Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulatory mechanisms in vascular calcification

Abstract

In the past decade, the prevalence, significance, and regulatory mechanisms of vascular calcification have gained increasing recognition. Over a century ago, pathologists recognized atherosclerotic calcification as a form of extraskeletal ossification. Studies are now identifying the mechanism of this remarkable process as a recapitulation of embryonic endochondral and membranous ossification through phenotypic plasticity of vascular cells that function as adult mesenchymal stem cells. These embryonic developmental programs, involving bone morphogenetic proteins and potent osteochondrogenic transcription factors, are triggered and modulated by a variety of inflammatory, metabolic, and genetic disorders, particularly hyperlipidemia, chronic kidney disease, diabetes, hyperparathyroidism, and osteoporosis. They are also triggered by loss of powerful inhibitors, such as fetuin A, matrix Gla protein, and pyrophosphate, which ordinarily restrict biomineralization to skeletal bone. Teleologically, soft-tissue calcification might serve to create a wall of bone to sequester noxious foci such as chronic infections, parasites, and foreign bodies. This Review focuses on atherosclerotic and medial calcification. The capacity of the vasculature to produce mineral in culture and to produce de novo, vascularized, trabecular bone and cartilage tissue, even in patients with osteoporosis, should intrigue investigators in tissue engineering and regenerative biology.

Key Points

  • Vascular calcification is associated with most conventional cardiovascular risk factors, and is an independent risk factor in itself

  • Clinical consequences of calcific disease include heart failure, valvular stenosis, ventricular hypertrophy, diastolic dysfunction, coronary ischemia, hypertension, and risk of plaque rupture

  • Amorphous calcification and chondro-osseous metaplasia in atherosclerotic plaques, the medial layer of large arteries, and cardiac valves have distinct, but overlapping, regulatory mechanisms

  • The process is associated with, and possibly driven by, developmental, inflammatory, and/or metabolic abnormalities

  • A disturbance of one or any combination of activating and inhibiting factors may be responsible for initiation of vascular calcification, and the complex feedback regulatory mechanisms require further analysis

  • Potential therapeutic strategies include prevention of hyperphosphatemia and hyperlipidemia; however, definitive studies are still in progress

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histological sections of human vascular calcification.
Figure 2: Chondro-osseous calcific vasculopathy of the medial layer of an atherosclerotic human artery.
Figure 3: Regulatory factors in vascular calcification.

Similar content being viewed by others

References

  1. Rennenberg, R. J. et al. Vascular calcifications as a marker of increased cardiovascular risk: a meta-analysis. Vasc. Health Risk Manag. 5, 185–197 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Budoff, M. J. et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J. Am. Coll. Cardiol. 49, 1860–1870 (2007).

    PubMed  Google Scholar 

  3. Blacher, J., Guerin, A. P., Pannier, B., Marchais, S. J. & London, G. M. Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension 38, 938–942 (2001).

    CAS  PubMed  Google Scholar 

  4. Moe, S. M. & Chen, N. X. Pathophysiology of vascular calcification in chronic kidney disease. Circ. Res. 95, 560–567 (2004).

    CAS  PubMed  Google Scholar 

  5. Shao, J. S., Cheng, S. L., Sadhu, J. & Towler, D. A. Inflammation and the osteogenic regulation of vascular calcification: a review and perspective. Hypertension 55, 579–592 (2010).

    CAS  PubMed  Google Scholar 

  6. O'Rourke, R. A. et al. American College of Cardiology/American Heart Association Expert Consensus document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. Circulation 102, 126–140 (2000).

    CAS  PubMed  Google Scholar 

  7. Hoshino, T. et al. Mechanical stress analysis of a rigid inclusion in distensible material: a model of atherosclerotic calcification and plaque vulnerability. Am. J. Physiol. Heart Circ. Physiol. 297, H802–H810 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Virmani, R., Ladich, E. R., Burke, A. P. & Kolodgie, F. D. Histopathology of carotid atherosclerotic disease. Neurosurgery 59, S219–S227 (2006).

    PubMed  Google Scholar 

  9. Abedin, M., Tintut, Y. & Demer, L. L. Vascular calcification: mechanisms and clinical ramifications. Arterioscler. Thromb. Vasc. Biol. 24, 1161–1170 (2004).

    CAS  PubMed  Google Scholar 

  10. Lutgens, E. et al. Atherosclerotic plaque rupture: local or systemic process? Arterioscler. Thromb. Vasc. Biol. 23, 2123–2130 (2003).

    CAS  PubMed  Google Scholar 

  11. Demer, L. L. Effect of calcification on in vivo mechanical response of rabbit arteries to balloon dilation. Circulation 83, 2083–2093 (1991).

    CAS  PubMed  Google Scholar 

  12. London, G. M., Marchais, S. J., Guerin, A. P. & Metivier, F. Impairment of arterial function in chronic renal disease: prognostic impact and therapeutic approach. Nephrol. Dial. Transplant. 17 (Suppl. 11), 13–15 (2002).

    CAS  PubMed  Google Scholar 

  13. Bunting, C. H. The formation of true bone with cellular (red) marrow in a sclerotic aorta. J. Exp. Med. 8, 365–376 (1906).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Virchow, R. Cellular Pathology: as Based Upon Physiological and Pathological Histology. (Dover, New York, 1863).

    Google Scholar 

  15. Stary, H. C. Natural history of calcium deposits in atherosclerosis progression and regression. Z. Kardiol. 89 (Suppl. 2), 28–35 (2000).

    PubMed  Google Scholar 

  16. Lee, C. D., Jacobs, D. R. Jr, Schreiner, P. J., Iribarren, C. & Hankinson, A. Abdominal obesity and coronary artery calcification in young adults: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am. J. Clin. Nutr. 86, 48–54 (2007).

    CAS  PubMed  Google Scholar 

  17. Rajamannan, N. M. Calcific aortic stenosis: lessons learned from experimental and clinical studies. Arterioscler. Thromb. Vasc. Biol. 29, 162–168 (2009).

    CAS  PubMed  Google Scholar 

  18. Mohler, E. R. 3rd. Mechanisms of aortic valve calcification. Am. J. Cardiol. 94, 1396–1402 (2004).

    PubMed  Google Scholar 

  19. Miller, J. D. et al. Dysregulation of antioxidant mechanisms contributes to increased oxidative stress in calcific aortic valvular stenosis in humans. J. Am. Coll. Cardiol. 52, 843–850 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. O'Brien, K. D. et al. Apolipoproteins B, (a), and E accumulate in the morphologically early lesion of 'degenerative' valvular aortic stenosis. Arterioscler. Thromb. Vasc. Biol. 16, 523–532 (1996).

    CAS  PubMed  Google Scholar 

  21. Olsson, M., Thyberg, J. & Nilsson, J. Presence of oxidized low density lipoprotein in nonrheumatic stenotic aortic valves. Arterioscler. Thromb. Vasc. Biol. 19, 1218–1222 (1999).

    CAS  PubMed  Google Scholar 

  22. Rajamannan, N. M., Subramaniam, M., Caira, F., Stock, S. R. & Spelsberg, T. C. Atorvastatin inhibits hypercholesterolemia-induced calcification in the aortic valves via the Lrp5 receptor pathway. Circulation 112 (Suppl. 9), I229–I234 (2005).

    PubMed  PubMed Central  Google Scholar 

  23. Shao, J. S. et al. Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J. Clin. Invest. 115, 1210–1220 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Towler, D. A. Vascular calcification in ESRD: Another cloud appears in the perfect storm—but highlights a silver lining? Kidney Int. 66, 2467–2468 (2004).

    PubMed  Google Scholar 

  25. Luo, G. et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386, 78–81 (1997).

    CAS  PubMed  Google Scholar 

  26. Hunt, J. L. et al. Bone formation in carotid plaques: a clinicopathological study. Stroke 33, 1214–1219 (2002).

    PubMed  Google Scholar 

  27. Qiao, J. H., Mertens, R. B., Fishbein, M. C. & Geller, S. A. Cartilaginous metaplasia in calcified diabetic peripheral vascular disease: morphologic evidence of enchondral ossification. Hum. Pathol. 34, 402–407 (2003).

    CAS  PubMed  Google Scholar 

  28. Soor, G. S., Vukin, I., Leong, S. W., Oreopoulos, G. & Butany, J. Peripheral vascular disease: who gets it and why? A histomorphological analysis of 261 arterial segments from 58 cases. Pathology 40, 385–391 (2008).

    PubMed  Google Scholar 

  29. Neven, E. et al. Chondrocyte rather than osteoblast conversion of vascular cells underlies medial calcification in uremic rats. Arterioscler. Thromb. Vasc. Biol. doi:10.1161/ATVBAHA.110.204834.

    CAS  PubMed  Google Scholar 

  30. Duer, M. J. et al. Mineral surface in calcified plaque is like that of bone: further evidence for regulated mineralization. Arterioscler. Thromb. Vasc. Biol. 28, 2030–2034 (2008).

    CAS  PubMed  Google Scholar 

  31. Sarig, S. et al. Detection of cholesterol associated with calcium mineral using confocal fluorescence microscopy. Lab. Invest. 71, 782–787 (1994).

    CAS  PubMed  Google Scholar 

  32. Bostrom, K. et al. Bone morphogenetic protein expression in human atherosclerotic lesions. J. Clin. Invest. 91, 1800–1809 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ewence, A. E. et al. Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque destabilization. Circ. Res. 103, e28–e34 (2008).

    CAS  PubMed  Google Scholar 

  34. Iyemere, V. P., Proudfoot, D., Weissberg, P. L. & Shanahan, C. M. Vascular smooth muscle cell phenotypic plasticity and the regulation of vascular calcification. J. Intern. Med. 260, 192–210 (2006).

    CAS  PubMed  Google Scholar 

  35. Frid, M. G., Kale, V. A. & Stenmark, K. R. Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation: in vitro analysis. Circ. Res. 90, 1189–1196 (2002).

    CAS  PubMed  Google Scholar 

  36. Cossu, G. & Bianco, P. Mesoangioblasts—vascular progenitors for extravascular mesodermal tissues. Curr. Opin. Genet. Dev. 13, 537–542 (2003).

    CAS  PubMed  Google Scholar 

  37. Traktuev, D. O. et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ. Res. 102, 77–85 (2008).

    CAS  PubMed  Google Scholar 

  38. Li, H. et al. Crosstalk between the bone and immune systems: osteoclasts function as antigen-presenting cells and activate CD4+ and CD8+ T cells. Blood doi:10.1182/blood-2009-11-255026.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gallois, A. et al. Genome-wide expression analyses establish dendritic cells as a new osteoclast precursor able to generate bone-resorbing cells more efficiently than monocytes. J. Bone Miner. Res. 25, 661–672 (2010).

    CAS  PubMed  Google Scholar 

  40. Speer, M. Y. et al. Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ. Res. 104, 733–741 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tintut, Y. et al. Multilineage potential of cells from the artery wall. Circulation 108, 2505–2510 (2003).

    PubMed  Google Scholar 

  42. Dellavalle, A. et al. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat. Cell Biol. 9, 255–267 (2007).

    CAS  PubMed  Google Scholar 

  43. Farrington-Rock, C. et al. Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110, 2226–2232 (2004).

    CAS  PubMed  Google Scholar 

  44. Nelson, C. M., Vanduijn, M. M., Inman, J. L., Fletcher, D. A. & Bissell, M. J. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314, 298–300 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Schoen, F. J. & Levy, R. J. SnapShot: calcification of bioprosthetic heart valves. Biomaterials 30, 4445–4446 (2009).

    PubMed  Google Scholar 

  46. Yip, C. Y., Chen, J. H., Zhao, R. & Simmons, C. A. Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arterioscler. Thromb. Vasc. Biol. 29, 936–942 (2009).

    CAS  PubMed  Google Scholar 

  47. Johnson, K. A., Polewski, M. & Terkeltaub, R. A. Transglutaminase 2 is central to induction of the arterial calcification program by smooth muscle cells. Circ. Res. 102, 529–537 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Andreeva, E. R., Pugach, I. M., Gordon, D. & Orekhov, A. N. Continuous subendothelial network formed by pericyte-like cells in human vascular bed. Tissue Cell 30, 127–135 (1998).

    CAS  PubMed  Google Scholar 

  49. Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).

    CAS  PubMed  Google Scholar 

  50. Doherty, M. J. et al. Vascular pericytes express osteogenic potential in vitro and in vivo. J. Bone Miner. Res. 13, 828–838 (1998).

    CAS  PubMed  Google Scholar 

  51. Persy, V. & D'Haese, P. Vascular calcification and bone disease: the calcification paradox. Trends Mol. Med. 15, 405–416 (2009).

    CAS  PubMed  Google Scholar 

  52. Szulc, P., Kiel, D. P. & Delmas, P. D. Calcifications in the abdominal aorta predict fractures in men: MINOS study. J. Bone Miner. Res. 23, 95–102 (2008).

    PubMed  Google Scholar 

  53. Niemeier, A. et al. Uptake of postprandial lipoproteins into bone in vivo: impact on osteoblast function. Bone 43, 230–237 (2008).

    CAS  PubMed  Google Scholar 

  54. Tintut, Y., Morony, S. & Demer, L. L. Hyperlipidemia promotes osteoclastic potential of bone marrow cells ex vivo. Arterioscler. Thromb. Vasc. Biol. 24, e6–e10 (2004).

    CAS  PubMed  Google Scholar 

  55. Parhami, F. et al. Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler. Thromb. Vasc. Biol. 17, 680–687 (1997).

    CAS  PubMed  Google Scholar 

  56. Parhami, F. et al. Atherogenic high-fat diet reduces bone mineralization in mice. J. Bone Miner. Res. 16, 182–188 (2001).

    CAS  PubMed  Google Scholar 

  57. Hirasawa, H. et al. ApoE gene deficiency enhances the reduction of bone formation induced by a high-fat diet through the stimulation of p53-mediated apoptosis in osteoblastic cells. J. Bone Miner. Res. 22, 1020–1030 (2007).

    CAS  PubMed  Google Scholar 

  58. Tintut, Y. et al. 8-Isoprostaglandin E2 enhances receptor-activated NFkappa B ligand (RANKL)-dependent osteoclastic potential of marrow hematopoietic precursors via the cAMP pathway. J. Biol. Chem. 277, 14221–14226 (2002).

    CAS  PubMed  Google Scholar 

  59. Tseng, W. et al. Regulation of IL-6 expression in osteoblasts by oxidized phospholipids. J. Lipid Res. 51, 1010–1016 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Graham, L. S. et al. Oxidized lipids enhance RANKL production by T lymphocytes: implications for lipid-induced bone loss. Clin. Immunol. 133, 265–275 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Huang, M. S. et al. Hyperlipidemia impairs osteoanabolic effects of PTH. J. Bone Miner. Res. 23, 1672–1679 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Huang, M. S. et al. Atherogenic phospholipids attenuate osteogenic signaling by BMP-2 and parathyroid hormone in osteoblasts. J. Biol. Chem. 282, 21237–21243 (2007).

    CAS  PubMed  Google Scholar 

  63. Murshed, M., Harmey, D., Millan, J. L., McKee, M. D. & Karsenty, G. Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev. 19, 1093–1104 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Tyson, K. L. et al. Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler. Thromb. Vasc. Biol. 23, 489–494 (2003).

    CAS  PubMed  Google Scholar 

  65. Byon, C. H. et al. Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling. J. Biol. Chem. 283, 15319–15327 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tintut, Y., Parhami, F., Bostrom, K., Jackson, S. M. & Demer, L. L. cAMP stimulates osteoblast-like differentiation of calcifying vascular cells. Potential signaling pathway for vascular calcification. J. Biol. Chem. 273, 7547–7553 (1998).

    CAS  PubMed  Google Scholar 

  67. Harmey, D. et al. Concerted regulation of inorganic pyrophosphate and osteopontin by akp2, enpp1, and ank: an integrated model of the pathogenesis of mineralization disorders. Am. J. Pathol. 164, 1199–1209 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kockx, M. M. et al. Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation 97, 2307–2315 (1998).

    CAS  PubMed  Google Scholar 

  69. Hsu, H. H., Camacho, N. P., Sun, F., Tawfik, O. & Aono, H. Isolation of calcifiable vesicles from aortas of rabbits fed with high cholesterol diets. Atherosclerosis 153, 337–348 (2000).

    CAS  PubMed  Google Scholar 

  70. Tanimura, A., McGregor, D. H. & Anderson, H. C. Matrix vesicles in atherosclerotic calcification. Proc. Soc. Exp. Biol. Med. 172, 173–177 (1983).

    CAS  PubMed  Google Scholar 

  71. Clarke, M. C. et al. Chronic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and promotes calcification and medial degeneration. Circ. Res. 102, 1529–1538 (2008).

    CAS  PubMed  Google Scholar 

  72. Proudfoot, D. et al. Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies. Circ. Res. 87, 1055–1062 (2000).

    CAS  PubMed  Google Scholar 

  73. Giachelli, C. M. Vascular calcification mechanisms. J. Am. Soc. Nephrol. 15, 2959–2964 (2004).

    PubMed  Google Scholar 

  74. Shanahan, C. M. Mechanisms of vascular calcification in renal disease. Clin. Nephrol. 63, 146–157 (2005).

    CAS  PubMed  Google Scholar 

  75. Aikawa, E. et al. Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation 119, 1785–1794 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hosaka, N. et al. Elastin degradation accelerates phosphate-induced mineralization of vascular smooth muscle cells. Calcif. Tissue Int. 85, 523–529 (2009).

    CAS  PubMed  Google Scholar 

  77. El-Abaddi, M. M. et al. Phosphate feeding induces arterial medial calcification in uremic mice: role of serum phosphorus, fibroblast growth factor-23 and osteopontin. Kidney Int. 75, 1297–1307 (2009).

    Google Scholar 

  78. Johnson, K., Polewski, M., van Etten, D. & Terkeltaub, R. Chondrogenesis mediated by PPi depletion promotes spontaneous aortic calcification in NPP1−/− mice. Arterioscler. Thromb. Vasc. Biol. 25, 686–691 (2005).

    CAS  PubMed  Google Scholar 

  79. Rutsch, F. et al. Hypophosphatemia, hyperphosphaturia, and bisphosphonate treatment are associated with survival beyond infancy in generalized arterial calcification of infancy. Circ. Cardiovasc. Genet. 1, 133–140 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kaplan, F. S., Pignolo, R. J. & Shore, E. M. The FOP metamorphogene encodes a novel type I receptor that dysregulates BMP signaling. Cytokine Growth Factor Rev. 20, 399–407 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hegyi, L. et al. Stromal cells of fibrodysplasia ossificans progressiva lesions express smooth muscle lineage markers and the osteogenic transcription factor Runx2/Cbfa-1: clues to a vascular origin of heterotopic ossification? J. Pathol. 201, 141–148 (2003).

    CAS  PubMed  Google Scholar 

  82. Awan, Z. et al. Vascular calcifications in homozygote familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 28, 777–785 (2008).

    CAS  PubMed  Google Scholar 

  83. Sage, A., Tintut, Y., Garfinkel, A. & Demer, L. Systems biology of vascular calcification. Trends Cardiovasc. Med. 19, 118–123 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Li, X., Yang, H. Y. & Giachelli, C. M. BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells. Atherosclerosis 199, 271–277 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zebboudj, A. F., Imura, M. & Bostrom, K. Matrix GLA protein, a regulatory protein for bone morphogenetic protein-2. J. Biol. Chem. 277, 4388–4394 (2002).

    CAS  PubMed  Google Scholar 

  86. Panizo, S. et al. RANKL increases vascular smooth muscle cell calcification through a RANK-BMP4-dependent pathway. Circ. Res. 104, 1041–1048 (2009).

    CAS  PubMed  Google Scholar 

  87. Mathew, S., Davies, M., Lund, R., Saab, G. & Hruska, K. A. Function and effect of bone morphogenetic protein-7 in kidney bone and the bone-vascular links in chronic kidney disease. Eur. J. Clin. Invest. 36 (Suppl. 2), 43–50 (2006).

    CAS  PubMed  Google Scholar 

  88. O'Donnell, C. J. et al. Matrix Gla protein is associated with risk factors for atherosclerosis but not with coronary artery calcification. Arterioscler. Thromb. Vasc. Biol. 26, 2769–2774 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bostrom, K., Tsao, D., Shen, S., Wang, Y. & Demer, L. L. Matrix GLA protein modulates differentiation induced by bone morphogenetic protein-2 in C3H10T1/2 cells. J. Biol. Chem. 276, 14044–14052 (2001).

    CAS  PubMed  Google Scholar 

  90. Yao, Y., Watson, A. D., Ji, S. & Bostrom, K. I. Heat shock protein 70 enhances vascular bone morphogenetic protein-4 signaling by binding matrix Gla protein. Circ. Res. 105, 575–584 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Schurgers, L. J. et al. Post-translational modifications regulate matrix Gla protein function: importance for inhibition of vascular smooth muscle cell calcification. J. Thromb. Haemost. 5, 2503–2511 (2007).

    CAS  PubMed  Google Scholar 

  92. Bucay, N. et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 12, 1260–1268 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Rattazzi, M. et al. Calcification of advanced atherosclerotic lesions in the innominate arteries of ApoE-deficient mice: potential role of chondrocyte-like cells. Arterioscler. Thromb. Vasc. Biol. 25, 1420–1425 (2005).

    CAS  PubMed  Google Scholar 

  94. Kiechl, S. et al. Soluble receptor activator of nuclear factor-kappa B ligand and risk for cardiovascular disease. Circulation 116, 385–391 (2007).

    CAS  PubMed  Google Scholar 

  95. Jeziorska, M., McCollum, C. & Wooley, D. E. Observations on bone formation and remodelling in advanced atherosclerotic lesions of human carotid arteries. Virchows Arch. 433, 559–565 (1998).

    CAS  PubMed  Google Scholar 

  96. Takaoka, M. et al. Periadventitial adipose tissue plays a critical role in vascular remodeling. Circ. Res. 105, 906–911 (2009).

    CAS  PubMed  Google Scholar 

  97. Tieu, B. C. et al. An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice. J. Clin. Invest. 119, 3637–3651 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Shroff, R. C. et al. Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis. Circulation 118, 1748–1757 (2008).

    CAS  PubMed  Google Scholar 

  99. Al-Aly, Z. et al. Aortic Msx2-Wnt calcification cascade is regulated by TNF-alpha-dependent signals in diabetic Ldlr−/− mice. Arterioscler. Thromb. Vasc. Biol. 27, 2589–2596 (2007).

    CAS  PubMed  Google Scholar 

  100. Hruska, K. A., Saab, G., Mathew, S. & Lund, R. Renal osteodystrophy, phosphate homeostasis, and vascular calcification. Semin. Dial. 20, 309–315 (2007).

    PubMed  Google Scholar 

  101. Son, B. K. et al. Adiponectin antagonizes stimulatory effect of tumor necrosis factor-alpha on vascular smooth muscle cell calcification: regulation of growth arrest-specific gene 6-mediated survival pathway by adenosine 5′-monophosphate-activated protein kinase. Endocrinology 149, 1646–1653 (2008).

    CAS  PubMed  Google Scholar 

  102. Lee, H. L., Woo, K. M., Ryoo, H. M. & Baek, J. H. Tumor necrosis factor-alpha increases alkaline phosphatase expression in vascular smooth muscle cells via MSX2 induction. Biochem. Biophys. Res. Commun. 391, 1087–1092 (2010).

    CAS  PubMed  Google Scholar 

  103. Collett, G. et al. Receptor tyrosine kinase Axl modulates the osteogenic differentiation of pericytes. Circ. Res. 92, 1123–1129 (2003).

    CAS  PubMed  Google Scholar 

  104. Collett, G. D. et al. Axl/phosphatidylinositol 3-kinase signaling inhibits mineral deposition by vascular smooth muscle cells. Circ. Res. 100, 502–509 (2007).

    CAS  PubMed  Google Scholar 

  105. Son, B. K. et al. Gas6/Axl-PI3K/Akt pathway plays a central role in the effect of statins on inorganic phosphate-induced calcification of vascular smooth muscle cells. Eur. J. Pharmacol. 556, 1–8 (2007).

    CAS  PubMed  Google Scholar 

  106. Son, B. K. et al. Statins protect human aortic smooth muscle cells from inorganic phosphate-induced calcification by restoring Gas6-Axl survival pathway. Circ. Res. 98, 1024–1031 (2006).

    CAS  PubMed  Google Scholar 

  107. Son, B. K. et al. Androgen receptor-dependent transactivation of growth arrest-specific gene 6 mediates inhibitory effects of testosterone on vascular calcification. J Biol. Chem. 285, 7537–7544 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Heiss, A. et al. Hierarchical role of fetuin-A and acidic serum proteins in the formation and stabilization of calcium phosphate particles. J. Biol. Chem. 283, 14815–14825 (2008).

    CAS  PubMed  Google Scholar 

  109. Reynolds, J. L. et al. Multifunctional roles for serum protein fetuin-a in inhibition of human vascular smooth muscle cell calcification. J. Am. Soc. Nephrol. 16, 2920–2930 (2005).

    CAS  PubMed  Google Scholar 

  110. Holt, C., Sorensen, E. S. & Clegg, R. A. Role of calcium phosphate nanoclusters in the control of calcification. FEBS J. 276, 2308–2323 (2009).

    CAS  PubMed  Google Scholar 

  111. Chen, N. X. et al. Fetuin-A uptake in bovine vascular smooth muscle cells is calcium dependent and mediated by annexins. Am. J. Physiol. Renal Physiol. 292, F599–F606 (2007).

    CAS  PubMed  Google Scholar 

  112. Ketteler, M. et al. Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study. Lancet 361, 827–833 (2003).

    CAS  PubMed  Google Scholar 

  113. Nadra, I. et al. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification? Circ. Res. 96, 1248–1256 (2005).

    CAS  PubMed  Google Scholar 

  114. Major, M. L., Cheung, H. S. & Misra, R. P. Basic calcium phosphate crystals activate c-fos expression through a Ras/ERK dependent signaling mechanism. Biochem. Biophys. Res. Commun. 355, 654–660 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Mody, N., Parhami, F., Sarafian, T. A. & Demer, L. L. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic. Biol. Med. 31, 509–519 (2001).

    CAS  PubMed  Google Scholar 

  116. Liberman, M. et al. Oxidant generation predominates around calcifying foci and enhances progression of aortic valve calcification. Arterioscler. Thromb. Vasc. Biol. 28, 463–470 (2008).

    CAS  PubMed  Google Scholar 

  117. Bear, M., Butcher, M. & Shaughnessy, S. G. Oxidized low-density lipoprotein acts synergistically with beta-glycerophosphate to induce osteoblast differentiation in primary cultures of vascular smooth muscle cells. J. Cell. Biochem. 105, 185–193 (2008).

    CAS  PubMed  Google Scholar 

  118. Proudfoot, D., Davies, J. D., Skepper, J. N., Weissberg, P. L. & Shanahan, C. M. Acetylated low-density lipoprotein stimulates human vascular smooth muscle cell calcification by promoting osteoblastic differentiation and inhibiting phagocytosis. Circulation 106, 3044–3050 (2002).

    CAS  PubMed  Google Scholar 

  119. Radcliff, K. et al. Insulin-like growth factor-I regulates proliferation and osteoblastic differentiation of calcifying vascular cells via extracellular signal-regulated protein kinase and phosphatidylinositol 3-kinase pathways. Circ. Res. 96, 398–400 (2005).

    CAS  PubMed  Google Scholar 

  120. Li, X., Yang, H. Y. & Giachelli, C. M. Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification. Circ. Res. 98, 905–912 (2006).

    CAS  PubMed  Google Scholar 

  121. Mathew, S. et al. The mechanism of phosphorus as a cardiovascular risk factor in CKD. J. Am. Soc. Nephrol. 19, 1092–1105 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kerr, J. B. in Atlas of Functional Histology (ed. Crowe, L.) 302 (Mosby International United, London, 1999).

    Google Scholar 

  123. Memon, F. et al. Does Fgf23-klotho activity influence vascular and soft tissue calcification through regulating mineral ion metabolism? Kidney Int. 74, 566–570 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Price, P. A., June, H. H., Buckley, J. R. & Williamson, M. K. Osteoprotegerin inhibits artery calcification induced by warfarin and by vitamin D. Arterioscler. Thromb. Vasc. Biol. 21, 1610–1616 (2001).

    CAS  PubMed  Google Scholar 

  125. Wang, T. J. et al. Vitamin D deficiency and risk of cardiovascular disease. Circulation 117, 503–511 (2008).

    CAS  PubMed  Google Scholar 

  126. Chen, N. X., Duan, D., O'Neill, K. D. & Moe, S. M. High glucose increases the expression of Cbfa1 and BMP-2 and enhances the calcification of vascular smooth muscle cells. Nephrol. Dial. Transplant. 21, 3435–3442 (2006).

    CAS  PubMed  Google Scholar 

  127. Wang, C. C., Sorribas, V., Sharma, G., Levi, M. & Draznin, B. Insulin attenuates vascular smooth muscle calcification but increases vascular smooth muscle cell phosphate transport. Atherosclerosis 195, e65–e75 (2007).

    CAS  PubMed  Google Scholar 

  128. Luo, X. H. et al. Development of arterial calcification in adiponectin-deficient mice: adiponectin regulates arterial calcification. J. Bone Miner. Res. 24, 1461–1468 (2009).

    CAS  PubMed  Google Scholar 

  129. Parhami, F., Tintut, Y., Ballard, A., Fogelman, A. M. & Demer, L. L. Leptin enhances the calcification of vascular cells: artery wall as a target of leptin. Circ. Res. 88, 954–960 (2001).

    CAS  PubMed  Google Scholar 

  130. Zeadin, M. et al. Effect of leptin on vascular calcification in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 29, 2069–2075 (2009).

    CAS  PubMed  Google Scholar 

  131. London, G. M., Marchais, S. J., Guerin, A. P. & Metivier, F. Arteriosclerosis, vascular calcifications and cardiovascular disease in uremia. Curr. Opin. Nephrol. Hypertens. 14, 525–531 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NIH (grants DK081346 to Y. Tintut and HL081202 to L. L. Demer) and AHA (grant 0825033F to A. P. Sage). Figure of chondro-osseous metaplasia was kindly provided by Jian-Hua Qiao, Department of Pathology, California Hospital Medical Center, Los Angeles, CA, USA. Figure of neointimal amorphous calcification was kindly provided by Michael Fishbein, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA.

Author information

Authors and Affiliations

Authors

Contributions

A. P. Sage, Y. Tintut and L. L. Demer contributed to discussion of content for the article, researched data to include in the manuscript, reviewed and edited the manuscript before submission, and revised the manuscript in response to the peer-reviewers' comments.

Corresponding author

Correspondence to Linda L. Demer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sage, A., Tintut, Y. & Demer, L. Regulatory mechanisms in vascular calcification. Nat Rev Cardiol 7, 528–536 (2010). https://doi.org/10.1038/nrcardio.2010.115

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing