Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

EMT in cancer

Abstract

Similar to embryonic development, changes in cell phenotypes defined as an epithelial to mesenchymal transition (EMT) have been shown to play a role in the tumorigenic process. Although the first description of EMT in cancer was in cell cultures, evidence for its role in vivo is now widely reported but also actively debated. Moreover, current research has exemplified just how complex this phenomenon is in cancer, leaving many exciting, open questions for researchers to answer in the future. With these points in mind, we asked four scientists for their opinions on the role of EMT in cancer and the challenges faced by scientists working in this fast-moving field.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nieto, M. A., Huang, R. Y., Jackson, R. A. & Thiery, J. P. EMT: 2016. Cell 166, 21–45 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Shibue, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611–629 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Puisieux, A., Brabletz, T. & Caramel, J. Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol. 16, 488–494 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Brabletz, T. et al. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc. Natl Acad. Sci. USA 98, 10356–10361 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chaffer, C. L., San Juan, B. P., Lim, E. & Weinberg, R. A. EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 35, 645–654 (2016).

    Article  PubMed  Google Scholar 

  6. Chaffer, C. L. et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 154, 61–74 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brabletz, S. & Brabletz, T. The ZEB/miR-200 feedback loop — a motor of cellular plasticity in development and cancer? EMBO Rep. 11, 670–677 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tran, H. D. et al. Transient SNAIL1 expression is necessary for metastatic competence in breast cancer. Cancer Res. 74, 6330–6340 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zheng, X. et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527, 525–530 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krebs, A. M. et al. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat. Cell Biol. 19, 518–529 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Denecker, G. et al. Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression. Cell Death Differ. 21, 1250–1261 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Caramel, J. et al. A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell 24, 466–480 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Kahlert, U. D., Joseph, J. V. & Kruyt, F. A. E. EMT- and MET-related processes in nonepithelial tumors: importance for disease progression, prognosis, and therapeutic opportunities. Mol. Oncol. 11, 860–877 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hay, E. D. in Epithelial-Mesenchymal Interactions (eds Fleischmajer, R. & Billingham, R. E.) 31–55 (Williams & Wilkins, 1968).

    Google Scholar 

  15. Carver, E. A., Jiang, R., Lan, Y., Oram, K. F. & Gridley, T. The mouse Snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol. Cell. Biol. 21, 8184–8188 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jolly, M. K. et al. Implications of the hybrid epithelial/mesenchymal phenotype in metastasis. Front. Oncol. 5, 155 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Barrallo-Gimeno, A. & Nieto, M. A. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132, 3151–3161 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Korpal, M., Lee, E. S., Hu, G. & Kang, Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283, 14910–14914 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang, J. & Weinberg, R. A. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 14, 818–829 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Micalizzi, D. S., Farabaugh, S. M. & Ford, H. L. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J. Mammary Gland Biol. Neoplasia 15, 117–134 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chakrabarti, R. et al. Elf5 inhibits the epithelial-mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nat. Cell Biol. 14, 1212–1222 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, Y., El-Naggar, S., Darling, D. S., Higashi, Y. & Dean, D. C. Zeb1 links epithelial-mesenchymal transition and cellular senescence. Development 135, 579–588 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Son, H. & Moon, A. Epithelial-mesenchymal transition and cell invasion. Toxicol. Res. 26, 245–252 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Elaskalani, O., Razak, N. B., Falasca, M. & Metharom, P. Epithelial-mesenchymal transition as a therapeutic target for overcoming chemoresistance in pancreatic cancer. World J. Gastrointest. Oncol. 9, 37–41 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang, J. et al. Transition to resistance: An unexpected role of the EMT in cancer chemoresistance. Genes Dis. 3, 3–6 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fischer, K. R. et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527, 472–476 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsai, J. H., Donaher, J. L., Murphy, D. A., Chau, S. & Yang, J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22, 725–736 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beerling, E. et al. Plasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity. Cell Rep. 14, 2281–2288 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cheung, K. J. & Ewald, A. J. A collective route to metastasis: seeding by tumor cell clusters. Science 352, 167–169 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu, M. et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580–584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aiello, N. M. et al. Upholding a role for EMT in pancreatic cancer metastasis. Nature 547, E7–E8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fischer, K. R., Altorki, N K., Mittel, V. & Gao, D. Fischer et al. reply. Nature 547, E5–E6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ye, X. et al. Upholding a role for EMT in breast cancer metastasis. Nature 547, E1–E3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu, Y. et al. Breast tumor cell-specific knockout of Twist1 inhibits cancer cell plasticity, dissemination, and lung metastasis in mice. Proc. Natl Acad. Sci. USA 114, 11494–11499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nieto, M. A. Context-specific roles of EMT programmes in cancer cell dissemination. Nat. Cell Biol. 19, 416–418 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Ocana, O. H. et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22, 709–724 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Ni, T. et al. Snail1-dependent p53 repression regulates expansion and activity of tumour-initiating cells in breast cancer. Nat. Cell Biol. 18, 1221–1232 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shamir, E. R. & Ewald, A. J. Adhesion in mammary development: novel roles for E-cadherin in individual and collective cell migration. Curr. Top. Dev. Biol. 112, 353–382 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ye, X. et al. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 525, 256–260 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fidler, I. J. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat. Rev. Cancer 3, 453–458 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Brabletz, T. To differentiate or not — routes towards metastasis. Nat. Rev. Cancer 12, 425–436 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Labernadie, A. et al. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat. Cell Biol. 19, 224–237 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu, J., Lamouille, S. & Derynck, R. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 19, 156–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Arumugam, T. et al. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res. 69, 5820–5828 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ruscetti, M., Quach, B., Dadashian, E. L., Mulholland, D. J. & Wu, H. Tracking and functional characterization of epithelial-mesenchymal transition and mesenchymal tumor cells during prostate cancer metastasis. Cancer Res. 75, 2749–2759 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fein, M. R. & Egeblad, M. Caught in the act: revealing the metastatic process by live imaging. Dis. Model. Mech. 6, 580–593 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Choi, Y. et al. Real-time imaging of the epithelial-mesenchymal transition using microRNA-200a sequence-based molecular beacon-conjugated magnetic nanoparticles. PLoS ONE 9, e102164 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. McDonald, O. G., Maitra, A. & Hruban, R. H. Human correlates of provocative questions in pancreatic pathology. Adv. Anat. Pathol. 19, 351–362 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cheung, K. J., Gabrielson, E., Werb, Z. & Ewald, A. J. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155, 1639–1651 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158, 1110–1122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kubelt, C., Hattermann, K., Sebens, S., Mehdorn, H. M. & Held-Feindt, J. Epithelial-to-mesenchymal transition in paired human primary and recurrent glioblastomas. Int. J. Oncol. 46, 2515–2525 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Kim, J. E., Leung, E., Baguley, B. C. & Finlay, G. J. Heterogeneity of expression of epithelial-mesenchymal transition markers in melanocytes and melanoma cell lines. Front. Genet. 4, 97 (2013).

    PubMed  PubMed Central  Google Scholar 

  55. Sayan, A. E. Tumour-promoting role of EMT-inducing transcription factor ZEB1 in mantle cell lymphoma. Cell Death Differ. 21, 194–195 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stavropoulou, V. et al. MLL-AF9 expression in hematopoietic stem cells drives a highly invasive AML expressing EMT-related genes linked to poor outcome. Cancer Cell 30, 43–58 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Shen, A., Zhang, Y., Yang, H., Xu, R. & Huang, G. Overexpression of ZEB1 relates to metastasis and invasion in osteosarcoma. J. Surg. Oncol. 105, 830–834 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Skrypek, N., Goossens, S., De Smedt, E., Vandamme, N. & Berx, G. Epithelial-to-mesenchymal transition: epigenetic reprogramming driving cellular plasticity. Trends Genet. 33, 943–959 (2017).

    CAS  Google Scholar 

  59. Hartwell, K. A. et al. The Spemann organizer gene, Goosecoid, promotes tumor metastasis. Proc. Natl Acad. Sci. USA 103, 18969–18974 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Heerboth, S. et al. EMT and tumor metastasis. Clin. Transl Med. 4, 6 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ombrato, L. & Malanchi, I. The EMT universe: space between cancer cell dissemination and metastasis initiation. Crit. Rev. Oncog. 19, 349–361 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

R.K. thanks all the students, postdoctoral fellows and scientists in his laboratory who contributed to the research on EMT. Work in M.A.N.'s laboratory is funded by the European Research Council (ERC AdG322694) and BFU2014-53128-R. R.A.W. acknowledges funding received from the Ludwig Center of Molecular Oncology and the Breast Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Brabletz, Raghu Kalluri, M. Angela Nieto or Robert A. Weinberg.

Ethics declarations

Competing interests

T.B., R.K. and M.A.N. declare no competing financial interests. R.A.W. has an interest in and is on the scientific advisory board for Verastem Inc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brabletz, T., Kalluri, R., Nieto, M. et al. EMT in cancer. Nat Rev Cancer 18, 128–134 (2018). https://doi.org/10.1038/nrc.2017.118

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2017.118

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer