Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice

Abstract

The retina is a powerful experimental system for the analysis of angiogenic blood vessel growth in the postnatal organisms. The three-dimensional architecture of the vessel network and processes as diverse as endothelial cell (EC) proliferation, sprouting, perivascular cell recruitment, vessel remodeling or maturation can be investigated at high resolution. The characterization of physiological and pathological angiogenic processes in mice has been greatly facilitated by inducible and cell type–specific loss-of-function and gain-of-function genetics. In this paper, we provide a detailed protocol for tamoxifen-inducible gene deletion in neonatal mice, as well as for retina dissection, whole-mount immunostaining and the quantitation of EC sprouting and proliferation. These methods have been optimized by our laboratory and yield reliable results. The entire protocol takes ~10 d to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flow chart of tamoxifen administration to analyze angiogenesis in mouse retina.
Figure 2: Tamoxifen injection, eye and retina dissection.
Figure 3: Vascular phenotypic analysis in newborn retina using a retina model of Efnb2 gene deletion.
Figure 4: β-Galactosidase-stained P6 mouse retina.
Figure 5: EC proliferation, sprouting and vessel branching.
Figure 6: Vessel stability and EC adhesion.

Similar content being viewed by others

References

  1. Risau, W. & Flamme, I. Vasculogenesis. Annu. Rev. Cell Dev. Biol. 11, 73–91 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Adams, R.H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8, 464–478 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Staton, C.A., Reed, M.W. & Brown, N.J. A critical analysis of current in vitro and in vivo angiogenesis assays. Int. J. Exp. Pathol. 90, 195–221 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Glaser, B.M., D'Amore, P.A., Seppa, H., Seppa, S. & Schiffmann, E. Adult tissues contain chemoattractants for vascular endothelial cells. Nature 288, 483–484 (1980).

    Article  CAS  PubMed  Google Scholar 

  5. Alessandri, G., Raju, K. & Gullino, P.M. Mobilization of capillary endothelium in vitro induced by effectors of angiogenesis in vivo. Cancer Res. 43, 1790–1797 (1983).

    CAS  PubMed  Google Scholar 

  6. Boyden, S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 115, 453–466 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wong, M.K. & Gotlieb, A.I. In vitro reendothelialization of a single-cell wound. Role of microfilament bundles in rapid lamellipodia-mediated wound closure. Lab. Invest. 51, 75–81 (1984).

    CAS  PubMed  Google Scholar 

  8. Gospodarowicz, D., Moran, J., Braun, D. & Birdwell, C. Clonal growth of bovine vascular endothelial cells: fibroblast growth factor as a survival agent. Proc. Natl. Acad. Sci. USA 73, 4120–4124 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kubota, Y., Kleinman, H.K., Martin, G.R. & Lawley, T.J. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol. 107, 1589–1598 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Lawley, T.J. & Kubota, Y. Induction of morphologic differentiation of endothelial cells in culture. J. Invest. Dermatol. 93, S59–S61 (1989).

    Article  Google Scholar 

  11. Bayless, K.J., Kwak, H.I. & Su, S.C. Investigating endothelial invasion and sprouting behavior in three-dimensional collagen matrices. Nat. Protoc. 4, 1888–1898 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Nicosia, R.F. & Ottinetti, A. Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel in three-dimensional cultures of rat aorta: a comparative study of angiogenesis in matrigel, collagen, fibrin, and plasma clot. In Vitro Cell Dev. Biol. 26, 119–128 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Aplin, A.C., Fogel, E., Zorzi, P. & Nicosia, R.F. The aortic ring model of angiogenesis. Methods Enzymol. 443, 119–136 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Swaim, W.R. & Feders, M.B. Fibrinogen assay. Clin. Chem. 13, 1026–1028 (1967).

    Article  CAS  PubMed  Google Scholar 

  15. Chalupowicz, D.G., Chowdhury, Z.A., Bach, T.L., Barsigian, C. & Martinez, J. Fibrin II induces endothelial cell capillary tube formation. J. Cell Biol. 130, 207–215 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Bayless, K.J. & Davis, G.E. Sphingosine-1-phosphate markedly induces matrix metalloproteinase and integrin-dependent human endothelial cell invasion and lumen formation in three-dimensional collagen and fibrin matrices. Biochem. Biophys. Res. Commun. 312, 903–913 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Koh, W., Stratman, A.N., Sacharidou, A. & Davis, G.E. In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods Enzymol. 443, 83–101 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Stratman, A.N. et al. Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices. Blood 114, 237–247 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gimbrone, M.A. Jr. Cotran, R.S., Leapman, S.B. & Folkman, J. Tumor growth and neovascularization: an experimental model using the rabbit cornea. J. Natl. Cancer Inst. 52, 413–427 (1974).

    Article  PubMed  Google Scholar 

  20. Fournier, G.A., Lutty, G.A., Watt, S., Fenselau, A. & Patz, A. A corneal micropocket assay for angiogenesis in the rat eye. Invest. Ophthalmol. Vis. Sci. 21, 351–354 (1981).

    CAS  PubMed  Google Scholar 

  21. Auerbach, R., Kubai, L., Knighton, D. & Folkman, J. A simple procedure for the long-term cultivation of chicken embryos. Dev. Biol. 41, 391–394 (1974).

    Article  CAS  PubMed  Google Scholar 

  22. Ribatti, D., Vacca, A., Roncali, L. & Dammacco, F. The chick embryo chorioallantoic membrane as a model for in vivo research on angiogenesis. Int. J. Dev. Biol. 40, 1189–1197 (1996).

    CAS  PubMed  Google Scholar 

  23. Dohle, D.S. et al. Chick ex ovo culture and ex ovo CAM assay: how it really works. J. Vis. Exp. doi:10.3791/1620 (2009).

  24. Alajati, A. et al. Spheroid-based engineering of a human vasculature in mice. Nat. Methods 5, 439–445 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Laib, A.M. et al. Spheroid-based human endothelial cell microvessel formation in vivo. Nat. Protoc. 4, 1202–1215 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Martin, P. Wound healing—aiming for perfect skin regeneration. Science 276, 75–81 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Eming, S.A., Brachvogel, B., Odorisio, T. & Koch, M. Regulation of angiogenesis: wound healing as a model. Prog. Histochem. Cytochem. 42, 115–170 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Papenfuss, H.D., Gross, J.F., Intaglietta, M. & Treese, F.A. A transparent access chamber for the rat dorsal skin fold. Microvasc. Res. 18, 311–318 (1979).

    Article  CAS  PubMed  Google Scholar 

  29. Vajkoczy, P. et al. Inhibition of tumor growth, angiogenesis, and microcirculation by the novel Flk-1 inhibitor SU5416 as assessed by intravital multi-fluorescence videomicroscopy. Neoplasia 1, 31–41 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Endrich, B., Asaishi, K., Gotz, A. & Messmer, K. Technical report—a new chamber technique for microvascular studies in unanesthetized hamsters. Res. Exp. Med. (Berl.) 177, 125–134 (1980).

    Article  CAS  PubMed  Google Scholar 

  31. Swift, M.R. & Weinstein, B.M. Arterial-venous specification during development. Circ. Res. 104, 576–588 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Gariano, R.F. & Gardner, T.W. Retinal angiogenesis in development and disease. Nature 438, 960–966 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Fukumura, D. & Jain, R.K. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc. Res. 74, 72–84 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kerbel, R.S. Tumor angiogenesis: past, present and the near future. Carcinogenesis 21, 505–515 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Carmeliet, P. & Collen, D. Transgenic mouse models in angiogenesis and cardiovascular disease. J. Pathol. 190, 387–405 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Naumov, G.N., Akslen, L.A. & Folkman, J. Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5, 1779–1787 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Rocha, S.F. & Adams, R.H. Molecular differentiation and specialization of vascular beds. Angiogenesis 12, 139–147 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Connor, K.M. et al. Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat. Protoc. 4, 1565–1573 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Benedito, R. et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137, 1124–1135 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483–486 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Branda, C.S. & Dymecki, S.M. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6, 7–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Sauer, B. & Henderson, N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc. Natl. Acad. Sci. USA 85, 5166–5170 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sauer, B. & Henderson, N. Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. New Biol. 2, 441–449 (1990).

    CAS  PubMed  Google Scholar 

  44. Feil, R. et al. Ligand-activated site-specific recombination in mice. Proc. Natl. Acad. Sci. USA 93, 10887–10890 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Indra, A.K. et al. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res. 27, 4324–4327 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Claxton, S. et al. Efficient, inducible Cre-recombinase activation in vascular endothelium. Genesis 46, 74–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Sawamiphak, S. et al. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465, 487–491 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Gerhardt, H. & Betsholtz, C. High-resolution in situ confocal analysis of endothelial cells. in Methods in Endothelial Cell Biology (ed. Augustin, H.G.) 313–323 (Springer-Verlag, 2004).

  49. Aguilar, E. et al. Chapter 6. Ocular models of angiogenesis. Methods Enzymol. 444, 115–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fruttiger, M. et al. PDGF mediates a neuron-astrocyte interaction in the developing retina. Neuron 17, 1117–1131 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Lobov, I.B. et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc. Natl. Acad. Sci. USA 104, 3219–3224 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Laitinen, L. Griffonia simplicifolia lectins bind specifically to endothelial cells and some epithelial cells in mouse tissues. Histochem. J. 19, 225–234 (1987).

    Article  CAS  PubMed  Google Scholar 

  54. Laitinen, L., Virtanen, I. & Saxen, L. Changes in the glycosylation pattern during embryonic development of mouse kidney as revealed with lectin conjugates. J. Histochem. Cytochem. 35, 55–65 (1987).

    Article  CAS  PubMed  Google Scholar 

  55. Alroy, J., Goyal, V. & Warren, C.D. Lectin histochemistry of gangliosidosis. I. Neural tissue in four mammalian species. Acta. Neuropathol. 76, 109–114 (1988).

    Article  CAS  PubMed  Google Scholar 

  56. Grunwald, I.C. et al. Hippocampal plasticity requires postsynaptic ephrinBs. Nat. Neurosci. 7, 33–40 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, H.U., Chen, Z.F. & Anderson, D.J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Baluk, P., Morikawa, S., Haskell, A., Mancuso, M. & McDonald, D.M. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am. J. Pathol. 163, 1801–1815 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S.F. Rocha for her help, A. Eichmann for sharing unpublished data, S. Volkery for microscopy and M.L. Bocheneck for reading the paper. The Max Planck Society and the University of Münster have provided support and funding for this research.

Author information

Authors and Affiliations

Authors

Contributions

M.E.P. and R.H.A. designed the experiments; M.E.P. and I.S. carried out the experiments; M.E.P., R.B. and R.H.A. contributed to the development of the methods and wrote the paper.

Corresponding author

Correspondence to Mara E Pitulescu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

Intragastric injection of tamoxifen in a one–day–old mouse. (MOV 6883 kb)

Supplementary Video 2

Retina dissection. (MOV 9397 kb)

Supplementary Video 3

Retina dissection. (MOV 5141 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitulescu, M., Schmidt, I., Benedito, R. et al. Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice. Nat Protoc 5, 1518–1534 (2010). https://doi.org/10.1038/nprot.2010.113

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.113

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing