristics. Nat Rev Endocrinol 7, 701–714 (2011). https://doi.org/10.1038/nrendo.2011.100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.100

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing