Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases

Key Points

  • Many of the enzymes, receptors and eicosanoid metabolites of the arachidonate cascade are important therapeutic targets, particularly for inflammatory disease. Inhibitors of the cyclooxygenase and lipoxygenase pathways are currently in clinical use.

  • The cytochrome P450 enzymatic pathway is the last of the three eicosanoid pathways to be targeted for potential therapies. A component of the pathway, epoxyeicosatrienoic acids (EETs), have cardiovascular actions that are beneficial and can protect against the inflammation and end-organ damage that are associated with cardiovascular diseases.

  • Inhibiting the enzyme soluble epoxide hydrolase (sEH) diminishes degradation of EETs, which can enhance the beneficial cardiovascular actions of EETs. sEH inhibitors have been developed and show potential as a therapy for cardiovascular diseases.

  • The design and development of sEH inhibitors (sEHIs) over the past decade has been remarkably rapid. Modifications to improve the in vivo stability of sEHIs has allowed for testing in numerous cardiovascular diseases.

  • Initial studies showed that sEHIs had antihypertensive actions. Cardiovascular-protective effects have now been demonstrated for stroke, heart attacks, cardiac hypertrophy, chronic kidney disease, inflammation and atherosclerosis. The first in class sEHI is currently in Phase II clinical trials.

  • sEHIs and other means of manipulating EETs have considerable therapeutic potential. Challenges include potential unwanted effects, such as angiogenesis, and the risk of enhancing tumour growth and promoting pulmonary hypertension. Nevertheless, there is strong evidence that patients with inflammatory diseases, neurological diseases and diseases associated with pain could benefit from sEHI treatment.

Abstract

The cardiovascular effects of epoxyeicosatrienoic acids (EETs) include vasodilation, antimigratory actions on vascular smooth muscle cells and anti-inflammatory actions. These endogenous lipid mediators are broken down into diols by soluble epoxide hydrolase (sEH), and so inhibiting this enzyme would be expected to enhance the beneficial cardiovascular properties of EETs. sEH inhibitors (sEHIs) that are based on 1,3-disubstituted urea have been rapidly developed, and have been shown to be antihypertensive and anti-inflammatory, and to protect the brain, heart and kidney from damage. Although challenges for the future exist — including improving the drug-like properties of sEHIs and finding better ways to target sEHIs to specific tissues — the recent initiation of the first clinical trials of sEHIs has highlighted the therapeutic potential of these agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Therapeutic targets in the arachidonate cascade.
Figure 2: Soluble epoxide hydrolase inhibitor (sEHI) structures and binding to the enzymatic pocket.
Figure 3: Antihypertensive and end-organ protective actions of soluble epoxide hydrolase inhibitors (sEHIs).

Similar content being viewed by others

References

  1. Fitzgerald, G. A. Coxibs and cardiovascular disease. N. Engl. J. Med. 351, 1709–1711 (2004).

    CAS  PubMed  Google Scholar 

  2. Grosser, T., Fries, S. & FitzGerald, G. A. Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J. Clin. Invest. 116, 4–15 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Puri, A., McGoon, M. D. & Kushwaha, S. S. Pulmonary arterial hypertension: current therapeutic strategies. Nature Clin. Pract. Cardiovasc. Med. 4, 319–329 (2007).

    CAS  Google Scholar 

  4. Steiropoulos, P., Trakada, G. & Bouros, D. Current pharmacological treatment of pulmonary arterial hypertension. Curr. Clin. Pharmacol. 3, 11–19 (2008).

    CAS  PubMed  Google Scholar 

  5. Braden, G. L., O'Shea, M. H., Mulhern, J. G. & Germain, M. J. Acute renal failure and hyperkalaemia associated with cyclooxygenase-2 inhibitors. Nephrol. Dial. Transplant. 19, 1149–1153 (2004).

    CAS  PubMed  Google Scholar 

  6. Fries, S. & Grosser, T. The cardiovascular pharmacology of COX-2 inhibition. Hematology Am. Soc. Hematol. Educ. Program 2005, 445–451 (2005).

    Google Scholar 

  7. Capra, V. et al. Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends. Med. Res. Rev. 27, 469–527 (2007).

    CAS  PubMed  Google Scholar 

  8. Ribeiro, J. D., Toro, A. A. & Baracat, E. C. Antileukotrienes in the treatment of asthma and allergic rhinitis. J. Pediatr. (Rio J.) 82, S213–S221 (2006).

    Google Scholar 

  9. Capdevila, J., Marnett, L. J., Chacos, N., Prough, R. A. & Estabrook, R. W. Cytochrome P-450-dependent oxygenation of arachidonic acid to hydroxyicosatetraenoic acids. Proc. Natl Acad. Sci. USA 79, 767–770 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chacos, N., Falck, J. R., Wixtrom, C. & Capdevila, J. Novel epoxides formed during the liver cytochrome P-450 oxidation of arachidonic acid. Biochem. Biophys. Res. Commun. 104, 916–922 (1982).

    CAS  PubMed  Google Scholar 

  11. Oliw, E. H., Lawson, J. A., Brash, A. R. & Oates, J. A. Arachidonic acid metabolism in rabbit renal cortex. Formation of two novel dihydroxyeicosatrienoic acids. J. Biol. Chem. 256, 9924–9931 (1981).

    CAS  PubMed  Google Scholar 

  12. Ishizuka, T. et al. 20-Hydroxyeicosatetraenoic acid stimulates nuclear factor-kB activation and the production of inflammatory cytokines in human endothelial cells. J. Pharmacol. Exp. Ther. 324, 103–110 (2008).

    CAS  PubMed  Google Scholar 

  13. Roman, R. J. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol. Rev. 82, 131–185 (2002).

    CAS  PubMed  Google Scholar 

  14. Sarkis, A., Lopez, B. & Roman, R. J. Role of 20-hydroxyeicosatetraenoic acid andepoxyeicosatrienoic acids in hypertension. Curr. Opin. Nephrol. Hypertens. 13, 205–214 (2004).

    CAS  PubMed  Google Scholar 

  15. Renic, M. et al. Effect of 20-HETE inhibition on infarct volume and cerebral blood flow after transient middle cerebral artery occlusion. J. Cereb. Blood Flow Metab. 29, 629–639 (2009).

    CAS  PubMed  Google Scholar 

  16. Miyata, N. et al. Beneficial effects of a new 20-hydroxyeicosatetraenoic acid synthesis inhibitor, TS-011 [N-(3-chloro-4-morpholin-4-yl) phenyl-N'-hydroxyimido formamide], on hemorrhagic and ischemic stroke. J. Pharmacol. Exp. Ther. 314, 77–85 (2005).

    CAS  PubMed  Google Scholar 

  17. Campbell, W. B., Gebremedhin, D., Pratt, P. F. & Harder, D. R. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ. Res. 78, 415–423 (1996). This was the first report to show that epoxyeicosatrienoic acids are endothelium-derived hyperpolarizing factors and placed them as important regulators of vascular function.

    CAS  PubMed  Google Scholar 

  18. Fleming, I. DiscrEET regulators of homeostasis: epoxyeicosatrienoic acids, cytochrome P450 epoxygenases and vascular inflammation. Trends Pharmacol. Sci. 28, 448–452 (2007).

    CAS  PubMed  Google Scholar 

  19. Gross, G. J. et al. Effects of the selective EET antagonist, 14,15-EEZE, on cardioprotection produced by exogenous or endogenous EETs in the canine heart. Am. J. Physiol. Heart Circ. Physiol. 294, H2838–H2844 (2008).

    CAS  PubMed  Google Scholar 

  20. Imig, J. D. Epoxide hydrolase and epoxygenase metabolites as therapeutic targets for renal diseases. Am. J. Physiol. Renal Physiol. 289, F496–F503 (2005).

    CAS  PubMed  Google Scholar 

  21. Spector, A. A., Fang, X., Snyder, G. D. & Weintraub, N. L. Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. Prog. Lipid Res. 43, 55–90 (2004).

    CAS  PubMed  Google Scholar 

  22. Jacobson, H. R. et al. in Prostaglandins and Membrane Ion Transport (eds Braquet, P. Garay, R. P., Frohlich, J. C. & Nicosia, S) 311–318 (Raven Press, New York, 1985).

    Google Scholar 

  23. Proctor, K. G., Falck, J. R. & Capdevila, J. Intestinal vasodilation by epoxyeicosatrienoic acids: arachidonic acid metabolites produced by a cytochrome P450 monooxygenase. Circ. Res. 60, 50–59 (1987).

    CAS  PubMed  Google Scholar 

  24. Spector, A. A. Arachidonic acid cytochrome P450 epoxygenase pathway. J. Lipid Res. 50, S52–S56 (2009).

    PubMed  PubMed Central  Google Scholar 

  25. Yang, W. et al. Characterization of 14,15-epoxyeicosatrienoyl-sulfonamides as 14,15-epoxyeicosatrienoic acid agonists: use for studies of metabolism and ligand binding. J. Pharmacol. Exp. Ther. 321, 1023–1031 (2007). This study describes the development of EET agonists that could be used for finding EET receptors.

    CAS  PubMed  Google Scholar 

  26. Widstrom, R. L., Norris, A. W., Van Der Veer, J. & Spector, A. A. Fatty acid-binding proteins inhibit hydration of epoxyeicosatrienoic acids by soluble epoxide hydrolase. Biochemistry 42, 11762–11767 (2003).

    CAS  PubMed  Google Scholar 

  27. Liu, Y. et al. The antiinflammatory effect of laminar flow: the role of PPARγ, epoxyeicosatrienoic acids, and soluble epoxide hydrolase. Proc. Natl Acad. Sci. USA 102, 16747–16752 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Michaelis, U. R. & Fleming, I. From endothelium-derived hyperpolarizing factor (EDHF) to angiogenesis: epoxyeicosatrienoic acids (EETs) and cell signaling. Pharmacol. Ther. 111, 584–595 (2006).

    CAS  PubMed  Google Scholar 

  29. Spector, A. A. & Norris, A. W. Action of epoxyeicosatrienoic acids on cellular function. Am. J. Physiol. Cell Physiol. 292, C996–C1012 (2007).

    CAS  PubMed  Google Scholar 

  30. Fleming, I. Epoxyeicosatrienoic acids, cell signaling and angiogenesis. Prostaglandins Other Lipid Mediat. 82, 60–67 (2007).

    CAS  PubMed  Google Scholar 

  31. Breyer, R. M., Bagdassarian, C. K., Myers, S. A. & Breyer, M. D. Prostanoid receptors: subtypes and signaling. Annu. Rev. Pharmacol. Toxicol. 41, 661–690 (2001).

    CAS  PubMed  Google Scholar 

  32. Hao, C. M. & Breyer, M. D. Physiological regulation of prostaglandins in the kidney. Annu. Rev. Physiol. 70, 357–377 (2008).

    CAS  PubMed  Google Scholar 

  33. Gebremedhin, D. et al. Mechanism of action of cerebral epoxyeicosatrienoic acids on cerebral arterial smooth muscle. Am. J. Physiol. 263, H519–H525 (1992).

    CAS  PubMed  Google Scholar 

  34. Imig, J. D., Navar, L. G., Roman, R. J., Reddy, K. K. & Falck, J. R. Actions of epoxygenase metabolites on the preglomerular vasculature. J. Am. Soc. Nephrol. 7, 2364–2370 (1996).

    CAS  PubMed  Google Scholar 

  35. Keseru, B. et al. Epoxyeicosatrienoic acids and the soluble epoxide hydrolase are determinants of pulmonary artery pressure and the acute hypoxic pulmonary vasoconstrictor response. Faseb J. 22, 4306–4315 (2008).

    PubMed  PubMed Central  Google Scholar 

  36. Pokreisz, P. et al. Cytochrome P450 epoxygenase gene function in hypoxic pulmonary vasoconstriction and pulmonary vascular remodeling. Hypertension 47, 762–770 (2006).

    CAS  PubMed  Google Scholar 

  37. Archer, S. L. et al. Endothelium-derived hyperpolarizing factor in human internal mammary artery is 11,12-epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BKCa channels. Circulation 107, 769–776 (2003).

    CAS  PubMed  Google Scholar 

  38. Fisslthaler, B. et al. Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature 401, 493–497 (1999).

    CAS  PubMed  Google Scholar 

  39. Li, P. L., Zhang, D. X., Ge, Z. D. & Campbell, W. B. Role of ADP-ribose in 11,12-EET-induced activation of KCa channels in coronary arterial smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 282, H1229–H1236 (2002).

    CAS  PubMed  Google Scholar 

  40. Imig, J. D., Inscho, E. W., Deichmann, P. C., Reddy, K. M. & Falck, J. R. Afferent arteriolar vasodilation to the sulfonimide analog of 11,12-epoxyeicosatrienoic acid involves protein kinase A. Hypertension 33, 408–413 (1999).

    CAS  PubMed  Google Scholar 

  41. Li, P. L., Chen, C. L., Bortell, R. & Campbell, W. B. 11,12-Epoxyeicosatrienoic acid stimulates endogenous mono-ADP-ribosylation in bovine coronary arterial smooth muscle. Circ. Res. 85, 349–356 (1999).

    CAS  PubMed  Google Scholar 

  42. Node, K. et al. Activation of Gαs mediates induction of tissue-type plasminogen activator gene transcription by epoxyeicosatrienoic acids. J. Biol. Chem. 276, 15983–15989 (2001).

    CAS  PubMed  Google Scholar 

  43. Larsen, B. T. et al. Epoxyeicosatrienoic and dihydroxyeicosatrienoic acids dilate human coronary arterioles via BKCa channels: implications for soluble epoxide hydrolase inhibition. Am. J. Physiol. Heart Circ. Physiol. 290, H491–H499 (2006).

    CAS  PubMed  Google Scholar 

  44. Medhora, M. et al. Emerging mechanisms for growth and protection of the vasculature by cytochrome P450-derived products of arachidonic acid and other eicosanoids. Prostaglandins Other Lipid Mediat. 82, 19–29 (2007).

    CAS  PubMed  Google Scholar 

  45. Medhora, M. et al. Epoxygenase-driven angiogenesis in human lung microvascular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 284, H215–H224 (2003).

    CAS  PubMed  Google Scholar 

  46. Potente, M., Fisslthaler, B., Busse, R. & Fleming, I. 11,12-Epoxyeicosatrienoic acid-induced inhibition of FOXO factors promotes endothelial proliferation by down-regulating p27Kip1. J. Biol. Chem. 278, 29619–29625 (2003).

    CAS  PubMed  Google Scholar 

  47. Potente, M., Michaelis, U.R., Fisslthaler, B., Busse, R. & Fleming, I. Cytochrome P450 2C9-induced endothelial cell proliferation involves induction of mitogen-activated protein (MAP) kinase phosphatase-1, inhibition of the c-Jun N-terminal kinase, and up-regulation of cyclin D1. J. Biol. Chem. 277, 15671–15676 (2002).

    CAS  PubMed  Google Scholar 

  48. Pozzi, A. et al. Characterization of 5,6- and 8,9-epoxyeicosatrienoic acids (5,6- and 8,9-EET) as potent in vivo angiogenic lipids. J. Biol. Chem. 280, 27138–27146 (2005).

    CAS  PubMed  Google Scholar 

  49. Yan, G., Chen, S., You, B. & Sun, J. Activation of sphingosine kinase-1 mediates induction of endothelial cell proliferation and angiogenesis by epoxyeicosatrienoic acids. Cardiovasc. Res. 78, 308–314 (2008).

    CAS  PubMed  Google Scholar 

  50. Sun, J. et al. Inhibition of vascular smooth muscle cell migration by cytochrome p450 epoxygenase-derived eicosanoids. Circ. Res. 90, 1020–1027 (2002).

    CAS  PubMed  Google Scholar 

  51. Davis, B. B. et al. Attenuation of vascular smooth muscle cell proliferation by 1-cyclohexyl-3-dodecyl urea is independent of soluble epoxide hydrolase inhibition. J. Pharmacol. Exp. Ther. 316, 815–821 (2006).

    CAS  PubMed  Google Scholar 

  52. Davis, B. B. et al. Inhibitors of soluble epoxide hydrolase attenuate vascular smooth muscle cell proliferation. Proc. Natl Acad. Sci. USA 99, 2222–2227 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Foley, R. N. & Collins, A. J. End-stage renal disease in the United States: an update from the United States Renal Data System. J. Am. Soc. Nephrol. 18, 2644–2648 (2007).

    PubMed  Google Scholar 

  54. Zoccali, C., Mallamaci, F. & Tripepi, G. Traditional and emerging cardiovascular risk factors in end-stage renal disease. Kidney Int. Suppl. 85, S105–S110 (2003).

    Google Scholar 

  55. Elmarakby, A. A. et al. Chemokine receptor 2b inhibition provides renal protection in angiotensin II-salt hypertension. Hypertension 50, 1069–1076 (2007).

    CAS  PubMed  Google Scholar 

  56. Elmarakby, A. A., Quigley, J. E., Pollock, D. M. & Imig, J. D. Tumor necrosis factor a blockade increases renal Cyp2c23 expression and slows the progression of renal damage in salt-sensitive hypertension. Hypertension 47, 557–562 (2006).

    CAS  PubMed  Google Scholar 

  57. Node, K. et al. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science 285, 1276–1279 (1999). This study provided the first description of vascular anti-inflammatory properties of EETs.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Falck, J. R. et al. 11,12-epoxyeicosatrienoic acid (11,12-EET): structural determinants for inhibition of TNF-α-induced VCAM-1 expression. Bioorg Med. Chem. Lett. 13, 4011–4014 (2003).

    CAS  PubMed  Google Scholar 

  59. Fitzpatrick, F. A. et al. Inhibition of cyclooxygenase activity and platelet aggregation by epoxyeicosatrienoic acids. Influence of stereochemistry. J. Biol. Chem. 261, 15334–15338 (1986).

    CAS  PubMed  Google Scholar 

  60. Pratt, P. F., Rosolowsky, M. & Campbell, W. B. Effects of epoxyeicosatrienoic acids on polymorphonuclear leukocyte function. Life Sci. 70, 2521–2533 (2002).

    CAS  PubMed  Google Scholar 

  61. Heizer, M. L., McKinney, J. S. & Ellis, E. F. 14,15-Epoxyeicosatrienoic acid inhibits platelet aggregation in mouse cerebral arterioles. Stroke 22, 1389–1393 (1991).

    CAS  PubMed  Google Scholar 

  62. Kozak, W., Kluger, M. J., Kozak, A., Wachulec, M. & Dokladny, K. Role of cytochrome P-450 in endogenous antipyresis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R455–R460 (2000).

    CAS  PubMed  Google Scholar 

  63. Nakashima, T., Yoshida, Y., Miyata, S. & Kiyohara, T. Hypothalamic 11,12-epoxyeicosatrienoic acid attenuates fever induced by central interleukin-1β in the rat. Neurosci. Lett. 310, 141–144 (2001).

    CAS  PubMed  Google Scholar 

  64. Schmelzer, K. R. et al. Enhancement of antinociception by coadministration of nonsteroidal anti-inflammatory drugs and soluble epoxide hydrolase inhibitors. Proc. Natl Acad. Sci. USA 103, 13646–13651 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Imig, J. D. Cardiovascular therapeutic aspects of soluble epoxide hydrolase inhibitors. Cardiovasc. Drug Rev. 24, 169–188 (2006).

    CAS  PubMed  Google Scholar 

  66. Inceoglu, B. et al. Inhibition of soluble epoxide hydrolase reduces LPS-induced thermal hyperalgesia and mechanical allodynia in a rat model of inflammatory pain. Life Sci. 79, 2311–2319 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhao, X. et al. Soluble epoxide hydrolase inhibition protects the kidney from hypertension-induced damage. J. Am. Soc. Nephrol. 15, 1244–1253 (2004). This study describes the end-organ-protective properties of sEHIs and provided the first demonstration of a sEHI decreasing renal inflammation associated with hypertension.

    CAS  PubMed  Google Scholar 

  68. Smith, K. R. et al. Attenuation of tobacco smoke-induced lung inflammation by treatment with a soluble epoxide hydrolase inhibitor. Proc. Natl Acad. Sci. USA 102, 2186–2191 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Fornage, M. et al. Polymorphism of the soluble epoxide hydrolase is associated with coronary artery calcification in African-American subjects: The Coronary Artery Risk Development in Young Adults (CARDIA) study. Circulation 109, 335–339 (2004). This study is the original description of the association of sEH polymorphisms with cardiovascular disease in the human population.

    CAS  PubMed  Google Scholar 

  70. Fornage, M. et al. The soluble epoxide hydrolase gene harbors sequence variation associated with susceptibility to and protection from incident ischemic stroke. Hum. Mol. Genet. 14, 2829–2837 (2005).

    CAS  PubMed  Google Scholar 

  71. Koerner, I. P. et al. Polymorphisms in the human soluble epoxide hydrolase gene EPHX2 linked to neuronal survival after ischemic injury. J. Neurosci. 27, 4642–4649 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee, C. R. et al. Genetic variation in soluble epoxide hydrolase (EPHX2) and risk of coronary heart disease: The Atherosclerosis Risk in Communities (ARIC) study. Hum. Mol. Genet. 15, 1640–1649 (2006).

    CAS  PubMed  Google Scholar 

  73. Srivastava, P. K., Sharma, V. K., Kalonia, D. S. & Grant, D. F. Polymorphisms in human soluble epoxide hydrolase: effects on enzyme activity, enzyme stability, and quaternary structure. Arch. Biochem. Biophys. 427, 164–169 (2004).

    CAS  PubMed  Google Scholar 

  74. Wei, Q. et al. Sequence variation in the soluble epoxide hydrolase gene and subclinical coronary atherosclerosis: interaction with cigarette smoking. Atherosclerosis 190, 26–34 (2007).

    CAS  PubMed  Google Scholar 

  75. Sato, K. et al. Soluble epoxide hydrolase variant (Glu287Arg) modifies plasma total cholesterol and triglyceride phenotype in familial hypercholesterolemia: intrafamilial association study in an eight-generation hyperlipidemic kindred. J. Hum. Genet. 49, 29–34 (2004).

    CAS  PubMed  Google Scholar 

  76. Dreisbach, A. W. et al. The prevalence of CYP2C8, 2C9, 2J2, and soluble epoxide hydrolase polymorphisms in African Americans with hypertension. Am. J. Hypertens. 18, 1276–1281 (2005).

    CAS  PubMed  Google Scholar 

  77. Spiecker, M. et al. Risk of coronary artery disease associated with polymorphism of the cytochrome P450 epoxygenase CYP2J2. Circulation 110, 2132–2136 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yu, Z. et al. Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. Circ. Res. 87, 992–998 (2000). This study provided the first experimental evidence that a sEHI can increase epoxide levels and lower blood pressure in an animal model of hypertension.

    CAS  PubMed  Google Scholar 

  79. Imig, J. D., Zhao, X., Capdevila, J. H., Morisseau, C. & Hammock, B. D. Soluble epoxide hydrolase inhibition lowers arterial blood pressure in angiotensin II hypertension. Hypertension 39, 690–694 (2002).

    CAS  PubMed  Google Scholar 

  80. Imig, J. D. et al. An orally active epoxide hydrolase inhibitor lowers blood pressure and provides renal protection in salt-sensitive hypertension. Hypertension 46, 975–981 (2005). This study describes the first oral administration of a sEHI and was the first to show the antihypertensive and end-organ-protective effects of sEHIs.

    CAS  PubMed  Google Scholar 

  81. Morisseau, C. & Hammock, B. D. Gerry Brooks and epoxide hydrolases: four decades to a pharmaceutical. Pest Manag. Sci. 64, 594–609 (2008).

    CAS  PubMed  Google Scholar 

  82. Newman, J. W., Morisseau, C. & Hammock, B. D. Epoxide hydrolases: their roles and interactions with lipid metabolism. Prog. Lipid Res. 44, 1–51 (2005).

    CAS  PubMed  Google Scholar 

  83. Oesch, F., Schladt, L., Hartmann, R., Timms, C. & Worner, W. Rat cytosolic epoxide hydrolase. Adv. Exp. Med. Biol. 197, 195–201 (1986).

    CAS  PubMed  Google Scholar 

  84. EnayetAllah, A. E. et al. Opposite regulation of cholesterol levels by the phosphatase and hydrolase domains of soluble epoxide hydrolase. J. Biol. Chem. 283, 36592–36598 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Morisseau, C. & Hammock, B. D. Epoxide hydrolases: mechanisms, inhibitor designs, and biological roles. Annu. Rev. Pharmacol. Toxicol. 45, 311–333 (2005).

    CAS  PubMed  Google Scholar 

  86. Newman, J. W., Morisseau, C., Harris, T. R. & Hammock, B. D. The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity. Proc. Natl Acad. Sci. USA 100, 1558–1563 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Enayetallah, A. E., French, R. A., Thibodeau, M. S. & Grant, D. F. Distribution of soluble epoxide hydrolase and of cytochrome P450 2C8, 2C9, and 2J2 in human tissues. J. Histochem. Cytochem. 52, 447–454 (2004).

    CAS  PubMed  Google Scholar 

  88. Yu, Z. et al. Vascular localization of soluble epoxide hydrolase in the human kidney. Am. J. Physiol. Renal Physiol. 286, F720–F726 (2004).

    CAS  PubMed  Google Scholar 

  89. Harris, T. R. et al. Identification of two epoxide hydrolases in Caenorhabditis elegans that metabolize mammalian lipid signaling molecules. Arch. Biochem. Biophys. 472, 139–149 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Tran, K. L. Lipid sulfates and sulfonates are allosteric competitive inhibitors of the N-terminal phosphatase activity of the mammalian soluble epoxide hydrolase. Biochemistry 44, 12179–12187 (2005).

    CAS  PubMed  Google Scholar 

  91. Harris, T. R., Aronov, P. A. & Hammock, B. D. Soluble epoxide hydrolase homologs in Strongylocentrotus purpuratus suggest a gene duplication event and subsequent divergence. DNA Cell Biol. 27, 467–477 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Mullin, C. A. & Hammock, B. D. Chalcone oxides — potent selective inhibitors of cytosolic epoxide hydrolase. Arch. Biochem. Biophys. 216, 423–439 (1982).

    CAS  PubMed  Google Scholar 

  93. Morisseau, C. et al. Potent urea and carbamate inhibitors of soluble epoxide hydrolases. Proc. Natl Acad. Sci. USA 96, 8849–8854 (1999). This is the original description of the development of urea compounds as sEHIs.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kim, I. H. et al. Optimization of amide-based inhibitors of soluble epoxide hydrolase with improved water solubility. J. Med. Chem. 48, 3621–3629 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Morisseau, C. et al. Development of metabolically stable inhibitors of mammalian microsomal epoxide hydrolase. Chem. Res. Toxicol. 21, 951–957 (2008).

    CAS  PubMed  Google Scholar 

  96. Xie, Y. et al. Discovery of potent non-urea inhibitors of soluble epoxide hydrolase. Bioorg. Med. Chem. Lett. 19, 2354–2359 (2009).

    CAS  PubMed  Google Scholar 

  97. Liu, J.-Y. et al. Sorafenib has soluble epoxide hydrolase inhibitory activity which contributes to its effect profile in vivo. Mol. Cancer Ther. 8, 2193–2203 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ghosh, S. et al. Oral delivery of 1,3-dicyclohexylurea nanosuspension enhances exposure and lowers blood pressure in hypertensive rats. Basic Clin. Pharmacol. Toxicol. 102, 453–458 (2008).

    CAS  PubMed  Google Scholar 

  99. Morisseau, C. et al. Structural refinement of inhibitors of urea-based soluble epoxide hydrolases. Biochem. Pharmacol. 63, 1599–1608 (2002).

    CAS  PubMed  Google Scholar 

  100. Hwang, S. H., Tsai, H. J., Liu, J. Y., Morisseau, C. & Hammock, B. D. Orally bioavailable potent soluble epoxide hydrolase inhibitors. J. Med. Chem. 50, 3825–3840 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ai, D. et al. Soluble epoxide hydrolase plays an essential role in angiotensin II-induced cardiac hypertrophy. Proc. Natl Acad. Sci. USA 106, 564–569 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Jung, O. et al. Soluble epoxide hydrolase is a main effector of angiotensin II-induced hypertension. Hypertension 45, 759–765 (2005).

    CAS  PubMed  Google Scholar 

  103. Koerner, I. P. et al. Soluble epoxide hydrolase: regulation by estrogen and role in the inflammatory response to cerebral ischemia. Front. Biosci. 13, 2833–2841 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Seubert, J. M. et al. Role of soluble epoxide hydrolase in postischemic recovery of heart contractile function. Circ. Res. 99, 442–450 (2006). This study used the combination of genetic and pharmacological manipulation of sEHIs and epoxides and showed cardiac-protective effects from ischaemic events.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ulu, A. et al. Soluble epoxide hydrolase inhibitors reduce the development of atherosclerosis in apolipoprotein E-knockout mouse model. J. Cardiovasc. Pharmacol. 52, 314–323 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Marino, J. P. Jr. Soluble epoxide hydrolase, a target with multiple opportunities for cardiovascular drug discovery. Curr. Top. Med. Chem. 9, 452–463 (2009).

    CAS  PubMed  Google Scholar 

  107. Olearczyk, J. J. et al. Administration of a substituted adamantyl urea inhibitor of soluble epoxide hydrolase protects the kidney from damage in hypertensive Goto-Kakizaki rats. Clin. Sci. (Lond.) 116, 61–70 (2009).

    CAS  Google Scholar 

  108. Motoki, A. et al. Soluble epoxide hydrolase inhibition and gene deletion are protective against myocardial ischemia-reperfusion injury in vivo. Am. J. Physiol. Heart Circ. Physiol. 295, H2128–H2134 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Fife, K. L. et al. Inhibition of soluble epoxide hydrolase does not protect against endotoxin-mediated hepatic inflammation. J. Pharmacol. Exp. Ther. 327, 707–715 (2008).

    CAS  PubMed  Google Scholar 

  110. Katragadda, D. et al. Epoxyeicosatrienoic acids limit damage to mitochondrial function following stress in cardiac cells. J. Mol. Cell Cardiol. 46, 867–875 (2009).

    CAS  PubMed  Google Scholar 

  111. Loch, D., Hoey, A., Morisseau, C., Hammock, B. O. & Brown, L. Prevention of hypertension in DOCA-salt rats by an inhibitor of soluble epoxide hydrolase. Cell Biochem. Biophys. 47, 87–98 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Fleming, I. Vascular cytochrome p450 enzymes: physiology and pathophysiology. Trends Cardiovasc. Med. 18, 20–25 (2008).

    CAS  PubMed  Google Scholar 

  113. Fornage, M. et al. Polymorphism in soluble epoxide hydrolase and blood pressure in spontaneously hypertensive rats. Hypertension 40, 485–490 (2002).

    CAS  PubMed  Google Scholar 

  114. Dorrance, A. M. et al. An epoxide hydrolase inhibitor, 12-(3-adamantan-1-yl-ureido)dodecanoic acid (AUDA), reduces ischemic cerebral infarct size in stroke-prone spontaneously hypertensive rats. J. Cardiovasc. Pharmacol. 46, 842–848 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Simpkins, A. N. et al. Soluble epoxide hydrolase inhibition is protective against cerebral ischemia via vascular and neural protection. Am. J. Pathol. 174, 2086–2095 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Corenblum, M. J. et al. Altered soluble epoxide hydrolase gene expression and function and vascular disease risk in the stroke-prone spontaneously hypertensive rat. Hypertension 51, 567–573 (2008).

    CAS  PubMed  Google Scholar 

  117. Sinal, C. J. et al. Targeted disruption of soluble epoxide hydrolase reveals a role in blood pressure regulation. J. Biol. Chem. 275, 40504–40510 (2000).

    CAS  PubMed  Google Scholar 

  118. Luria, A. et al. Compensatory mechanism for homeostatic blood pressure regulation in Ephx2 gene-disrupted mice. J. Biol. Chem. 282, 2891–2898 (2007).

    CAS  PubMed  Google Scholar 

  119. Manhiani, M. et al. Soluble epoxide hydrolase gene deletion attenuates renal injury and inflammation with DOCA-salt hypertension. Am. J. Physiol. Renal Physiol. 24 Jun 2009 (doi:10.1152/ajprenal.00098.2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Parrish, A. R. et al. Attenuation of cisplatin nephrotoxicity by inhibition of soluble epoxide hydrolase. Cell Biol. Toxicol. 25, 217–225 (2008).

    PubMed  PubMed Central  Google Scholar 

  121. Xu, D. et al. Prevention and reversal of cardiac hypertrophy by soluble epoxide hydrolase inhibitors. Proc. Natl Acad. Sci. USA 103, 18733–18738 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Li, J. et al. Soluble epoxide hydrolase inhibitor, AUDA, prevents early salt-sensitive hypertension. Front. Biosci. 13, 3480–3487 (2008).

    CAS  PubMed  Google Scholar 

  123. Hutchens, M. P. et al. Soluble epoxide hydrolase gene deletion reduces survival after cardiac arrest and cardiopulmonary resuscitation. Resuscitation 76, 89–94 (2008).

    CAS  PubMed  Google Scholar 

  124. Zhang, W. et al. Soluble epoxide hydrolase gene deletion is protective against experimental cerebral ischemia. Stroke 39, 2073–2078 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang, W. et al. Soluble epoxide hydrolase: a novel therapeutic target in stroke. J. Cereb. Blood Flow Metab. 27, 1931–1940 (2007).

    CAS  PubMed  Google Scholar 

  126. Ai, D. et al. Angiotensin II up-regulates soluble epoxide hydrolase in vascular endothelium in vitro and in vivo. Proc. Natl Acad. Sci. USA 104, 9018–9023 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Schmelzer, K. R. et al. Soluble epoxide hydrolase is a therapeutic target for acute inflammation. Proc. Natl Acad. Sci. USA 102, 9772–9777 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Fang, X. et al. Activation of peroxisome proliferator-activated receptor alpha by substituted urea-derived soluble epoxide hydrolase inhibitors. J. Pharmacol. Exp. Ther. 314, 260–270 (2005).

    CAS  PubMed  Google Scholar 

  129. Buckingham, R. E. & Hanna, A. Thiazolidinedione insulin sensitizers and the heart: a tale of two organs? Diabetes Obes. Metab. 10, 312–328 (2008).

    CAS  PubMed  Google Scholar 

  130. Liu, M. & Alkayed, N. J. Hypoxic preconditioning and tolerance via hypoxia inducible factor (HIF) 1α-linked induction of P450 2C11 epoxygenase in astrocytes. J. Cereb. Blood Flow Metab. 25, 939–948 (2005).

    CAS  PubMed  Google Scholar 

  131. Terashvili, M. et al. Antinociception produced by 14,15-epoxyeicosatrienoic acid is mediated by the activation of β-endorphin and met-enkephalin in the rat ventrolateral periaqueductal gray. J. Pharmacol. Exp. Ther. 326, 614–622 (2008).

    CAS  PubMed  Google Scholar 

  132. Iceoglu, B. et al. Soluble epoxide hydrolase and epoxyeicosatrienoic acids modulate two distinct analgesic pathways. Proc. Natl Acad. Sci. USA 105, 18901–18906 (2008).

    Google Scholar 

  133. Yang, S., Wei, S., Pozzi, A. & Capdevila, J. H. The arachidonic acid epoxygenase is a component of the signaling mechanisms responsible for VEGF-stimulated angiogenesis. Arch. Biochem. Biophys. 21 May 2009 (doi:10.1016/j.abb.2009.05.006).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Cheranov, S. Y. et al. An essential role for SRC-activated STAT-3 in 14,15-EET-induced VEGF expression and angiogenesis. Blood 111, 5581–5591 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Revermann, M. et al. Inhibition of the soluble epoxide hydrolase attenuates monocrotaline-induced pulmonary hypertension in rats. J. Hypertens. 27, 322–331 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Alvarez, D. F., Gjerde, E. A. & Townsley, M. I. Role of EETs in regulation of endothelial permeability in rat lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 286, L445–L451 (2004).

    CAS  PubMed  Google Scholar 

  137. Jian, M. Y., King, J. A., Al-Mehdi, A. B., Liedtke, W. & Townsley, M. I. High vascular pressure-induced lung injury requires P450 epoxygenase-dependent activation of TRPV4. Am. J. Respir. Cell. Mol. Biol. 38, 386–392 (2008).

    CAS  PubMed  Google Scholar 

  138. Morin, C., Sirois, M., Echave, V., Gomes, M. M. & Rousseau, E. EET displays anti-inflammatory effects in TNF-α stimulated human bronchi: putative role of CPI-17. Am. J. Respir. Cell. Mol. Biol. 38, 192–201 (2008).

    CAS  PubMed  Google Scholar 

  139. Krotz, F. et al. Membrane-potential-dependent inhibition of platelet adhesion to endothelial cells by epoxyeicosatrienoic acids. Arterioscler. Thromb. Vasc. Biol. 24, 595–600 (2004).

    PubMed  Google Scholar 

  140. Jiang, J. G. et al. Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res. 65, 4707–4715 (2005).

    CAS  PubMed  Google Scholar 

  141. Chen, C. et al. Selective inhibitors of CYP2J2 related to terfenadine exhibit strong activity against human cancers in vitro and in vivo. J. Pharmacol. Exp. Ther. 329, 908–918 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Seubert, J. et al. Enhanced postischemic functional recovery in CYP2J2 transgenic hearts involves mitochondrial ATP-sensitive K+ channels and p42/p44 MAPK pathway. Circ. Res. 95, 506–514 (2004).

    CAS  PubMed  Google Scholar 

  143. Yang, Q., Zhang, R. Z., Yim, A. P. & He, G. W. Effect of 11,12-epoxyeicosatrienoic acid as an additive to St. Thomas' cardioplegia and University of Wisconsin solutions on endothelium-derived hyperpolarizing factor-mediated function in coronary microarteries: influence of temperature and time. Ann. Thorac. Surg. 76, 1623–1630 (2003).

    PubMed  Google Scholar 

  144. Falck, J. R. et al. Comparison of vasodilatory properties of 14,15-EET analogs: structural requirements for dilation. Am. J. Physiol. Heart Circ. Physiol. 284, H337–H349 (2003).

    CAS  PubMed  Google Scholar 

  145. Gauthier, K. M., Falck, J. R., Reddy, L. M. & Campbell, W. B. 14,15-EET analogs: characterization of structural requirements for agonist and antagonist activity in bovine coronary arteries. Pharmacol. Res. 49, 515–524 (2004).

    CAS  PubMed  Google Scholar 

  146. Imig, J. D., Dimitropoulou, C., Reddy, D. S., White, R. E. & Falck, J. R. Afferent arteriolar dilation to 11,12-EET analogs involves PP2A activity and Ca2+-activated K+ channels. Microcirculation 15, 137–150 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Imig, J. D. & Falck, J. R. Compositions and methods for the treatment of renal and cardiovascular disease. US Patent 2008146663 (2008).

  148. Olearczyk, J. J. et al. Substituted adamantyl-urea inhibitors of the soluble epoxide hydrolase dilate mesenteric resistance vessels. J. Pharmacol. Exp. Ther. 318, 1307–1314 (2006).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

B.D.H. is the founder of Arete Therapeutics, a developer of soluble epoxide hydrolase inhibitors for the treatment of cardiovascular diseases. J.D.I is a member of the scientific advisory board of Arete Therapeutics.

Related links

Related links

FURTHER INFORMATION

John Imig's homepage

Bruce Hammock's homepage

Arete Therapeutics initiates Phase IIa clinical trial for AR9281, a novel sEH inhibitor to treat type 2 diabetes

Glossary

Eicosanoids

Lipid mediators that are derived from the 20-carbon-atom arachidonic acid or a similar fatty acid.

Olefin bond

A double bond that links carbon atoms in an unsaturated hydrocarbon.

Endothelium-derived hyperpolarizing factor

A substance released by endothelial cells that hyperpolarizes vascular smooth muscle cells, resulting in vasodilation.

Angiogenesis

The formation of new blood vessels.

End-organ damage

Injury to major organs, particularly the heart, brain and kidneys, owing to disease.

Cytokine

A regulatory protein released by immune cells that acts as a mediator in the generation of the immune response.

Insect juvenile hormone

A hormone in arthropod larvae that inhibits the enzyme ecdysone, thereby preventing moulting and the development of larvae into adults.

Vmax

The velocity of an enzyme-catalysed reaction at infinite concentration of substrate.

Km

The substrate concentration at which the enzyme-catalysed reaction rate is half Vmax.

Transition state inhibitor

A species that resembles the transition complex formed in the catalytic cycle — the state in which the enzyme has maximum free energy.

Ki

The equilibrium dissociation constant for an inhibitor and a specific enzyme target. It is the concentration of inhibitor that is required to decrease the rate of the reaction to half of the maximum value.

Catalytic tunnel

The space within the enzyme to which the substrate binds for catalysis.

Hyperalgesia

An abnormally increased sensitivity to painful stimuli.

Allodynia

An abnormal pain state, in which normally non-painful stimuli evoke pain responses.

Therapeutic index

(Also known as the therapeutic ratio or margin of safety). A comparison of the amount of a therapeutic agent that causes the therapeutic effect with the amount that causes toxic effects.

PGI2/TXA2 ratio

A measure that is used to predict the likelihood of thrombus formation, as prostaglandin I2 (PGI2) and thromboxane A2 (TXA2) regulate the interaction between platelets and the vascular wall.

Cardiometabolic syndrome

A disease state defined as the clustering of visceral obesity with cardiovascular risk factors.

Antinociception

A reduction in sensitivity to painful stimuli.

Pulmonary hypertension

A disease that is characterized by increased pressure in the pulmonary artery.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imig, J., Hammock, B. Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat Rev Drug Discov 8, 794–805 (2009). https://doi.org/10.1038/nrd2875

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2875

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing