Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The nuclear envelope environment and its cancer connections

Key Points

  • Nuclear morphology is often altered in cancer. Irregularity in nuclear contours is a feature used by pathologists in diagnostic cytology.

  • The nuclear envelope provides a specialized microenvironment within the nucleus. It is also the site where a series of protein–protein interactions take place to connect the cytoskeleton to the interior of the nucleus.

  • Constituents of the nuclear envelope — lamins, nuclear pore complexes and lipid membranes — have key roles in several processes that affect tumour cell biology and response to therapy.

  • Changes in the abundance or the function of components of the nuclear envelope in tumour cells can cause the occurrence of dysmorphic nuclei and can deregulate cell migration, intracellular signalling, DNA repair, cell division and gene expression.

  • Tracking the abundance of molecular components of the nuclear envelope environment and enhanced methods to visualize changes at the nuclear envelope could potentially be used for the prognostic assessment of cancer patients.

Abstract

Because of the association between aberrant nuclear structure and tumour grade, nuclear morphology is an indispensible criterion in the current pathological assessment of cancer. Components of the nuclear envelope environment have central roles in many aspects of cell function that affect tumour development and progression. As the roles of the nuclear envelope components, including nuclear pore complexes and nuclear lamina, are being deciphered in molecular detail there are opportunities to harness this knowledge for cancer therapeutics and biomarker development. In this Review, we summarize the progress that has been made in our understanding of the nuclear envelope and the implications of changes in this environment for cancer biology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphological changes at the nuclear envelope associated with cancer.
Figure 2: The nuclear envelope and factors that affect nuclear morphology.
Figure 3: Roles of the nuclear envelope subject to deregulation concomitant with changes in nuclear morphology.

Similar content being viewed by others

References

  1. Dey, P. Cancer nucleus: morphology and beyond. Diagn. Cytopathol. 38, 382–390 (2010).

    PubMed  Google Scholar 

  2. True, L. D. & Jordan, C. D. The cancer nuclear microenvironment: interface between light microscopic cytology and molecular phenotype. J. Cell. Biochem. 104, 1994–2003 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Wilson, K. L. & Berk, J. M. The nuclear envelope at a glance. J. Cell. Sci. 123, 1973–1978 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wente, S. R. & Rout, M. P. The nuclear pore complex and nuclear transport. Cold Spring Harb. Perspect. Biol. 2, a000562 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chatel, G. & Fahrenkrog, B. Nucleoporins: Leaving the nuclear pore complex for a successful mitosis. Cell Signal 13 Jun 2011 (doi:10.1016/j.cellsig.2011.05.023).

  6. Dauer, W. T. & Worman, H. J. The nuclear envelope as a signaling node in development and disease. Dev. Cell 17, 626–638 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Friedl, P., Wolf, K. & Lammerding, J. Nuclear mechanics during cell migration. Curr. Opin. Cell Biol. 23, 55–64 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Olins, A. L. et al. The LINC-less granulocyte nucleus. Eur. J. Cell Biol. 88, 203–214 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Méjat, A. & Misteli, T. LINC complexes in health and disease. Nucleus 1, 40–52 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Starr, D. A. & Fridolfsson, H. N. Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. Annu. Rev. Cell Dev. Biol. 26, 421–444 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Khatau, S. B. et al. A perinuclear actin cap regulates nuclear shape. Proc. Natl Acad. Sci. USA 106, 19017–19022 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Luxton, G. W. G., Gomes, E. R., Folker, E. S., Vintinner, E. & Gundersen, G. G. Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329, 956–959 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Capo-chichi, C. D., Cai, K. Q., Testa, J. R., Godwin, A. K. & Xu, X.-X. Loss of GATA6 leads to nuclear deformation and aneuploidy in ovarian cancer. Mol. Cell. Biol. 29, 4766–4777 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Butcher, D. T., Alliston, T. & Weaver, V. M. A tense situation: forcing tumour progression. Nature Rev. Cancer 9, 108–122 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Lombardi, M. L. et al. The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J. Biol. Chem. 286, 26743–26753 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Willis, N. D. et al. Lamin A/C is a risk biomarker in colorectal cancer. PLoS ONE 3, e2988 (2008). The authors found that lamin A expression in colorectal cancer tissue is predictive of poor prognosis, and uncovered a role of lamin A in enhancing cell motility and invasiveness.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhou, L. & Panté, N. The nucleoporin Nup153 maintains nuclear envelope architecture and is required for cell migration in tumor cells. FEBS Lett. 584, 3013–3020 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Joseph, J. & Dasso, M. The nucleoporin Nup358 associates with and regulates interphase microtubules. FEBS Lett. 582, 190–196 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Murawala, P., Tripathi, M. M., Vyas, P., Salunke, A. & Joseph, J. Nup358 interacts with APC and plays a role in cell polarization. J. Cell. Sci. 122, 3113–3122 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Collin, L., Schlessinger, K. & Hall, A. APC nuclear membrane association and microtubule polarity. Biol. Cell 100, 243–252 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Hubert, T., Vandekerckhove, J. & Gettemans, J. Exo70-mediated recruitment of nucleoporin Nup62 at the leading edge of migrating cells is required for cell migration. Traffic 10, 1257–1271 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Gloerich, M. et al. The nucleoporin RanBP2 tethers the cAMP effector Epac1 and inhibits its catalytic activity. J. Cell Biol. 193, 1009–1020 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, C. et al. The interaction of Epac1 and Ran promotes Rap1 activation at the nuclear envelope. Mol. Cell. Biol. 30, 3956–3969 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Susaki, E. & Nakayama, K. I. Multiple mechanisms for p27(Kip1) translocation and degradation. Cell Cycle 6, 3015–3020 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Gavet, O. & Pines, J. Activation of cyclin B1-Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. J. Cell Biol. 189, 247–259 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chakraborty, P. et al. Nucleoporin levels regulate cell cycle progression and phase-specific gene expression. Dev. Cell 15, 657–667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Palancade, B. & Doye, V. Sumoylating and desumoylating enzymes at nuclear pores: underpinning their unexpected duties? Trends Cell Biol. 18, 174–183 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Xu, Y. et al. SUMO-specific protease 1 regulates the in vitro and in vivo growth of colon cancer cells with the upregulated expression of CDK inhibitors. Cancer Lett. 309, 78–84 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Dorner, D., Gotzmann, J. & Foisner, R. Nucleoplasmic lamins and their interaction partners, LAP2α, Rb, and BAF, in transcriptional regulation. FEBS J. 274, 1362–1373 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Burke, B. & Ellenberg, J. Remodelling the walls of the nucleus. Nature Rev. Mol. Cell Biol. 3, 487–497 (2002).

    Article  CAS  Google Scholar 

  31. Mackay, D. R., Makise, M. & Ullman, K. S. Defects in nuclear pore assembly lead to activation of an Aurora B-mediated abscission checkpoint. J. Cell Biol. 191, 923–931 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dar, A. A., Goff, L. W., Majid, S., Berlin, J. & El-Rifai, W. Aurora kinase inhibitors - rising stars in cancer therapeutics? Mol.Cancer Ther. 9, 268–278 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Verstraeten, V. L. R. M. et al. Protein farnesylation inhibitors cause donut-shaped cell nuclei attributable to a centrosome separation defect. Proc. Natl Acad. Sci. USA 108, 4997–5002 (2011). This study reports how a striking nuclear phenotype that results from inhibition of FNT is tied to the disruption of centrosome separation and a role for lamin B1, pointing to a novel mechanism that contributes to downstream consequences of this class of chemotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sebti, S. M. & Der, C. J. Opinion: Searching for the elusive targets of farnesyltransferase inhibitors. Nature Rev. Cancer 3, 945–951 (2003).

    Article  CAS  Google Scholar 

  35. Bolhy, S. et al. A Nup133-dependent NPC-anchored network tethers centrosomes to the nuclear envelope in prophase. J. Cell Biol. 192, 855–871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Splinter, D. et al. Bicaudal D2, dynein, and kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry. PLoS Biol. 8, e1000350 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Silkworth, W. T., Nardi, I. K., Paul, R., Mogilner, A. & Cimini, D. Timing of centrosome separation is important for accurate chromosome segregation. Mol. Biol. Cell 30 Nov 2011 (doi:10.1091/mbc.E11-02-0095). The authors observe that when centrosomes do not fully separate prior to nuclear envelope breakdown, there is a greater likelihood of defective kinetochore attachment to mitotic spindles and aberrant chromosome segregation.

  38. Dawlaty, M. M. et al. Resolution of sister centromeres requires RanBP2-mediated SUMOylation of topoisomerase IIα. Cell 133, 103–115 (2008). This study reports a tumour-suppressive function of NUP358 that is attributed to the regulation of topoisomerase IIα sumoylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, X.-D. et al. SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis. Mol. Cell 29, 729–741 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Klein, U. R., Haindl, M., Nigg, E. A. & Muller, S. RanBP2 and SENP3 function in a mitotic SUMO2/3 conjugation-deconjugation cycle on Borealin. Mol. Biol. Cell 20, 410–418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ban, R., Nishida, T. & Urano, T. Mitotic kinase Aurora-B is regulated by SUMO-2/3 conjugation/deconjugation during mitosis. Genes Cells 16, 652–669 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Hang, J. & Dasso, M. Association of the human SUMO-1 protease SENP2 with the nuclear pore. J. Biol. Chem. 277, 19961–19966 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Ryu, H., Furuta, M., Kirkpatrick, D., Gygi, S. P. & Azuma, Y. PIASy-dependent SUMOylation regulates DNA topoisomerase IIα activity. J. Cell Biol. 191, 783–794 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gardner, L., Malik, R., Shamizu, Y., Mullins, N. & Elshamy, W. M. Geminin overexpression prevents the completion of topoisomerase IIα chromosome decatenation leading to aneuploidy in human mammary epithelial cells. Breast Cancer Res. 13, R53 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jacques, C. et al. Two-step differential expression analysis reveals a new set of genes involved in thyroid oncocytic tumors. J. Clin. Endocrinol. Metab. 90, 2314–2320 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Cheng, J., Bawa, T., Lee, P., Gong, L. & Yeh, E. T. H. Role of desumoylation in the development of prostate cancer. Neoplasia 8, 667–676 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gómez-Baldó, L. et al. TACC3-TSC2 maintains nuclear envelope structure and controls cell division. Cell Cycle 9, 1143–1155 (2010).

    Article  PubMed  Google Scholar 

  48. Lee, S. H., Sterling, H., Burlingame, A. & McCormick, F. Tpr directly binds to Mad1 and Mad2 and is important for the Mad1-Mad2-mediated mitotic spindle checkpoint. Genes Dev. 22, 2926–2931 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schvartzman, J.-M., Sotillo, R. & Benezra, R. Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nature Rev. Cancer 10, 102–115 (2010).

    Article  CAS  Google Scholar 

  50. Cross, M. K. & Powers, M. A. Nup98 regulates bipolar spindle assembly through association with microtubules and opposition of MCAK. Mol. Biol. Cell 22, 661–672 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu, S. & Powers, M. A. Nuclear pore proteins and cancer. Semin. Cell Dev. Biol. 20, 620–630 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jeganathan, K. B., Baker, D. J. & van Deursen, J. M. Securin associates with APCCdh1 in prometaphase but its destruction is delayed by Rae1 and Nup98 until the metaphase/anaphase transition. Cell Cycle 5, 366–370 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Jeganathan, K. B., Malureanu, L. & van Deursen, J. M. The Rae1-Nup98 complex prevents aneuploidy by inhibiting securin degradation. Nature 438, 1036–1039 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Tsai, M.-Y. et al. A mitotic lamin B matrix induced by RanGTP required for spindle assembly. Science 311, 1887–1893 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Civelekoglu-Scholey, G., Tao, L., Brust-Mascher, I., Wollman, R. & Scholey, J. M. Prometaphase spindle maintenance by an antagonistic motor-dependent force balance made robust by a disassembling lamin-B envelope. J. Cell Biol. 188, 49–68 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Korfali, N. et al. A flow cytometry-based screen of nuclear envelope transmembrane proteins identifies NET4/Tmem53 as involved in stress-dependent cell cycle withdrawal. PLoS ONE 6, e18762 (2011). The results in this paper highlight the importance of the nuclear envelope as a source for cell cycle regulatory proteins, many of which have not yet been characterized.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Draviam, V. M. et al. A functional genomic screen identifies a role for TAO1 kinase in spindle-checkpoint signalling. Nat. Cell Biol. 9, 556–564 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Ruault, M., Dubarry, M. & Taddei, A. Re-positioning genes to the nuclear envelope in mammalian cells: impact on transcription. Trends Genet. 24, 574–581 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Batrakou, D. G., Kerr, A. R. W. & Schirmer, E. C. Comparative proteomic analyses of the nuclear envelope and pore complex suggests a wide range of heretofore unexpected functions. J. Proteomics 72, 56–70 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Andrés, V. & González, J. M. Role of A-type lamins in signaling, transcription, and chromatin organization. J. Cell Biol. 187, 945–957 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Malhas, A., Saunders, N. J. & Vaux, D. J. The nuclear envelope can control gene expression and cell cycle progression via miRNA regulation. Cell Cycle 9, 531–539 (2010). This study underscores the effect of the nuclear lamina on regulating genes with key roles in cancer, including miRNAs.

    Article  CAS  PubMed  Google Scholar 

  62. Bandrés, E. et al. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol. Cancer 5, 29 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Valastyan, S., Chang, A., Benaich, N., Reinhardt, F. & Weinberg, R. A. Activation of miR-31 function in already-established metastases elicits metastatic regression. Genes Dev. 25, 646–659 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Valastyan, S. et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137, 1032–1046 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xu, L., Kang, Y., Cöl, S. & Massagué, J. Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFβ signaling complexes in the cytoplasm and nucleus. Mol. Cell 10, 271–282 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Xylourgidis, N., Roth, P., Sabri, N., Tsarouhas, V. & Samakovlis, C. The nucleoporin Nup214 sequesters CRM1 at the nuclear rim and modulates NFkappaB activation in Drosophila. J. Cell. Sci. 119, 4409–4419 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Takahashi, N. et al. Tumor marker nucleoporin 88 kDa regulates nucleocytoplasmic transport of NF-kappaB. Biochem. Biophys. Res. Commun. 374, 424–430 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Capelson, M. et al. Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 140, 372–383 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vaquerizas, J. M. et al. Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome. PLoS Genet. 6, e1000846 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Kalverda, B., Pickersgill, H., Shloma, V. V. & Fornerod, M. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140, 360–371 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Brown, C. R., Kennedy, C. J., Delmar, V. A., Forbes, D. J. & Silver, P. A. Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes Dev. 22, 627–639 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kehat, I., Accornero, F., Aronow, B. J. & Molkentin, J. D. Modulation of chromatin position and gene expression by HDAC4 interaction with nucleoporins. J. Cell Biol. 193, 21–29 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dickinson, M., Johnstone, R. W. & Prince, H. M. Histone deacetylase inhibitors: potential targets responsible for their anti-cancer effect. Invest. New Drugs 28 (Suppl. 1), 3–20 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  74. Arib, G. & Akhtar, A. Multiple facets of nuclear periphery in gene expression control. Curr. Opin. Cell Biol. 23, 346–353 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Kind, J. & van Steensel, B. Genome-nuclear lamina interactions and gene regulation. Curr. Opin. Cell Biol. 22, 320–325 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Shimi, T. et al. The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev. 22, 3409–3421 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mewborn, S. K. et al. Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation. PLoS ONE 5, e14342 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ottaviani, A., Schluth-Bolard, C., Gilson, E. & Magdinier, F. D4Z4 as a prototype of CTCF and lamins-dependent insulator in human cells. Nucleus 1, 30–36 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kalverda, B. & Fornerod, M. Characterization of genome-nucleoporin interactions in Drosophila links chromatin insulators to the nuclear pore complex. Cell Cycle 9, 4812–4817 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Helfand, B. T. et al. Chromosomal regions associated with prostate cancer risk localize to lamin B deficient microdomains and exhibit reduced gene transcription. J. Pathol. 25 Oct 2011 (doi:10.1002/path.3033). The authors track the distribution of lamin proteins in prostate cancer and find that the frequency of nuclear blebs deficient in B-type lamins corresponds to the severity of Gleason grade.

  81. Prokocimer, M. et al. Nuclear lamins: key regulators of nuclear structure and activities. J. Cell. Mol. Med. 13, 1059–1085 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Maraldi, N. M., Capanni, C., Cenni, V., Fini, M. & Lattanzi, G. Laminopathies and lamin-associated signaling pathways. J. Cell. Biochem. 112, 979–992 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Neumann, S. et al. Nesprin-2 interacts with α-catenin and regulates Wnt signaling at the nuclear envelope. J. Biol. Chem. 285, 34932–34938 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Markiewicz, E. et al. The inner nuclear membrane protein emerin regulates beta-catenin activity by restricting its accumulation in the nucleus. EMBO J. 25, 3275–3285 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hernandez, L. et al. Functional coupling between the extracellular matrix and nuclear lamina by Wnt signaling in progeria. Dev. Cell 19, 413–425 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shitashige, M. et al. Regulation of Wnt signaling by the nuclear pore complex. Gastroenterology 134, 1961–1971 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Carmo-fonseca, M. Testosterone-induced changes in nuclear pore complex number of prostatic nuclei from castrated rats. J. Ultrastruct. Res. 80, 243–251 (1982).

    Article  CAS  PubMed  Google Scholar 

  88. Ortiz, H. E. & Cavicchia, J. C. Androgen-induced changes in nuclear pore number and in tight junctions in rat seminal vesicle epithelium. Anat. Rec. 226, 129–134 (1990).

    Article  CAS  PubMed  Google Scholar 

  89. Maul, G. G. et al. Time sequence of nuclear pore formation in phytohemagglutinin-stimulated lymphocytes and in HeLa cells during the cell cycle. J. Cell Biol. 55, 433–447 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Maeshima, K. et al. Nuclear pore formation but not nuclear growth is governed by cyclin-dependent kinases (Cdks) during interphase. Nature Struct. Mol. Biol. 17, 1065–1071 (2010).

    Article  CAS  Google Scholar 

  91. Richard, M. N., Deniset, J. F., Kneesh, A. L., Blackwood, D. & Pierce, G. N. Mechanical stretching stimulates smooth muscle cell growth, nuclear protein import, and nuclear pore expression through mitogen-activated protein kinase activation. J. Biol. Chem. 282, 23081–23088 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Kosako, H. et al. Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport. Nature Struct. Mol. Biol. 16, 1026–1035 (2009).

    Article  CAS  Google Scholar 

  93. Vomastek, T. et al. Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction. Mol. Cell. Biol. 28, 6954–6966 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Whitehurst, A. W. et al. ERK2 enters the nucleus by a carrier-independent mechanism. Proc. Natl Acad. Sci. USA 99, 7496–7501 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yazicioglu, M. N. et al. Mutations in ERK2 binding sites affect nuclear entry. J. Biol. Chem. 282, 28759–28767 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Smith, E. R. et al. Nuclear entry of activated MAPK is restricted in primary ovarian and mammary epithelial cells. PLoS ONE 5, e9295 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Huber, M. D., Guan, T. & Gerace, L. Overlapping functions of nuclear envelope proteins NET25 (Lem2) and emerin in regulation of extracellular signal-regulated kinase signaling in myoblast differentiation. Mol. Cell. Biol. 29, 5718–5728 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wittmann, M. et al. Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling. J. Neurosci. 29, 14687–14700 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rodríguez, J. et al. ERK1/2 MAP kinases promote cell cycle entry by rapid, kinase-independent disruption of retinoblastoma-lamin A complexes. J. Cell Biol. 191, 967–979 (2010). This study reports that ERK1–ERK2 can displace RB from lamin A, independently of ERK1–ERK2 kinase activity, to promote cell cycle entry.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Collado-Hilly, M., Shirvani, H., Jaillard, D. & Mauger, J.-P. Differential redistribution of Ca2+-handling proteins during polarisation of MDCK cells: Effects on Ca2+ signalling. Cell Calcium 48, 215–224 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Parkash, J. & Asotra, K. Calcium wave signaling in cancer cells. Life Sci. 87, 587–595 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gonzalez-Suarez, I. & Gonzalo, S. Nurturing the genome: A-type lamins preserve genomic stability. Nucleus 1, 129–135 (2010).

    PubMed  Google Scholar 

  103. Manju, K., Muralikrishna, B. & Parnaik, V. K. Expression of disease-causing lamin A mutants impairs the formation of DNA repair foci. J. Cell. Sci. 119, 2704–2714 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Redwood, A. B. et al. A dual role for A-type lamins in DNA double-strand break repair. Cell Cycle 10, 2549–2560 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Johnson, B. R. et al. A-type lamins regulate retinoblastoma protein function by promoting subnuclear localization and preventing proteasomal degradation. Proc. Natl Acad. Sci. USA 101, 9677–9682 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nitta, R. T., Jameson, S. A., Kudlow, B. A., Conlan, L. A. & Kennedy, B. K. Stabilization of the retinoblastoma protein by A-type nuclear lamins is required for INK4A-mediated cell cycle arrest. Mol. Cell. Biol. 26, 5360–5372 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Han, X. et al. Tethering by lamin A stabilizes and targets the ING1 tumour suppressor. Nat. Cell Biol. 10, 1333–1340 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Gonzalez-Suarez, I. et al. Novel roles for A-type lamins in telomere biology and the DNA damage response pathway. EMBO J. 28, 2414–2427 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nagai, S. et al. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 322, 597–602 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Smolka, M. B., Albuquerque, C. P., Chen, S-hong & Zhou, H. Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc. Natl Acad. Sci. USA 104, 10364–10369 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Davuluri, G. et al. Mutation of the zebrafish nucleoporin elys sensitizes tissue progenitors to replication stress. PLoS Genet. 4, e1000240 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Gao, N. et al. The nuclear pore complex protein Elys is required for genome stability in mouse intestinal epithelial progenitor cells. Gastroenterology 140, 1547–1555 (2011). This paper shows that removal of the mammalian nucleoporin ELYS from the developing intestinal epithelium results in activation of a DNA damage response without noticeably affecting the presence of nuclear pores.

    Article  CAS  PubMed  Google Scholar 

  113. Saitoh, H., Pizzi, M. D. & Wang, J. Perturbation of SUMOlation enzyme Ubc9 by distinct domain within nucleoporin RanBP2/Nup358. J. Biol. Chem. 277, 4755–4763 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Moudry, P. et al. Nucleoporin NUP153 guards genome integrity by promoting nuclear import of 53BP1. Cell Death Differ. 11 Nov 2011 (doi: 10.1038/cdd.2011.150). This study reports the results of a screen that involved knocking down expression of more than 1,000 genes to identify factors required for 53BP1 recruitment to ionizing radiation-induced DNA damage foci.

  115. Kinoshita, Y., Kalir, T., Rahaman, J., Dottino, P. & Kohtz, D. S. Alterations in nuclear pore architecture allow cancer cell entry into or exit from drug-resistant dormancy. Am. J. Pathol. 180, 375–389 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Allsopp, R. C. et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl Acad. Sci. USA 89, 10114–10118 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Huang, S., Risques, R. A., Martin, G. M., Rabinovitch, P. S. & Oshima, J. Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A. Exp. Cell Res. 314, 82–91 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Raz, V. et al. The nuclear lamina promotes telomere aggregation and centromere peripheral localization during senescence of human mesenchymal stem cells. J. Cell. Sci. 121, 4018–4028 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Dechat, T. et al. LAP2α and BAF transiently localize to telomeres and specific regions on chromatin during nuclear assembly. J. Cell. Sci. 117, 6117–6128 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Lisby, M., Teixeira, T., Gilson, E. & Géli, V. The fate of irreparable DNA double-strand breaks and eroded telomeres at the nuclear periphery. Nucleus 1, 158–161 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ferreira, H. C. et al. The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in budding yeast. Nat. Cell Biol. 13, 867–874 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Broers, J. L. et al. Nuclear A-type lamins are differentially expressed in human lung cancer subtypes. Am. J. Pathol. 143, 211–220 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Moss, S. F. et al. Decreased and aberrant nuclear lamin expression in gastrointestinal tract neoplasms. Gut 45, 723–729 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Capo-chichi, C. D. et al. Nuclear envelope structural defects cause chromosomal numerical instability and aneuploidy in ovarian cancer. BMC Med. 9, 28 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Somech, R. et al. Enhanced expression of the nuclear envelope LAP2 transcriptional repressors in normal and malignant activated lymphocytes. Ann. Hematol. 86, 393–401 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Schneider, J. et al. Cross-reactivity between Candida albicans and human ovarian carcinoma as revealed by monoclonal antibodies PA10F and C6. Br. J. Cancer 77, 1015–1020 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Martínez, N., Alonso, A., Moragues, M. D., Pontón, J. & Schneider, J. The nuclear pore complex protein Nup88 is overexpressed in tumor cells. Cancer Res. 59, 5408–5411 (1999).

    PubMed  Google Scholar 

  128. Gould, V. E. et al. Nup88 (karyoporin) in human malignant neoplasms and dysplasias: correlations of immunostaining of tissue sections, cytologic smears, and immunoblot analysis. Hum. Pathol. 33, 536–544 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Agudo, D. et al. Nup88 mRNA overexpression is associated with high aggressiveness of breast cancer. Int. J. Cancer 109, 717–720 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Knoess, M. et al. Nucleoporin 88 expression in hepatitis B and C virus-related liver diseases. World J. Gastroenterol. 12, 5870–5874 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhang, Z.-Y. et al. Nup88 expression in normal mucosa, adenoma, primary adenocarcinoma and lymph node metastasis in the colorectum. Tumour Biol. 28, 93–99 (2007).

    Article  PubMed  CAS  Google Scholar 

  132. Brustmann, H. & Hager, M. Nucleoporin 88 expression in normal and neoplastic squamous epithelia of the uterine cervix. Ann. Diagn. Pathol. 13, 303–307 (2009).

    Article  PubMed  Google Scholar 

  133. Schneider, J., Martínez-Arribas, F. & Torrejón, R. Nup88 expression is associated with myometrial invasion in endometrial carcinoma. Int. J. Gynecol. Cancer 20, 804–808 (2010).

    Article  PubMed  Google Scholar 

  134. Hernández, P. et al. Integrative analysis of a cancer somatic mutome. Mol. Cancer 6, 13 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Alfonso, P., Cañamero, M., Fernández-Carbonié, F., Núñez, A. & Casal, J. I. Proteome analysis of membrane fractions in colorectal carcinomas by using 2D-DIGE saturation labeling. J. Proteome Res. 7, 4247–4255 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Skvortsov, S. et al. Proteomics profiling of microdissected low- and high-grade prostate tumors identifies Lamin A as a discriminatory biomarker. J. Proteome Res. 10, 259–268 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Lim, S. O. et al. Proteome analysis of hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 291, 1031–1037 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Sun, S., Xu, M. Z., Poon, R. T., Day, P. J. & Luk, J. M. Circulating Lamin B1 (LMNB1) biomarker detects early stages of liver cancer in patients. J. Proteome Res. 9, 70–78 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Xie, X. et al. A comparative phosphoproteomic analysis of a human tumor metastasis model using a label-free quantitative approach. Electrophoresis 31, 1842–1852 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Dechat, T., Adam, S. A., Taimen, P., Shimi, T. & Goldman, R. D. Nuclear lamins. Cold Spring Harb. Perspect. Biol. 2, a000547 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ballester, M. et al. Disruption of nuclear organization during the initial phase of African swine fever virus infection. J. Virol. 85, 8263–8269 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Foster, C. R., Przyborski, S. A., Wilson, R. G. & Hutchison, C. J. Lamins as cancer biomarkers. Biochem. Soc. Trans. 38, 297–300 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Wu, Z. et al. Reduced expression of lamin A/C correlates with poor histological differentiation and prognosis in primary gastric carcinoma. J. Exp. Clin. Cancer Res. 28, 8 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Agrelo, R. et al. Inactivation of the lamin A/C gene by CpG island promoter hypermethylation in hematologic malignancies, and its association with poor survival in nodal diffuse large B-cell lymphoma. J. Clin. Oncol. 23, 3940–3947 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Kuramitsu, Y. et al. Proteomic analysis for nuclear proteins related to tumour malignant progression: a comparative proteomic study between malignant progressive cells and regressive cells. Anticancer Res. 30, 2093–2099 (2010).

    CAS  PubMed  Google Scholar 

  146. Roth, U. et al. Differential expression proteomics of human colorectal cancer based on a syngeneic cellular model for the progression of adenoma to carcinoma. Proteomics 10, 194–202 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Wang, Y. et al. Differential protein mapping of ovarian serous adenocarcinomas: identification of potential markers for distinct tumor stage. J. Proteome Res. 8, 1452–1463 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Emterling, A. et al. Clinicopathological significance of Nup88 expression in patients with colorectal cancer. Oncology 64, 361–369 (2003).

    Article  PubMed  Google Scholar 

  149. De Keersmaecker, K. et al. Kinase activation and transformation by NUP214-ABL1 is dependent on the context of the nuclear pore. Mol. Cell 31, 134–142 (2008). The translocation and resulting fusion protein NUP214–ABL, found in 6% of patients with T cell acute lymphoblastic leukaemia, is shown to require localization to the NPC for its transformation activity.

    Article  CAS  PubMed  Google Scholar 

  150. Takeda, A., Sarma, N. J., Abdul-Nabi, A. M. & Yaseen, N. R. Inhibition of CRM1-mediated nuclear export of transcription factors by leukemogenic NUP98 fusion proteins. J. Biol. Chem. 285, 16248–16257 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Garçon, L. et al. DEK-CAN molecular monitoring of myeloid malignancies could aid therapeutic stratification. Leukemia 19, 1338–1344 (2005).

    Article  PubMed  CAS  Google Scholar 

  152. Belt, E. J. T. et al. Loss of lamin A/C expression in stage II and III colon cancer is associated with disease recurrence. Eur. J. Cancer 47, 1837–1845 (2011). This study combines the analysis of A-type lamins in colon tumours with two other parameters that have been shown to have prognostic value, pointing to the potential of combining prognostic indictors for more informative stratification of patients.

    Article  CAS  PubMed  Google Scholar 

  153. Bussolati, G. Proper detection of the nuclear shape: ways and significance. Rom J. Morphol. Embryol. 49, 435–439 (2008).

    CAS  PubMed  Google Scholar 

  154. Moeder, C. B., Giltnane, J. M., Moulis, S. P. & Rimm, D. L. Quantitative, fluorescence-based in-situ assessment of protein expression. Methods Mol. Biol. 520, 163–175 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. Johannessen, J. V., Sobrinho-Simões, M., Finseth, I. & Pilström, L. Papillary carcinomas of the thyroid have pore-deficient nuclei. Int. J. Cancer 30, 409–411 (1982).

    Article  CAS  PubMed  Google Scholar 

  156. Czerniak, B., Koss, L. G. & Sherman, A. Nuclear pores and DNA ploidy in human bladder carcinomas. Cancer Res. 44, 3752–3756 (1984).

    CAS  PubMed  Google Scholar 

  157. Sugie, S., Yoshimi, N., Tanaka, T., Mori, H. & Williams, G. M. Alterations of nuclear pores in preneoplastic and neoplastic rat liver lesions induced by 2-acetylaminofluorene. Carcinogenesis 15, 95–98 (1994).

    Article  CAS  PubMed  Google Scholar 

  158. Lewin, J. M., Lwaleed, B. A., Cooper, A. J. & Birch, B. R. The direct effect of nuclear pores on nuclear chemotherapeutic concentration in multidrug resistant bladder cancer: the nuclear sparing phenomenon. J. Urol. 177, 1526–1530 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Webster, M., Witkin, K. L. & Cohen-Fix, O. Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J. Cell. Sci. 122, 1477–1486 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lee, A. S. & Hendershot, L. M. ER stress and cancer. Cancer Biol. Ther. 5, 721–722 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. Politi, K. & Pao, W. How genetically engineered mouse tumor models provide insights into human cancers. J. Clin. Oncol. 29, 2273–2281 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Goldberg, M. W., Huttenlauch, I., Hutchison, C. J. & Stick, R. Filaments made from A- and B-type lamins differ in structure and organization. J. Cell. Sci. 121, 215–225 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Sullivan, T. et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147, 913–920 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ralle, T., Grund, C., Franke, W. W. & Stick, R. Intranuclear membrane structure formations by CaaX-containing nuclear proteins. J. Cell. Sci. 117, 6095–6104 (2004).

    Article  CAS  PubMed  Google Scholar 

  165. Polychronidou, M., Hellwig, A. & Grosshans, J. Farnesylated nuclear proteins Kugelkern and lamin Dm0 affect nuclear morphology by directly interacting with the nuclear membrane. Mol. Biol. Cell 21, 3409–3420 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Simon, D. N., Zastrow, M. S. & Wilson, K. L. Direct actin binding to A- and B-type lamin tails and actin filament bundling by the lamin A tail. Nucleus 1, 264–272 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Holaska, J. M., Kowalski, A. K. & Wilson, K. L. Emerin caps the pointed end of actin filaments: evidence for an actin cortical network at the nuclear inner membrane. PLoS Biol. 2, E231 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Antonin, W., Ungricht, R. & Kutay, U. Traversing the NPC along the pore membrane: targeting of membrane proteins to the INM. Nucleus 2, 87–91 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Liu, Q. et al. Functional association of Sun1 with nuclear pore complexes. J. Cell Biol. 178, 785–798 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hawryluk-Gara, L. A., Shibuya, E. K. & Wozniak, R. W. Vertebrate Nup53 interacts with the nuclear lamina and is required for the assembly of a Nup93-containing complex. Mol. Biol. Cell 16, 2382–2394 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lussi, Y. C., Hügi, I., Laurell, E., Kutay, U. & Fahrenkrog, B. The nucleoporin Nup88 is interacting with nuclear lamin A. Mol. Biol. Cell 22, 1080–1090 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Smythe, C., Jenkins, H. E. & Hutchison, C. J. Incorporation of the nuclear pore basket protein nup153 into nuclear pore structures is dependent upon lamina assembly: evidence from cell-free extracts of Xenopus eggs. EMBO J. 19, 3918–3931 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Mackay, D. R., Elgort, S. W. & Ullman, K. S. The nucleoporin Nup153 has separable roles in both early mitotic progression and the resolution of mitosis. Mol. Biol. Cell 20, 1652–1660 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. D'Angelo, M. A., Raices, M., Panowski, S. H. & Hetzer, M. W. Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell 136, 284–295 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Scaffidi, P. & Misteli, T. Lamin A-dependent nuclear defects in human aging. Science 312, 1059–1063 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Tang, Y., Chen, Y., Jiang, H. & Nie, D. Promotion of tumor development in prostate cancer by progerin. Cancer Cell. Int. 10, 47 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Espada, J. et al. Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. J. Cell Biol. 181, 27–35 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Mason, M. J., Fan, G., Plath, K., Zhou, Q. & Horvath, S. Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells. BMC Genomics 10, 327 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Lupu, F., Alves, A., Anderson, K., Doye, V. & Lacy, E. Nuclear pore composition regulates neural stem/progenitor cell differentiation in the mouse embryo. Dev. Cell 14, 831–842 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Scaffidi, P. & Misteli, T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat. Cell Biol. 10, 452–459 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Doucet, C. M. & Hetzer, M. W. Nuclear pore biogenesis into an intact nuclear envelope. Chromosoma 119, 469–477 (2010).

    Article  PubMed  Google Scholar 

  182. Malhas, A., Goulbourne, C. & Vaux, D. J. The nucleoplasmic reticulum: form and function. Trends Cell Biol. 21, 362–373 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Venables, R. S. et al. Expression of individual lamins in basal cell carcinomas of the skin. Br. J. Cancer 84, 512–519 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Tilli, C. M. L. J., Ramaekers, F. C. S., Broers, J. L. V., Hutchison, C. J. & Neumann, H. A. M. Lamin expression in normal human skin, actinic keratosis, squamous cell carcinoma and basal cell carcinoma. Br. J. Dermatol. 148, 102–109 (2003).

    Article  CAS  PubMed  Google Scholar 

  185. Bengtsson, S. et al. Large-scale proteomics analysis of human ovarian cancer for biomarkers. J. Proteome Res. 6, 1440–1450 (2007).

    Article  CAS  PubMed  Google Scholar 

  186. Coradeghini, R. et al. Differential expression of nuclear lamins in normal and cancerous prostate tissues. Oncol. Rep. 15, 609–613 (2006).

    CAS  PubMed  Google Scholar 

  187. Doherty, J. A. et al. ESR1/SYNE1 polymorphism and invasive epithelial ovarian cancer risk: an ovarian cancer association consortium study. Cancer Epidemiol. Biomarkers Prev. 19, 245–250 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Sjöblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Zhao, Z.-R. et al. Increased serum level of Nup88 protein is associated with the development of colorectal cancer. Med. Oncol. 24 Aug 2011 (doi:10.1007/s12032-011-0047-1).

Download references

Acknowledgements

This work was supported by the US National Institutes of Heath (R01GM61275) and the Huntsman Cancer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharine S. Ullman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Glossary

Aneuploidy

An alteration in the number of chromosomes within a cell.

Farnesyltransferase inhibitors

Drugs that block the post-translational attachment of farnesyl isoprenoid lipid to the cysteine residues of a CAAX motif on proteins, thereby preventing farnesyl-mediated localization of these proteins to cell membranes.

Spindle assembly checkpoint

A quality control mechanism that blocks chromosome segregation until all chromosomes are properly anchored to the microtubule spindle apparatus at kinetochores.

Kinetochores

Proteinaceous structures assembled at the centromere to bridge the connection between chromosomes and mitotic microtubule spindle apparatus.

APC/C

Anaphase-promoting complex (also known as the cyclosome). A protein complex that catalyses the ubiquitylation of mitotic factors such as separase and cyclins to target them for degradation, allowing regulated cell cycle progression.

Chromosome instability

Changing chromosome number or structure (translocations, deletions and duplications) resulting in aberrant DNA content.

Boundary activity

The ability to block either enhancer activity or repressive effects of heterochromatin.

Progeria

A rare genetic disease that is characterized by the early onset of ageing symptoms in children.

DNA damage-induced foci

Transiently formed sites in the nucleus where cellular DNA damage response machinery is concentrated and recruited to DNA lesions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chow, KH., Factor, R. & Ullman, K. The nuclear envelope environment and its cancer connections. Nat Rev Cancer 12, 196–209 (2012). https://doi.org/10.1038/nrc3219

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3219

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer