Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DNA interstrand crosslink repair and cancer

Key Points

  • DNA interstrand crosslinks (ICLs) may arise following exposure to environmental mutagens, and are potently toxic when induced in large numbers by chemotherapeutic drugs. ICL-based chemotherapy is one of the most widely used forms of cancer treatment, particularly in the treatment of leukaemias.

  • Fanconi anaemia (FA) is a disorder that results in sensitivity to ICLs, which is caused by the mutation of one of at least 14 different genes. Although their functions have not been completely elucidated, there is substantial evidence to suggest that these genes, including the BRCA2 (also known as FANCD1) breast and ovarian cancer tumour suppressor, participate in a common pathway of ICL repair.

  • Homologous recombination (HR)-mediated repair of ICLs is promoted by the FA pathway. FA cells that are exposed to ICL-inducing agents, or chronically treated wild-type cells, may use alternative pathways of repair that lead to deleterious genetic aberrations such as radial chromosomes.

  • Structure-specific nucleases and translesion polymerases participate in the coordinated removal of the ICL and the resumption or completion of DNA replication. There is increasing evidence that non-replication-associated repair of ICLs also takes place — however, this is insufficient to remove all ICL damage.

  • The modulation of ICL repair could improve chemotherapy outcomes. For example, the dose-limiting toxicities of ICLs mostly affect the blood system, so increasing the ability to repair ICLs in blood cells could prevent anaemia phenotypes. Alternatively, targeted downregulation of ICL repair in tumours could improve ICL-mediated tumour killing.

Abstract

Interstrand crosslinks (ICLs) are highly toxic DNA lesions that prevent transcription and replication by inhibiting DNA strand separation. Agents that induce ICLs were one of the earliest, and are still the most widely used, forms of chemotherapeutic drug. Only recently, however, have we begun to understand how cells repair these lesions. Important insights have come from studies of individuals with Fanconi anaemia (FA), a rare genetic disorder that leads to ICL sensitivity. Understanding how the FA pathway links nucleases, helicases and other DNA-processing enzymes should lead to more targeted uses of ICL-inducing agents in cancer treatment and could provide novel insights into drug resistance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: How ICLs kill tumour cells.
Figure 2: Activation of the Fanconi anaemia pathway coordinates DNA repair at an ICL.
Figure 3: ICL repair at different stages of the cell cycle.
Figure 4: Suppression of ICL sensitivity by inhibition of non-homologous end joining.

Similar content being viewed by others

References

  1. Goodman, L. S. et al. Nitrogen mustard therapy. Use of methyl-bis(β-chloroethyl)amine hydrochloride and tris(β-chloroethyl)amine hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. J. Am. Med. Assoc. 132, 126–132 (1946).

    Article  CAS  PubMed  Google Scholar 

  2. Eastman, A. Reevaluation of interaction of cis-dichloro(ethylenediamine)platinum(II) with DNA. Biochemistry 25, 3912–3915 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Gargiulo, D., Kumar, G. S., Musser, S. S. & Tomasz, M. Structural and function modification of DNA by mitomycin C. Mechanism of the DNA sequence specificity of mitomycins. Nucleic Acids Symp. Ser. 169–170 (1995).

  4. Kozekov, I. D. et al. DNA interchain cross-links formed by acrolein and crotonaldehyde. J. Am. Chem. Soc. 125, 50–61 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Stone, M. P. et al. Interstrand DNA cross-links induced by α, β-unsaturated aldehydes derived from lipid peroxidation and environmental sources. Acc. Chem. Res. 41, 793–804 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brooks, P. J. & Theruvathu, J. A. DNA adducts from acetaldehyde: implications for alcohol-related carcinogenesis. Alcohol 35, 187–193 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Folmer, V., Soares, J. C., Gabriel, D. & Rocha, J. B. A high fat diet inhibits δ-aminolevulinate dehydratase and increases lipid peroxidation in mice (Mus musculus). J. Nutr. 133, 2165–2170 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Ljunggren, B. Severe phototoxic burn following celery ingestion. Arch. Dermatol. 126, 1334–1336 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Manderfeld, M. M., Schafer, H. W., Davidson, P. M. & Zottola, E. A. Isolation and identification of antimicrobial furocoumarins from parsley. J. Food Prot. 60, 72–77 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Ashwood-Smith, M. J., Poulton, G. A., Barker, M. & Mildenberger, M. 5-Methoxypsoralen, an ingredient in several suntan preparations, has lethal, mutagenic and clastogenic properties. Nature 285, 407–409 (1980).

    Article  CAS  PubMed  Google Scholar 

  11. Dutta, S., Chowdhury, G. & Gates, K. S. Interstrand cross-links generated by abasic sites in duplex DNA. J. Am. Chem. Soc. 129, 1852–1853 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bennetts, L. E. et al. Impact of estrogenic compounds on DNA integrity in human spermatozoa: evidence for cross-linking and redox cycling activities. Mutat. Res. 641, 1–11 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Dunnick, J. K., Forbes, P. D., Davies, R. E. & Iverson, W. O. Toxicity of 8-methoxypsoralen, 5-methoxypsoralen, 3-carbethoxypsoralen, or 5-methylisopsoralen with ultraviolet radiation in the hairless (HRA/Skh) mouse. Toxicol. Appl. Pharmacol. 89, 73–80 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Sanderson, B. J. & Shield, A. J. Mutagenic damage to mammalian cells by therapeutic alkylating agents. Mutat. Res. 355, 41–57 (1996).

    Article  PubMed  Google Scholar 

  15. Pechura, C. M. & Rall, D. P. Veterans at Risk: The Health Effects of Mustard Gas and Lewisite (National Academy Press, Washington D. C., 1993).

    Google Scholar 

  16. Tucker, M. A., Coleman, C. N., Cox, R. S., Varghese, A. & Rosenberg, S. A. Risk of second cancers after treatment for Hodgkin's disease. N. Engl. J. Med. 318, 76–81 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Travis, L. B. et al. Risk of leukemia after platinum-based chemotherapy for ovarian cancer. N. Engl. J. Med. 340, 351–357 (1999). This study examined the incidence of leukaemia in more than 28,000 patients with ovarian cancer who were treated with cisplatin and found a fourfold higher incidence compared with those who received radiotherapy.

    Article  CAS  PubMed  Google Scholar 

  18. Fanconi, G. Familial constitutional panmyelocytopathy, Fanconi's anemia (F. A.). I. Clinical aspects. Semin. Hematol. 4, 233–240 (1967).

    CAS  PubMed  Google Scholar 

  19. Niedernhofer, L. J., Lalai, A. S. & Hoeijmakers, J. H. Fanconi anemia (cross)linked to DNA repair. Cell 123, 1191–1198 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Alpi, A. F. & Patel, K. J. Monoubiquitylation in the Fanconi anemia DNA damage response pathway. DNA Repair 8, 430–435 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Auerbach, A. D. A test for Fanconi's anemia. Blood 72, 366–367 (1988). This paper describes the chromosome breakage test for FA that is still widely used.

    CAS  PubMed  Google Scholar 

  22. Raya, A. et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460, 53–59 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rosenberg, P. S., Greene, M. H. & Alter, B. P. Cancer incidence in persons with Fanconi anemia. Blood 101, 822–826 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Butturini, A. et al. Hematologic abnormalities in Fanconi anemia: an International Fanconi Anemia Registry study. Blood 84, 1650–1655 (1994). A large cohort study that determined that the risk of developing haematological malignancies in patients with FA is greater than 50%.

    CAS  PubMed  Google Scholar 

  25. Faivre, L. et al. Association of complementation group and mutation type with clinical outcome in Fanconi anemia. Blood 96, 4064–4070 (2000).

    CAS  PubMed  Google Scholar 

  26. Hirsch, B. et al. Association of biallelic BRCA2/FANCD1 mutations with spontaneous chromosomal instability and solid tumors of childhood. Blood 103, 2554–2559 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Reid, S. et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N. and predispose to childhood cancer. Nature Genet. 39, 162–164 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Alter, B. P., Rosenberg, P. S. & Brody, L. C. Clinical and molecular features associated with biallelic mutations in FANCD1/BRCA2. J. Med. Genet. 44, 1–9 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Ali, A. M. et al. Identification and characterization of mutations in FANCL gene: a second case of Fanconi anemia belonging to FA-L complementation group. Hum. Mutat. 30, E761–E770 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Meetei, A. R. et al. A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nature Genet. 37, 958–963 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Vaz, F. et al. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nature Genet. 42, 406–409 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Castella, M. et al. Origin, functional role, and clinical impact of Fanconi anemia FANCA mutations. Blood 117, 3759–3769 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kutler, D. I. et al. High incidence of head and neck squamous cell carcinoma in patients with Fanconi anemia. Arch. Otolaryngol. Head Neck Surg. 129, 106–112 (2003).

    Article  PubMed  Google Scholar 

  34. Hofmann, W. K. & Koeffler, H. P. Myelodysplastic syndrome. Annu. Rev. Med. 56, 1–16 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Tischkowitz, M. & Winqvist, R. Using mouse models to investigate the biological and physiological consequences of defects in the Fanconi anaemia/breast cancer DNA repair signalling pathway. J. Pathol. 9 Mar 2011 (doi:10.1002/path.2903).

  36. Tonnies, H. et al. Clonal chromosomal aberrations in bone marrow cells of Fanconi anemia patients: gains of the chromosomal segment 3q26q29 as an adverse risk factor. Blood 101, 3872–3874 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Quentin, S. et al. Myelodysplasia and leukemia of Fanconi anemia are associated with a specific pattern of genomic abnormalities that includes cryptic RUNX1/AML1 lesions. Blood 117, e161–e170 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Sala-Trepat, M., Boyse, J., Richard, P., Papadopoulo, D. & Moustacchi, E. Frequencies of HPRT- lymphocytes and glycophorin A variants erythrocytes in Fanconi anemia patients, their parents and control donors. Mutat. Res. 289, 115–126 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Jonnalagadda, V. S., Matsuguchi, T. & Engelward, B. P. Interstrand crosslink-induced homologous recombination carries an increased risk of deletions and insertions. DNA Repair 4, 594–605 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Hinz, J. M., Nham, P. B., Salazar, E. P. & Thompson, L. H. The Fanconi anemia pathway limits the severity of mutagenesis. DNA Repair 5, 875–884 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Ridet, A. et al. Deregulated apoptosis is a hallmark of the Fanconi anemia syndrome. Cancer Res. 57, 1722–1730 (1997).

    CAS  PubMed  Google Scholar 

  42. Bassal, M. et al. Risk of selected subsequent carcinomas in survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J. Clin. Oncol. 24, 476–483 (2006).

    Article  PubMed  Google Scholar 

  43. Nijnik, A. et al. DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447, 686–690 (2007). This paper describes a direct link between the failure of DNA repair and the depletion of haematopoietic stem cell pools.

    Article  CAS  PubMed  Google Scholar 

  44. Haneline, L. S. et al. Retroviral-mediated expression of recombinant Fancc enhances the repopulating ability of fancc−/− hematopoietic stem cells and decreases the risk of clonal evolution. Blood 101, 1299–1307 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Park, J. W. et al. Deficiencies in the Fanconi anemia DNA damage response pathway increase sensitivity to HPV-associated head and neck cancer. Cancer Res. 70, 9959–9968 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ceccaldi, R. et al. Spontaneous abrogation of the G2 DNA damage checkpoint has clinical benefits but promotes leukemogenesis in Fanconi anemia patients. J. Clin. Invest. 121, 184–194 (2011). This paper describes a molecularly targeted therapy for FA that unfortunately promotes leukaemogenesis, supporting the hypothesis that intrinsic cancer-promoting mutations occur prior to cytopenia phenotypes.

    Article  CAS  PubMed  Google Scholar 

  47. Wilke, C. M. et al. FRA3B extends over a broad region and contains a spontaneous HPV16 integration site: direct evidence for the coincidence of viral integration sites and fragile sites. Hum. Mol. Genet. 5, 187–195 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Kutler, D. I. et al. Human papillomavirus DNA and p53 polymorphisms in squamous cell carcinomas from Fanconi anemia Patients. J. Natl Cancer Inst. 95, 1718–1721 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. van Zeeburg, H. J. et al. Clinical and molecular characteristics of squamous cell carcinomas from Fanconi anemia patients. J. Natl Cancer Inst. 100, 1649–1653 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ciccia, A., McDonald, N. & West, S. C. Structural and functional relationships of the XPF/MUS81 family of proteins. Annu. Rev. Biochem. 77, 259–287 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7, 249–262 (2001). This paper demonstrates a direct link between the FA pathway and the BRCA1 and BRCA2 pathway.

    Article  CAS  PubMed  Google Scholar 

  52. Smogorzewska, A. et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129, 289–301 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Matsushita, N. et al. A FancD2-monoubiquitin fusion reveals hidden functions of Fanconi anemia core complex in DNA repair. Mol. Cell 19, 841–847 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Niedernhofer, L. J. The Fanconi anemia signalosome anchor. Mol. Cell 25, 487–490 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Kim, J. M., Kee, Y., Gurtan, A. & D'Andrea, A. D. Cell cycle-dependent chromatin loading of the Fanconi anemia core complex by FANCM/FAAP24. Blood 111, 5215–5222 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Remus, D. et al. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 139, 719–730 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Raschle, M. et al. Mechanism of replication-coupled DNA interstrand crosslink repair. Cell 134, 969–980 (2008). Complete reconstitution of ICL repair in vitro using X. leavis egg extracts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ciccia, A. et al. Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Mol. Cell 25, 331–343 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Deans, A. J. & West, S. C. FANCM connects the genome instability disorders Bloom's Syndrome and Fanconi Anemia. Mol. Cell 36, 943–953 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Singh, T. R. et al. MHF1-MHF2, a histone-fold-containing protein complex, participates in the Fanconi anemia pathway via FANCM. Mol. Cell 37, 879–886 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yan, Z. et al. A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. Mol. Cell 37, 865–878 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pavri, R. et al. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 125, 703–717 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. van der Horst, A. et al. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nature Cell Biol. 8, 1064–1073 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Wang, X., Andreassen, P. R. & D'Andrea, A. D. Functional interaction of monoubiquitinated FANCD2 and BRCA2/FANCD1 in chromatin. Mol. Cell. Biol. 24, 5850–5862 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Longerich, S., San Filippo, J., Liu, D. & Sung, P. FANCI binds branched DNA and is monoubiquitinated by UBE2T-FANCL. J. Biol. Chem. 284, 23182–23186 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Roques, C. et al. MRE11-RAD50-NBS1 is a critical regulator of FANCD2 stability and function during DNA double-strand break repair. EMBO J. 28, 2400–2413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim, J. M. et al. Inactivation of murine Usp1 results in genomic instability and a Fanconi anemia phenotype. Dev. Cell 16, 314–320 (2009). This study demonstrates the importance of ubiquitylation and deubiquitylation in ICL repair.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Smogorzewska, A. et al. A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol. Cell 39, 36–47 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kratz, K. et al. Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents. Cell 142, 77–88 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. MacKay, C. et al. Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell 142, 65–76 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Moldovan, G.-L. et al. DNA polymerase POLN participates in cross-link repair and homologous recombination. Mol. Cell. Biol. 30, 1088–1096 (2010). References 68, 69, 70 and 71 describe the importance of monoubiquitylated FANCD2 and FANCI in the recruitment of the essential DNA repair enzymes FAN1 and POLN.

    Article  CAS  PubMed  Google Scholar 

  72. Woodward, A. M. et al. Excess Mcm2–7 license dormant origins of replication that can be used under conditions of replicative stress. J. Cell Biol. 173, 673–683 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Niedernhofer, L. J. et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444, 1038–1043 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Jaspers, N. G. et al. First reported patient with human ERCC1 deficiency has cerebro-oculo-facio-skeletal syndrome with a mild defect in nucleotide excision repair and severe developmental failure. Am. J. Hum. Genet. 80, 457–466 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stoepker, C. et al. SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype. Nature Genet. 43, 138–141 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Kim, Y. et al. Mutations of the SLX4 gene in Fanconi anemia. Nature Genet. 43, 142–146 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Hanada, K. et al. The structure-specific endonuclease MUS81-EME1 promotes conversion of interstrand DNA crosslinks into double-strands breaks. EMBO J. 25, 4921–4932 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Svendsen, J. M. et al. Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair. Cell 138, 63–77 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Al-Minawi, A. Z. et al. The ERCC1/XPF endonuclease is required for completion of homologous recombination at DNA replication forks stalled by inter-strand cross-links. Nucleic Acids Res. 37, 6400–6413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Niedernhofer, L. J. et al. The structure-specific endonuclease ERCC1-XPF is required for targeted gene replacement in embryonic stem cells. EMBO J. 20, 6540–6549 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wechsler, T., Newman, S. & West, S. C. Aberrant chromosome morphology in human cells defective for Holliday junction resolution. Nature 471, 642–646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Smeaton, M. B. et al. Distortion-dependent unhooking of interstrand cross-links in mammalian cell extracts. Biochemistry 47, 9920–9930 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Fink, D. et al. The role of DNA mismatch repair in platinum drug resistance. Cancer Res. 56, 4881–4886 (1996).

    CAS  PubMed  Google Scholar 

  84. Zhao, J., Jain, A., Iyer, R. R., Modrich, P. L. & Vasquez, K. M. Mismatch repair and nucleotide excision repair proteins cooperate in the recognition of DNA interstrand crosslinks. Nucleic Acids Res. 37, 4420–4429 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ben-Yehoyada, M. et al. Checkpoint signaling from a single DNA interstrand crosslink. Mol. Cell 35, 704–715 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sarkar, S., Davies, A. A., Ulrich, H. D. & McHugh, P. J. DNA interstrand crosslink repair during G1 involves nucleotide excision repair and DNA polymerase zeta. EMBO J. 25, 1285–1294 (2006). This paper describes an important ICL repair mechanism that is active in G1 phase of the cell cycle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mu, D. et al. DNA interstrand cross-links induce futile repair synthesis in mammalian cell extracts. Mol. Cell. Biol. 20, 2446–2454 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wong, B., Chen, S., Kwon, J. A. & Rich, A. Characterization of Z.-DNA as a nucleosome-boundary element in yeast Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 104, 2229–2234 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ulrich, H. D. & Walden, H. Ubiquitin signalling in DNA replication and repair. Nature Rev. Mol. Cell Biol. 11, 479–489 (2010).

    Article  CAS  Google Scholar 

  90. Munoz, I. M. et al. Coordination of structure-specific nucleases by human SLX4/BTBD12 is required for DNA repair. Mol. Cell 35, 116–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Harder, H. C., Smith, R. G. & Leroy, A. F. Template primer inactivation by cis- and trans-dichlorodiammine platinum for human DNA polymerase α, β, and Rauscher murine leukemia virus reverse transcriptase, as a mechanism of cytotoxicity. Cancer Res. 36, 3821–3829 (1976).

    CAS  PubMed  Google Scholar 

  92. Byun, T. S., Pacek, M., Yee, M. C., Walter, J. C. & Cimprich, K. A. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 19, 1040–1052 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lange, S. S., Takata, K. & Wood, R. D. DNA polymerases and cancer. Nature Rev. Cancer 11, 96–110 (2011).

    Article  CAS  Google Scholar 

  94. Howlett, N. G., Harney, J. A., Rego, M. A., Kolling, F. W. & Glover, T. W. Functional interaction between the Fanconi Anemia D2 protein and proliferating cell nuclear antigen (PCNA) via a conserved putative PCNA interaction motif. J. Biol. Chem. 284, 28935–28942 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Geng, L., Huntoon, C. J. & Karnitz, L. M. RAD18-mediated ubiquitination of PCNA activates the Fanconi anemia DNA repair network. J. Cell Biol. 191, 249–257 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Masuda, Y., Ohmae, M., Masuda, K. & Kamiya, K. Structure and enzymatic properties of a stable complex of the human REV1 and REV7 proteins. J. Biol. Chem. 278, 12356–12360 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Hlavin, E. M., Smeaton, M. B., Noronha, A. M., Wilds, C. J. & Miller, P. S. Cross-link structure affects replication-independent DNA interstrand cross-link repair in mammalian cells. Biochemistry 49, 3977–3988 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Ho, T. V. & Scharer, O. D. Translesion DNA synthesis polymerases in DNA interstrand crosslink repair. Environ. Mol. Mutagen. 51, 552–566 (2010).

    CAS  PubMed  Google Scholar 

  99. Mirchandani, K. D., McCaffrey, R. M. & D'Andrea, A. D. The Fanconi anemia core complex is required for efficient point mutagenesis and Rev1 foci assembly. DNA Repair 7, 902–911 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Silver, D. P. et al. Efficacy of neoadjuvant nisplatin in triple-negative breast cancer. J. Clin. Oncol. 28, 1145–1153 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cass, I. et al. Improved survival in women with BRCA-associated ovarian carcinoma. Cancer 97, 2187–2195 (2003). References 100 and 101 highlight the improved efficacy of cisplatin in the treatment of BRCA1-deficient and triple-negative breast cancer.

    Article  CAS  PubMed  Google Scholar 

  102. Wu-Baer, F., Lagrazon, K., Yuan, W. & Baer, R. The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. J. Biol. Chem. 278, 34743–34746 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Jensen, R. B., Carreira, A. & Kowalczykowski, S. C. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467, 678–683 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Thorslund, T. et al. The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA. Nature Struct. Mol. Biol. 17, 1263–1265 (2010).

    Article  CAS  Google Scholar 

  105. Bhattacharyya, A., Ear, U. S., Koller, B. H., Weichselbaum, R. R. & Bishop, D. K. The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of RAD51 and survival following treatment with the DNA cross-linking agent cisplatin. J. Biol. Chem. 275, 23899–23903 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Ito, M. et al. RAD51 siRNA delivered by HVJ envelope vector enhances the anti-cancer effect of cisplatin. J. Gene Med. 7, 1044–1052 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. West, S. C. Molecular views of recombination proteins and their control. Nature Rev. Mol. Cell Biol. 4, 435–445 (2003).

    Article  CAS  Google Scholar 

  108. Fong, P. C. et al. Inhibition of poly(ADP-Ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Gari, K., Décaillet, C., Delannoy, M., Wu, L. & Constantinou, A. Remodeling of DNA replication structures by the branch point translocase FANCM. Proc. Natl Acad. Sci. USA 105, 16107–16112 (2008). This work elegantly describes how FANCM may function to remodel a replication fork stalled at an ICL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Koster, D. A., Palle, K., Bot., E. S., Bjornsti, M. A. & Dekker, N. H. Antitumour drugs impede DNA uncoiling by topoisomerase I. Nature 448, 213–217 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Sogo, J. M., Lopes, M. & Foiani, M. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297, 599–602 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Hashimoto, Y., Chaudhuri, A. R., Lopes, M. & Costanzo, V. RAD51 protects nascent DNA from MRE11-dependent degradation and promotes continuous DNA synthesis. Nature Struct. Mol. Biol. 17, 1305–1311 (2010).

    Article  CAS  Google Scholar 

  113. Lio, Y. C., Schild, D., Brenneman, M. A., Redpath, J. L. & Chen, D. J. Human RAD51C deficiency destabilizes XRCC3, impairs recombination, and radiosensitizes S/G2-phase cells. J. Biol. Chem. 279, 42313–42320 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Lio, Y. C., Mazin, A. V., Kowalczykowski, S. C. & Chen, D. J. Complex formation by the human RAD51B and RAD51C DNA repair proteins and their activities in vitro. J. Biol. Chem. 278, 2469–2478 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Meindl, A. et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nature Genet. 42, 410–414 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Wu, L. & Hickson, I. D. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426, 870–874 (2003). This paper describes the mechanism by which BLM suppresses SCE during the repair of replication-associated DNA damage.

    Article  CAS  PubMed  Google Scholar 

  117. Wu, L. & Hickson, I. D. DNA helicases required for homologous recombination and repair of damaged replication forks. Annu. Rev. Genet. 40, 279–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Meetei, A. R. et al. A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome. Mol. Cell. Biol. 23, 3417–3426 (2003). This paper demonstrates that the proteins associated with FA and Bloom's syndrome participate in a common nuclear complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chaganti, R. S., Schonberg, S. & German, J. A manyfold increase in sister chromatid exchanges in Bloom's syndrome lymphocytes. Proc. Natl Acad. Sci. USA 71, 4508–4512 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Luo, G. et al. Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nature Genet. 26, 424–429 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Latt, S. A. Sister chromatid exchange formation. Annu. Rev. Genet. 15, 11–55 (1981).

    Article  CAS  PubMed  Google Scholar 

  122. Gottlieb, T. M. & Jackson, S. P. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72, 131–142 (1993).

    Article  CAS  PubMed  Google Scholar 

  123. Lieber, M. R., Ma, Y., Pannicke, U. & Schwarz, K. Mechanism and regulation of human non-homologous DNA end-joining. Nature Rev. Mol. Cell Biol. 4, 712–720 (2003).

    Article  CAS  Google Scholar 

  124. Frankenberg-Schwager, M. et al. Cisplatin-mediated DNA double-strand breaks in replicating but not in quiescent cells of the yeast Saccharomyces cerevisiae. Toxicology 212, 175–184 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Collins, A. R. Mutant rodent cell lines sensitive to ultraviolet light, ionizing radiation and cross-linking agents: a comprehensive survey of genetic and biochemical characteristics. Mutat. Res. 293, 99–118 (1993).

    Article  CAS  PubMed  Google Scholar 

  126. Pace, P. et al. Ku70 corrupts DNA repair in the absence of the Fanconi anemia pathway. Science 329, 219–223 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Adamo, A. et al. Preventing nonhomologous end joining suppresses DNA repair defects of Fanconi anemia. Mol. Cell 39, 25–35 (2010). References 126 and 127 show that an important function of the FA pathway is to suppress NHEJ at sites of ICLs.

    Article  CAS  PubMed  Google Scholar 

  128. Gurley, K. E. & Kemp, C. J. Synthetic lethality between mutation in ATM and DNA-PKcs during murine embryogenesis. Curr. Biol. 11, 191–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Ferreira, M. G. & Cooper, J. P. Two modes of DNA double-strand break repair are reciprocally regulated through the fission yeast cell cycle. Genes Dev. 18, 2249–2254 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang, H. et al. Non-homologous end-joining of ionizing radiation-induced DNA double-stranded breaks in human tumor cells deficient in BRCA1 or BRCA2. Cancer Res. 61, 270–277 (2001).

    CAS  PubMed  Google Scholar 

  131. Yun, M. H. & Hiom, K. CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature 459, 460–463 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Blier, P. R., Griffith, A. J., Craft, J. & Hardin, J. A. Binding of Ku protein to DNA. Measurement of affinity for ends and demonstration of binding to nicks. J. Biol. Chem. 268, 7594–7601 (1993).

    CAS  PubMed  Google Scholar 

  133. Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Pierelli, L. et al. Erythropoietin addition to granulocyte colony-stimulating factor abrogates life-threatening neutropenia and increases peripheral-blood progenitor-cell mobilization after epirubicin, paclitaxel, and cisplatin combination chemotherapy: results of a randomized comparison. J. Clin. Oncol. 17, 1288–1295 (1999).

    Article  CAS  PubMed  Google Scholar 

  135. Locke, F., Clark, J. I. & Gajewski, T. F. A phase II study of oxaliplatin, docetaxel, and GM-CSF in patients with previously treated advanced melanoma. Cancer Chemother. Pharmacol. 65, 509–514 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Viale, A. et al. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 457, 51–56 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Selvakumaran, M., Pisarcik, D. A., Bao, R., Yeung, A. T. & Hamilton, T. C. Enhanced cisplatin cytotoxicity by disturbing the nucleotide excision repair pathway in ovarian cancer cell lines. Cancer Res. 63, 1311–1316 (2003).

    CAS  PubMed  Google Scholar 

  138. Ferry, K. V., Hamilton, T. C. & Johnson, S. W. Increased nucleotide excision repair in cisplatin-resistant ovarian cancer cells: role of ERCC1-XPF. Biochem. Pharmacol. 60, 1305–1313 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Taniguchi, T. et al. Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nature Med. 9, 568–574 (2003). This paper shows that FANCF methylation can promote ovarian cancer tumorigenesis, but that demethylation and re-expression of the protein can suppress sensitivity to ICL-inducing agents.

    Article  CAS  PubMed  Google Scholar 

  140. Dabholkar, M. et al. ERCC1 and ERCC2 expression in malignant tissues from ovarian cancer patients. J. Natl Cancer Inst. 84, 1512–1517 (1992).

    Article  CAS  PubMed  Google Scholar 

  141. Tomoda, Y. et al. Functional evidence for EME1 as a marker of cisplatin resistance. Int. J. Cancer 124, 2997–3001 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Torres-Garcia, S. J., Cousieneau, L., Caplan, S. & Panasci, L. Correlation of resistance to nitrogen mustards in chronic lymphocytic leukemia with enhanced removal of melphalan-induced DNA cross-links. Biochem. Pharmacol. 38, 3122–3123 (1989).

    Article  CAS  PubMed  Google Scholar 

  143. Pietras, R. J. et al. Antibody to HER-2/neu receptor blocks DNA repair after cisplatin in human breast and ovarian cancer cells. Oncogene 9, 1829–1838 (1994).

    CAS  PubMed  Google Scholar 

  144. Goncalves, A. et al. High-dose alkylating agents with autologous hematopoietic stem cell support and trastuzumab in ERBB2 overexpressing metastatic breast cancer: a feasibility study. Anticancer Res. 25, 663–667 (2005).

    CAS  PubMed  Google Scholar 

  145. Hurley, J. et al. Docetaxel, cisplatin, and trastuzumab as primary systemic therapy for human epidermal growth factor receptor 2-positive locally advanced breast cancer. J. Clin. Oncol. 24, 1831–1838 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Pegram, M. D. et al. Results of two open-label, multicenter phase II studies of docetaxel, platinum salts, and trastuzumab in HER2-positive advanced breast cancer. J. Natl Cancer Inst. 96, 759–769 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Sanchez, Y. et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277, 1497–1501 (1997).

    Article  CAS  PubMed  Google Scholar 

  148. Castedo, M. et al. Cell death by mitotic catastrophe: a molecular definition. Oncogene 23, 2825–2837 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Reinhardt, H. C., Aslanian, A. S., Lees, J. A. & Yaffe, M. B. p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 11, 175–189 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Koniaras, K., Cuddihy, A. R., Christopoulos, H., Hogg, A. & O'Connell, M. J. Inhibition of Chk1-dependent G2 DNA damage checkpoint radiosensitizes p53 mutant human cells. Oncogene 20, 7453–7463 (2001).

    Article  CAS  PubMed  Google Scholar 

  151. Eastman, A. Characterization of the adducts produced in DNA by cis-diamminedichloroplatinum(II) and cis-dichloro(ethylenediamine)platinum(II). Biochemistry 22, 3927–3933 (1983).

    Article  CAS  PubMed  Google Scholar 

  152. Huang, H., Zhu, L., Reid, B. R., Drobny, G. P. & Hopkins, P. B. Solution structure of a cisplatin-induced DNA interstrand cross-link. Science 270, 1842–1845 (1995). The structure of cisplatin-crosslinked DNA reveals marked differences to the models that were previously posed, eventually leading to the design of new platinum drugs.

    Article  CAS  PubMed  Google Scholar 

  153. Knox, R. J., Friedlos, F., Lydall, D. A. & Roberts, J. J. Mechanism of cytotoxicity of anticancer platinum drugs: evidence that cis-diamminedichloroplatinum(II) and cis-diammine-(1,1-cyclobutanedicarboxylato)platinum(II) differ only in the kinetics of their interaction with DNA. Cancer Res. 46, 1972–1979 (1986).

    CAS  PubMed  Google Scholar 

  154. Vasey, P. A. et al. Phase III randomized trial of docetaxel-carboplatin versus paclitaxel-carboplatin as first-line chemotherapy for ovarian carcinoma. J. Natl Cancer Inst. 96, 1682–1691 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Pasetto, L. M., D'Andrea, M. R., Rossi, E. & Monfardini, S. Oxaliplatin-related neurotoxicity: how and why? Crit. Rev. Oncol. Hematol. 59, 159–168 (2006).

    Article  PubMed  Google Scholar 

  156. Sternberg, C. N. et al. Phase III trial of satraplatin, an oral platinum plus prednisone vs. prednisone alone in patients with hormone-refractory prostate cancer. Oncology 68, 2–9 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Smith, J. W. et al. Results of a phase II open-label, nonrandomized trial of oral satraplatin in patients with metastatic breast cancer. Breast Cancer Res. Treat. 118, 361–367 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Eckardt, J. R. et al. Phase II study of picoplatin as second-line therapy for patients with small-cell lung cancer. J. Clin. Oncol. 27, 2046–2051 (2009). References 156, 157 and 158 describe promising Phase II and Phase III trials of new cisplatin derivatives that seem to have a lower toxicity in non-target organs than the currently used platinum drugs.

    Article  CAS  PubMed  Google Scholar 

  159. Webba da Silva, M. et al. Solution structure of a DNA duplex containing mispair-aligned N4C-ethyl-N4C interstrand cross-linked cytosines. Biochemistry 41, 15181–15188 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Morley, A. & Stohlman, F. Jr. Cyclophosphamide-induced cyclical neutropenia. An animal model of a human periodic disease. N. Engl. J. Med. 282, 643–646 (1970).

    Article  CAS  PubMed  Google Scholar 

  161. Facon, T. et al. Melphalan and prednisone plus thalidomide versus melphalan and prednisone alone or reduced-intensity autologous stem cell transplantation in elderly patients with multiple myeloma (IFM 99–06): a randomised trial. Lancet 370, 1209–1218 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Rai, K. R. et al. Fludarabine compared with chlorambucil as primary therapy for chronic lymphocytic leukemia. N. Engl. J. Med. 343, 1750–1757 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. Ahn, J. B. et al. Effect of vinorelbine, ifosfamide, and cisplatin combination chemotherapy in advanced non-small-cell lung cancer. Am. J. Clin. Oncol. 23, 622–628 (2000).

    Article  CAS  PubMed  Google Scholar 

  164. Spielmann, H. P., Dwyer, T. J., Hearst, J. E. & Wemmer, D. E. Solution structures of psoralen monoadducted and cross-linked DNA oligomers by NMR spectroscopy and restrained molecular dynamics. Biochemistry 34, 12937–12953 (1995).

    Article  CAS  PubMed  Google Scholar 

  165. Stoll, D. B., Lavin, P. T. & Engstrom, P. F. Hematologic toxicity of cisplatin and mitomycin in combination for squamous cell carcinoma of esophagus. Am. J. Clin. Oncol. 8, 231–234 (1985).

    Article  CAS  PubMed  Google Scholar 

  166. Hussain, S. A. et al. Long-term results of a phase II study of synchronous chemoradiotherapy in advanced muscle invasive bladder cancer. Br. J. Cancer 90, 2106–2111 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wolff, K. Side-effects of psoralen photochemotherapy (PUVA). Br. J. Dermatol. 122, 117–125 (1990).

    Article  PubMed  Google Scholar 

  168. Querfeld, C. et al. Long-term follow-up of patients with early-stage cutaneous T-cell lymphoma who achieved complete remission with psoralen plus UV-A monotherapy. Arch. Dermatol. 141, 305–311 (2005).

    Article  PubMed  Google Scholar 

  169. Janjigian, Y. Y. et al. A phase I trial of SJG-136 (NSC#694501) in advanced solid tumors. Cancer Chemother. Pharmacol. 65, 833–838 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant to A.J.D. and S.C.W. from the Fanconi Anaemia Research Fund. Work in S.C.W.'s laboratory is supported by the European Research Council, the Louis-Jeantet foundation, the Breast Cancer Campaign, the Swiss Bridge Foundation and Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. West.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Glossary

Lipid peroxidation

The oxidation of fats and oils to form radicals capable of crosslinking DNA. It can occur in foods before they are eaten or can take place in the body.

Radial chromosome

A structure thought to result from the fusion of the broken arms of non-homologous chromosomes. Such chromosomes cannot be properly segregated in most cells, resulting in either chromosome breakage or a failure in cell division.

Homologous recombination

(HR). RAD51-mediated pairing and exchange of genetic information between homologous DNA sequences.

Nucleotide excision repair

(NER). Nucleolytic removal of a damaged nucleotide by sequential action of 5′- and 3′-endonucleases followed by polymerase-mediated filling of the resulting gap.

Translesion synthesis

(TLS). A DNA damage tolerance process that allows replication past DNA lesions. If the normal replicative polymerase cannot insert a base owing to damage in the template strand, it is often replaced by a lower fidelity translesion polymerase.

Replisome

The active and assembled structure that contains the enzymes required for DNA replication.

Mismatch repair

(MMR). A strand-specific mechanism for editing mismatched bases inserted in the daughter strand during replication. This damage is repaired by recognition of the deformity caused by the mismatch.

Futile cycle

A DNA repair process that is repeatedly initiated, but a subsequent step re-establishes the damaged state.

Sister chromatid exchanges

(SCEs). An exchange of genetic information between the two daughter strands of a replicated chromosome. This in itself does not result in loss of genetic information, but high SCE levels indicate that other recombination events such as the exchange of genetic material between homologous chromosomes could also occur and so lead to a loss of heterozygosity.

Cytopenias

Loss of one or multiple types of white or red blood cells, which is often caused by the depletion of stem cell pools.

Cell cycle checkpoints

A control mechanism that prevents cell cycle continuation in the presence of damaged, unreplicated or incompletely segregated DNA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deans, A., West, S. DNA interstrand crosslink repair and cancer. Nat Rev Cancer 11, 467–480 (2011). https://doi.org/10.1038/nrc3088

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3088

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer