Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Science and Society
  • Published:

Cell line misidentification: the beginning of the end

Abstract

Cell lines are used extensively in research and drug development as models of normal and cancer tissues. However, a substantial proportion of cell lines is mislabelled or replaced by cells derived from a different individual, tissue or species. The scientific community has failed to tackle this problem and consequently thousands of misleading and potentially erroneous papers have been published using cell lines that are incorrectly identified. Recent efforts to develop a standard for the authentication of human cell lines using short tandem repeat profiling is an important step to eradicate this problem.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pioneers of awareness of cell line misidentification.
Figure 2: Citations of T24 bladder cancer cells referred to as normal endothelial cells.
Figure 3: Short tandem repeat profiling methodology.

References

  1. Nardone, R. M. Curbing rampant cross-contamination and misidentification of cell lines. Biotechniques 45, 221–227 (2008).

    Article  CAS  Google Scholar 

  2. Nelson-Rees, W. A. & Flandermeyer, R. R. Inter- and intraspecies contamination of human breast tumor cell lines HBC and BrCa5 and other cell cultures. Science 195, 1343–1344 (1977).

    Article  CAS  Google Scholar 

  3. MacLeod, R. A. F. et al. Widespread intraspecies cross-contamination of human tumor cell lines arising at source. Int. J. Cancer 83, 555–563 (1999).

    Article  CAS  Google Scholar 

  4. Rothfels, K. H., Axelrad, A. A., Siminovitch, L., McCulloch, E. A. & Parker, R. C. in Proc. 3rd Canadian Cancer Conf. (ed. Begg, R. W.) 189–214 (Academic Press, New York,1958).

    Google Scholar 

  5. Defendi, V., Billimgham, R. E., Silvers, W. K. & Moorhead, P. Immunological and karyological criteria for identification of cell lines. J. Natl Cancer Inst. 25, 359–385 (1960).

    CAS  PubMed  Google Scholar 

  6. Brand, K. G. & Syverton, J. T. Results of species-specific hemagglutination tests on “transformed”, nontransformed, and primary cell cultures. J. Natl Cancer Inst. 28, 147–157 (1962).

    CAS  PubMed  Google Scholar 

  7. Gartler, S. M. Genetic markers as tracers in cell culture. Natl Cancer Inst. Monogr. 26, 167–195 (1967).

    CAS  PubMed  Google Scholar 

  8. Gey, G. O., Coffman, W. D. & Kubicek, M. T. Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res. 12, 264–265 (1952).

    Google Scholar 

  9. Nelson-Rees, W. A., Flandermeyer, R. R. & Hawthorne, P. K. Banded marker chromosomes as indicators of intraspecies cellular contamination. Science 184, 1093–1096 (1974).

    Article  CAS  Google Scholar 

  10. Lucey, B. P., Nelson-Rees, W. A. & Hutchins, G. M. Henrietta Lacks, HeLa cells, and cell culture contamination. Arch. Pathol. Lab. Med. 133, 1463–1467 (2009).

    PubMed  Google Scholar 

  11. Nelson-Rees, W. A. Responsibility for truth in research. Phil. Trans. R. Soc. Lond. B 356, 849–851 (2001).

    Article  CAS  Google Scholar 

  12. Buehring, G. C., Eby, E. A. & Eby, M. J. Cell line cross-contamination: how aware are mammalian cell culturists of the problem and how to monitor it? In Vitro Cell Dev. Biol. Anim. 40, 211–215 (2004).

    Article  Google Scholar 

  13. Chatterjee, R. Cell biology. Cases of mistaken identity. Science 315, 928–931 (2007).

    Article  CAS  Google Scholar 

  14. Gilbert, D. A. et al. Application of DNA fingerprints for cell-line individualization. Am. J. Hum. Genet. 47, 499–514 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nardone, R. M. Eradication of cross-contaminated cell lines: a call for action. Cell Biol. Toxicol. 23, 367–372 (2007).

    Article  Google Scholar 

  16. Nardone, R. M. et al. An open letter regarding the misidentification and cross-contamination of cell lines: significance and recommendations for correction. Japanese Collection of Research Bioresources Cell Line Catalogue [online] (2007).

    Google Scholar 

  17. National Institutes of Health. Notice Regarding Authentication of Cultured Cell Lines. NIH Guide for Grants and Contracts [online] (2007).

  18. Dirks, W. G., Drexler, H. G. & MacLeod, R. A. F. ECV304 (endothelial) is really T24 (bladder carcinoma): cell line cross- contamination at source. In Vitro Cell Dev. Biol. 35, 558–559 (1999).

    Article  CAS  Google Scholar 

  19. van Bokhoven, A., Varella-Garcia, M., Korch C & Miller, G. J. TSU-Pr1 and JCA-1 cells are derivatives of T24 bladder carcinoma cells and are not of prostatic origin. Cancer Res. 61, 6340–6344 (2001).

    CAS  PubMed  Google Scholar 

  20. Liscovitch, M. & Ravid, D. A case study in misidentification of cancer cell lines: MCF-7/AdrR cells (re-designated NCI/ADR-RES) are derived from OVCAR-8 human ovarian carcinoma cells. Cancer Lett. 245, 350–352 (2006).

    Article  Google Scholar 

  21. Lorenzi, P. L. et al. DNA fingerprinting of the NCI-60 cell line panel. Mol. Cancer Ther. 8, 713–724 (2009).

    Article  CAS  Google Scholar 

  22. Boonstra, J. J. et al. Verification and unmasking of widely used human esophageal adenocarcinoma cell lines. J. Natl Cancer Inst. 102, 1–4 (2010).

    Article  Google Scholar 

  23. Maddox, J. Responsibility for trust in research. Nature 289, 211–212 (1981).

    Google Scholar 

  24. Miller, L. J. Identity crisis. Nature 457, 935–936 (2009).

    Google Scholar 

  25. Drexler, H. G., Dirks, W. G., Matsuo, Y. & MacLeod, R. A. F. False leukemia-lymphoma cell lines: an update on over 500 cell lines. Leukemia 17, 416–426 (2003).

    Article  CAS  Google Scholar 

  26. Nims, R. W., Shoemaker, A. P., Bauernschub, M. A., Rec, L. J. & Harbell, J. W. Sensitivity of isoenzyme analysis for the detection of interspecies cell line cross-contamination. In Vitro Cell Dev. Biol. Anim. 34, 35–39 (1998).

    Article  CAS  Google Scholar 

  27. Drexler, H. G. & MacLeod, R. A. F. Mantle cell lymphoma-derived cell lines: unique research tools. Leukemia Res. 30, 911–913 (2006).

    Article  Google Scholar 

  28. Pathak, S., Nemeth, M. & Multani, A. S. Human tumor xenografts in nude mice are not always of human origin: a warning signal. Cancer 86, 898–900 (1999).

    Article  Google Scholar 

  29. Nims, R. W. & Herbstritt, C. J. Cell line authentication using isoenzyme analysis: strategies for accurate speciation and case studies for detection of cell line cross-contamination using a commercial kit. BioPharm Int. 18, 76–82 (2005).

    CAS  Google Scholar 

  30. Debenham, P. G. & Webb, M. B. Cell line characterization by DNA fingerprinting; a review. Dev. Biol. Stand. 76, 39–42 (1992).

    PubMed  Google Scholar 

  31. Moretti, T. R. et al. Validation of short tandem repeats (STRs) for forensic usage: performance testing of fluorescent multiplex STR systems and analysis of authentic and simulated forensic samples. J. Forensic Sci. 46, 647–660 (2001).

    CAS  PubMed  Google Scholar 

  32. Budowle, B., Shea, B., Niezgoda, S. & Chakraborty, R. CODIS STR loci data from 41 sample populations. J. Forensic Sci. 46, 453–489 (2001).

    CAS  PubMed  Google Scholar 

  33. Butler, J. M. Forensic DNA Typing. Biology, Technology, and Genetics of STR Markers, 2nd edn (Academic Press, Burlington, USA, 2005).

    Google Scholar 

  34. Masters, J. R. et al. Short tandem repeat profiling provides an international reference standard for human cell lines. Proc. Natl Acad. Sci. USA 98, 8012–8017 (2001).

    Article  CAS  Google Scholar 

  35. Parson, W. et al. Cancer cell line identification by short tandem repeat profiling: powers and limitations. FASEB J. 19, 434–436 (2005).

    Article  CAS  Google Scholar 

  36. Schweppe, R. E. et al. DNA profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J. Clin. Endocrin. Metab. 93, 4331–4341 (2008).

    Article  CAS  Google Scholar 

  37. Romano, P. et al. Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines. Nucleic Acids Res. 37, D925–D932 (2009).

    Article  CAS  Google Scholar 

  38. Capes-Davis, A. et al. Check your cultures! A list of cross-contaminated or misidentified cell lines. Int. J. Cancer 8 Feb 2010 [epub ahead of print].

  39. Federal Bureau of Investigation. Standards and Guidelines Quality Assurance Standards for Forensic DNA Testing Laboratories. Federal Bureau of Investigation Forensic Science Communications [online] (2008).

Download references

Author information

Authors and Affiliations

Consortia

Ethics declarations

Competing interests

Rita Barallon (LGC), Manohar Furtado (Applied Biosystems), Jaiprakash Shewale (Life Technologies) Douglas Storts (Promega Corporation) and Jim Thomson (LGC) work for organizations that provide reagents for or undertake cell line authentication using STR profiling. Manohar Furtado is a shareholder in Applied Biosystems.

Supplementary information

Supplementary information 1 (Table)

Attributes of human cell line identification technologies (PDF 175 kb)

Supplementary information 2 (Box)

Advantages of short tandem repeat (STR) profiling for authentication of human cell lines (PDF 167 kb)

Supplementary information 3 (Box)

Quality control of short tandem repeat (STR) analysis (PDF 172 kb)

Supplementary information 4 (Table)

Estimates of power of discrimination of short tandem repeat (STR) profiling using different numbers of loci. (PDF 159 kb)

Related links

Related links

DATABASES

CLIMA database

PubMed

FURTHER INFORMATION

ATCC SDO homepage

ATCC cell bank

DSMZ cell culture collection

ECACC cell culture collection

Rights and permissions

Reprints and permissions

About this article

Cite this article

American Type Culture Collection Standards Development Organization Workgroup ASN-0002. Cell line misidentification: the beginning of the end. Nat Rev Cancer 10, 441–448 (2010). https://doi.org/10.1038/nrc2852

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2852

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer