Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interactions between the microbiota, immune and nervous systems in health and disease

Abstract

The diverse collection of microorganisms that inhabit the gastrointestinal tract, collectively called the gut microbiota, profoundly influences many aspects of host physiology, including nutrient metabolism, resistance to infection and immune system development. Studies investigating the gut–brain axis demonstrate a critical role for the gut microbiota in orchestrating brain development and behavior, and the immune system is emerging as an important regulator of these interactions. Intestinal microbes modulate the maturation and function of tissue-resident immune cells in the CNS. Microbes also influence the activation of peripheral immune cells, which regulate responses to neuroinflammation, brain injury, autoimmunity and neurogenesis. Accordingly, both the gut microbiota and immune system are implicated in the etiopathogenesis or manifestation of neurodevelopmental, psychiatric and neurodegenerative diseases, such as autism spectrum disorder, depression and Alzheimer's disease. In this review, we discuss the role of CNS-resident and peripheral immune pathways in microbiota–gut–brain communication during health and neurological disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of the microbiota on microglia and astrocyte biology.

Debbie Maizels/Springer Nature

Figure 2: Effects of the microbiota on peripheral immune cells and CNS function.

Debbie Maizels/Springer Nature

Figure 3: Crosstalk between the microbiota, immune system and CNS.

Debbie Maizels/Springer Nature

Similar content being viewed by others

References

  1. Belkaid, Y. & Hand, T.W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Honda, K. & Littman, D.R. The microbiota in adaptive immune homeostasis and disease. Nature 535, 75–84 (2016).

    CAS  PubMed  Google Scholar 

  3. Rooks, M.G. & Garrett, W.S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16, 341–352 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Collins, S.M., Surette, M. & Bercik, P. The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 10, 735–742 (2012).

    CAS  PubMed  Google Scholar 

  5. Cryan, J.F. & Dinan, T.G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).

    CAS  PubMed  Google Scholar 

  6. Sampson, T.R. & Mazmanian, S.K. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 17, 565–576 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Reaa, K., Dinan, T.G. & Cryan, J.F. The microbiome: a key regulator of stress and neuroinflammation. Neurobiol. Stress 4, 23–33 (2016).

    Google Scholar 

  8. Deverman, B.E. & Patterson, P.H. Cytokines and CNS development. Neuron 64, 61–78 (2009).

    CAS  PubMed  Google Scholar 

  9. Stephan, A.H., Barres, B.A. & Stevens, B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu. Rev. Neurosci. 35, 369–389 (2012).

    CAS  PubMed  Google Scholar 

  10. Elmer, B.M. & McAllister, A.K. Major histocompatibility complex class I proteins in brain development and plasticity. Trends Neurosci. 35, 660–670 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Weinstein, L.I., Revuelta, A. & Pando, R.H. Catecholamines and acetylcholine are key regulators of the interaction between microbes and the immune system. Ann. NY Acad. Sci. 1351, 39–51 (2015).

    PubMed  Google Scholar 

  12. Baganz, N.L. & Blakely, R.D. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem. Neurosci. 4, 48–63 (2013). This reference extensively reviews the role of serotonin signaling and serotonin uptake in immune cell function, highlighting serotonergic pathways that are intrinsic to innate and adaptive immune cells.

    CAS  PubMed  Google Scholar 

  13. Ahern, G.P. 5-HT and the immune system. Curr. Opin. Pharmacol. 11, 29–33 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Barragan, A., Weidner, J.M., Jin, Z., Korpi, E.R. & Birnir, B. GABAergic signalling in the immune system. Acta Physiol. (Oxf.) 213, 819–827 (2015).

    CAS  Google Scholar 

  15. Ben-Shaanan, T.L. et al. Activation of the reward system boosts innate and adaptive immunity. Nat. Med. 22, 940–944 (2016).

    CAS  PubMed  Google Scholar 

  16. Erickson, M.A., Dohi, K. & Banks, W.A. Neuroinflammation: a common pathway in CNS diseases as mediated at the blood-brain barrier. Neuroimmunomodulation 19, 121–130 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Banks, W.A. The blood-brain barrier in neuroimmunology: tales of separation and assimilation. Brain Behav. Immun. 44, 1–8 (2015).

    CAS  PubMed  Google Scholar 

  18. Rook, G.A., Raison, C.L. & Lowry, C.A. Microbiota, immunoregulatory old friends and psychiatric disorders. Adv. Exp. Med. Biol. 817, 319–356 (2014).

    CAS  PubMed  Google Scholar 

  19. Nayak, D., Roth, T.L. & McGavern, D.B. Microglia development and function. Annu. Rev. Immunol. 32, 367–402 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Matcovitch-Natan, O. et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353, aad8670 (2016).

    PubMed  Google Scholar 

  21. Nayak, D., Zinselmeyer, B.H., Corps, K.N. & McGavern, D.B. In vivo dynamics of innate immune sentinels in the CNS. Intravital 1, 95–106 (2012).

    PubMed  Google Scholar 

  22. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

    CAS  PubMed  Google Scholar 

  23. Bilbo, S.D. & Schwarz, J.M. The immune system and developmental programming of brain and behavior. Front. Neuroendocrinol. 33, 267–286 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu, X. et al. Microglial and macrophage polarization—new prospects for brain repair. Nat. Rev. Neurol. 11, 56–64 (2015).

    PubMed  Google Scholar 

  25. Ransohoff, R.M. A polarizing question: do M1 and M2 microglia exist? Nat. Neurosci. 19, 987–991 (2016).

    CAS  PubMed  Google Scholar 

  26. Bogie, J.F.J., Stinissen, P. & Hendriks, J.J.A. Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol. 128, 191–213 (2014).

    CAS  PubMed  Google Scholar 

  27. Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015). This study demonstrates the critical role of the microbiome in modulating microglial development and maintenance, particularly how short-chain fatty acids promote microglial maturity.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Borre, Y.E. et al. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol. Med. 20, 509–518 (2014).

    PubMed  Google Scholar 

  29. Smith, P.M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    CAS  PubMed  Google Scholar 

  30. Schafer, D.P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cho, I. et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621–626 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Khakh, B.S. & Sofroniew, M.V. Diversity of astrocyte functions and phenotypes in neural circuits. Nat. Neurosci. 18, 942–952 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jensen, C.J., Massie, A. & De Keyser, J. Immune players in the CNS: the astrocyte. J. Neuroimmune Pharmacol. 8, 824–839 (2013).

    PubMed  Google Scholar 

  34. Rossi, D. Astrocyte physiopathology: at the crossroads of intercellular networking, inflammation and cell death. Prog. Neurobiol. 130, 86–120 (2015).

    CAS  PubMed  Google Scholar 

  35. Barres, B.A. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60, 430–440 (2008).

    CAS  PubMed  Google Scholar 

  36. Dong, Y. & Benveniste, E.N. Immune function of astrocytes. Glia 36, 180–190 (2001).

    CAS  PubMed  Google Scholar 

  37. Rothhammer, V. et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016). This study highlights how microbial metabolites of dietary tryptophan affect astrocytic inflammatory status, which modulates the severity of EAE.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013).

    CAS  PubMed  Google Scholar 

  39. Wikoff, W.R. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA 106, 3698–3703 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Radjavi, A., Smirnov, I., Derecki, N. & Kipnis, J. Dynamics of the meningeal CD4+ T-cell repertoire are defined by the cervical lymph nodes and facilitate cognitive task performance in mice. Mol. Psychiatry 19, 531–533 (2014).

    CAS  PubMed  Google Scholar 

  41. Ribatti, D. The crucial role of mast cells in blood-brain barrier alterations. Exp. Cell Res. 338, 119–125 (2015).

    CAS  PubMed  Google Scholar 

  42. Forsythe, P. Microbes taming mast cells: implications for allergic inflammation and beyond. Eur. J. Pharmacol. 778, 169–175 (2016).

    CAS  PubMed  Google Scholar 

  43. Khosravi, A. et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 15, 374–381 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, Y.K., Menezes, J.S., Umesaki, Y. & Mazmanian, S.K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 108 (Suppl. 1), 4615–4622 (2011).

    CAS  PubMed  Google Scholar 

  45. Ochoa-Reparaz, J. et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J. Immunol. 183, 6041–6050 (2009).

    CAS  PubMed  Google Scholar 

  46. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    CAS  PubMed  Google Scholar 

  47. Ivanov, I.I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Komiyama, Y., Nakae, S., Matsuki, T., Nambu, A., Ishigame, H. & Kakuta, S. et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol. 177, 566–573 (2006).

    CAS  PubMed  Google Scholar 

  49. Round, J.L. et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332, 974–977 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Round, J.L. & Mazmanian, S.K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl. Acad. Sci. USA 107, 12204–12209 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ochoa-Reparaz, J. et al. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. J. Immunol. 185, 4101–4108 (2010).

    CAS  PubMed  Google Scholar 

  52. Ochoa-Repáraz, J. et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 3, 487–495 (2010).

    PubMed  Google Scholar 

  53. Wang, Y. et al. An intestinal commensal symbiosis factor controls neuroinflammation via TLR2-mediated CD39 signalling. Nat. Commun. 5, 4432 (2014)Refs. 51–53 describe roles for Bacteroides fragilis derived PSA in neuroprotection from EAE through induction of regulatory T cell responses, highlighting the relationship between bacterially derived molecules, immune regulation and neuroinflammation.

    CAS  PubMed  Google Scholar 

  54. Haghikia, A. et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43, 817–829 (2015).

    CAS  PubMed  Google Scholar 

  55. Kadowaki, A. et al. Gut environment-induced intraepithelial autoreactive CD4+ T cells suppress central nervous system autoimmunity via LAG-3. Nat. Commun. 7, 11639 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Benakis, C. et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat. Med. 22, 516–523 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Winek, K. et al. Depletion of cultivatable gut microbiota by broad-spectrum antibiotic pretreatment worsens outcome after murine stroke. Stroke 47, 1354–1363 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Singh, V. et al. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J. Neurosci. 36, 7428–7440 (2016). Refs. 56–58 describe a role for the gut microbiota in the development of brain injury in the MCAO mouse model of stroke. MCAO results in intestinal dysbiosis, which regulates disease outcome through modulation of the adaptive immune system.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Houlden, A. et al. Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav. Immun. 57, 10–20 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kigerl, K.A. et al. Gut dysbiosis impairs recovery after spinal cord injury. J. Exp. Med. 213, 2603–2620 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Walsh, J.T. et al. MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4. J. Clin. Invest. 125, 2547 (2015).

    PubMed  PubMed Central  Google Scholar 

  62. Gadani, S.P., Walsh, J.T., Smirnov, I., Zheng, J. & Kipnis, J. The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury. Neuron 85, 703–709 (2015).

    CAS  PubMed  Google Scholar 

  63. Matsushita, T., Yanaba, K., Bouaziz, J.D., Fujimoto, M. & Tedder, T.F. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J. Clin. Invest. 118, 3420–3430 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Pöllinger, B. et al. Spontaneous relapsing-remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells. J. Exp. Med. 206, 1303–1316 (2009).

    PubMed  PubMed Central  Google Scholar 

  65. Yaddanapudi, K. et al. Passive transfer of streptococcus-induced antibodies reproduces behavioral disturbances in a mouse model of pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection. Mol. Psychiatry 15, 712–726 (2010).

    CAS  PubMed  Google Scholar 

  66. Tennoune, N. et al. Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide α-MSH, at the origin of eating disorders. Transl. Psychiatry 4, e458 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. D'Mello, C. & Swain, M.G. Liver-brain interactions in inflammatory liver diseases: implications for fatigue and mood disorders. Brain Behav. Immun. 35, 9–20 (2014).

    CAS  PubMed  Google Scholar 

  68. Graff, L.A., Walker, J.R. & Bernstein, C.N. Depression and anxiety in inflammatory bowel disease: a review of comorbidity and management. Inflamm. Bowel Dis. 15, 1105–1118 (2009).

    PubMed  Google Scholar 

  69. D'Mello, C. et al. Probiotics improve inflammation-associated sickness behavior by altering communication between the peripheral immune system and the brain. J. Neurosci. 35, 10821–10830 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Humann, J. et al. Bacterial peptidoglycan transverses the placenta to induce fetal neuroproliferation and aberrant postnatal behavior. Cell Host Microbe 19, 388–399 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ogbonnaya, E.S. et al. Adult hippocampal neurogenesis is regulated by the microbiome. Biol. Psychiatry 78, e7–e9 (2015).

    PubMed  Google Scholar 

  72. Möhle, L. et al. Ly6Chi monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Rep. 15, 1945–1956 (2016). This study demonstrates that the gut microbiota promote hippocampal neurogenesis in adult mice through recruitment of monocytes to the CNS. However, ref. 74 observed that the gut microbiota inhibit this process, suggesting complex interactions between intestinal microbes and neurogenesis.

    PubMed  Google Scholar 

  73. Hsiao, E.Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Buffington, S.A. et al. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 165, 1762–1775 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Choi, G.B. et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351, 933–939 (2016). This study demonstrates an important role for T cell–derived IL-17A in the development of behavioral abnormalities in the maternal immune activation mouse model of ASD, highlighting the relationship between immune dysregulation, neurophysiology and behavior.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hsiao, E.Y., McBride, S.W., Chow, J., Mazmanian, S.K. & Patterson, P.H. Modeling an autism risk factor in mice leads to permanent immune dysregulation. Proc. Natl. Acad. Sci. USA 109, 12776–12781 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Smith, S.E., Li, J., Garbett, K., Mirnics, K. & Patterson, P.H. Maternal immune activation alters fetal brain development through interleukin-6. J. Neurosci. 27, 10695–10702 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Krishnan, V. & Nestler, E.J. The molecular neurobiology of depression. Nature 455, 894–902 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Miller, A.H. & Raison, C.L. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 16, 22–34 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Diaz Heijtz, R. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA 108, 3047–3052 (2011).

    PubMed  Google Scholar 

  81. Bercik, P. et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil. 23, 1132–1139 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Desbonnet, L. et al. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170, 1179–1188 (2010).

    CAS  PubMed  Google Scholar 

  83. Arseneault-Bréard, J. et al. Combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 reduces post-myocardial infarction depression symptoms and restores intestinal permeability in a rat model. Br. J. Nutr. 107, 1793–1799 (2012).

    PubMed  Google Scholar 

  84. Bravo, J.A. et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 108, 16050–16055 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. De Palma, G. et al. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat. Commun. 6, 7735 (2015).

    CAS  PubMed  Google Scholar 

  86. Zheng, P. et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism. Mol. Psychiatry 21, 786–796 (2016).

    CAS  PubMed  Google Scholar 

  87. Kelly, J.R. et al. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 82, 109–118 (2016).

    PubMed  Google Scholar 

  88. Desbonnet, L., Garrett, L., Clarke, G., Bienenstock, J. & Dinan, T.G. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J. Psychiatr. Res. 43, 164–174 (2008).

    PubMed  Google Scholar 

  89. Bellavance, M.A. & Rivest, S. The HPA – immune axis and the immunomodulatory actions of glucocorticoids in the brain. Front. Immunol. 5, 136 (2014). This study discusses the immunomodulatory effects of glucocorticoids released by activation of the HPA axis, a neuroendocrine pathway that allows host adaptation to physical and psychological stress.

    PubMed  PubMed Central  Google Scholar 

  90. Hammond, C.J. et al. Immunohistological detection of Chlamydia pneumoniae in the Alzheimer's disease brain. BMC Neurosci. 11, 121 (2010).

    PubMed  PubMed Central  Google Scholar 

  91. Huang, W.S. et al. Association between Helicobacter pylori infection and dementia. J. Clin. Neurosci. 21, 1355–1358 (2014).

    CAS  PubMed  Google Scholar 

  92. Karim, S. et al. An association of virus infection with type 2 diabetes and Alzheimer's disease. CNS Neurol. Disord. Drug Targets 13, 429–439 (2014).

    CAS  PubMed  Google Scholar 

  93. Lurain, N.S. et al. Virological and immunological characteristics of human cytomegalovirus infection associated with Alzheimer disease. J. Infect. Dis. 208, 564–572 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Pisa, D., Alonso, R., Rábano, A., Rodal, I. & Carrasco, L. Different brain regions are infected with fungi in Alzheimer's disease. Sci. Rep. 5, 15015 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Prandota, J. Possible link between Toxoplasma gondii and the anosmia associated with neurodegenerative diseases. Am. J. Alzheimers Dis. Other Demen. 29, 205–214 (2014).

    PubMed  Google Scholar 

  96. Glass, C.K., Saijo, K., Winner, B., Marchetto, M.C. & Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918–934 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kumar, D.K. et al. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer's disease. Sci. Transl. Med. 8, 340ra72 (2016). This study demonstrates that bacterial infection promotes amyloid-β peptide aggregation as an antimicrobial response, raising the question of whether neurodegeneration in Alzheimer's disease is causally associated with host responses to microbial infection.

    PubMed  Google Scholar 

  98. Harach, T. et al. Reduction of Alzheimer's disease beta-amyloid pathology in the absence of gut microbiota. Preprint at https://arxiv.org/abs/1509.02273 (2015).

  99. Minter, M.R. et al. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer's disease. Sci. Rep. 6, 30028 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Chapman, M.R. et al. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295, 851–855 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Fröhlich, E.E. et al. Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. Brain Behav. Immun. 56, 140–155 (2016).

    PubMed  PubMed Central  Google Scholar 

  102. Wang, T. et al. Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats. Benef. Microbes 6, 707–717 (2015).

    CAS  PubMed  Google Scholar 

  103. Fasano, A., Visanji, N.P., Liu, L.W., Lang, A.E. & Pfeiffer, R.F. Gastrointestinal dysfunction in Parkinson's disease. Lancet Neurol. 14, 625–639 (2015).

    CAS  PubMed  Google Scholar 

  104. Shannon, K.M. et al. Alpha-synuclein in colonic submucosa in early untreated Parkinson's disease. Mov. Disord. 27, 709–715 (2012).

    PubMed  Google Scholar 

  105. Scheperjans, F. et al. Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov. Disord. 30, 350–358 (2015).

    PubMed  Google Scholar 

  106. Keshavarzian, A. et al. Colonic bacterial composition in Parkinson's disease. Mov. Disord. 30, 1351–1360 (2015).

    CAS  PubMed  Google Scholar 

  107. Devos, D. et al. Colonic inflammation in Parkinson's disease. Neurobiol. Dis. 50, 42–48 (2013).

    CAS  PubMed  Google Scholar 

  108. Forsyth, C.B. et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease. PLoS One 6, e28032 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Chen, S.G. et al. Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged Fischer 344 rats and Caenorhabditis elegans. Sci. Rep. 6, 34477 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Crack, P.J. & Bray, P.J. Toll-like receptors in the brain and their potential roles in neuropathology. Immunol. Cell Biol. 85, 476–480 (2007).

    CAS  PubMed  Google Scholar 

  111. Brenchley, J.M. & Douek, D.C. Microbial translocation across the GI tract. Annu. Rev. Immunol. 30, 149–173 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Chakravarty, S. & Herkenham, M. Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J. Neurosci. 25, 1788–1796 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Qin, L. et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55, 453–462 (2007).

    PubMed  PubMed Central  Google Scholar 

  114. Arentsen, T. et al. The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior. Mol. Psychiatry http://dx.doi.org/10.1038/mp.2016.182 (2016).

  115. Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    CAS  PubMed  Google Scholar 

  116. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015). This study identifies a network of lymphatic vessels in the meningeal spaces of the CNS, challenging the idea that the brain lacks an organized immune surveillance system.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Reigstad, C.S. et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 29, 1395–1403 (2015).

    CAS  PubMed  Google Scholar 

  118. Yano, J.M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Lyte, M. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog. 9, e1003726 (2013).

    PubMed  PubMed Central  Google Scholar 

  120. Gershon, M.D. & Tack, J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132, 397–414 (2007).

    CAS  PubMed  Google Scholar 

  121. Asano, Y. et al. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G1288–G1295 (2012).

    CAS  PubMed  Google Scholar 

  122. Williams, B.B. et al. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 16, 495–503 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Borovikova, L.V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).

    CAS  PubMed  Google Scholar 

  124. van der Kleij, H., O'Mahony, C., Shanahan, F., O'Mahony, L. & Bienenstock, J. Protective effects of Lactobacillus rhamnosus and Bifidobacterium infantis in murine models for colitis do not involve the vagus nerve. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R1131–R1137 (2008).

    CAS  PubMed  Google Scholar 

  125. Ait-Belgnaoui, A. et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 37, 1885–1895 (2012).

    CAS  PubMed  Google Scholar 

  126. Demaude, J., Salvador-Cartier, C., Fioramonti, J., Ferrier, L. & Bueno, L. Phenotypic changes in colonocytes following acute stress or activation of mast cells in mice: implications for delayed epithelial barrier dysfunction. Gut 55, 655–661 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Moussaoui, N. et al. Changes in intestinal glucocorticoid sensitivity in early life shape the risk of epithelial barrier defect in maternal-deprived rats. PLoS One 9, e88382 (2014).

    PubMed  PubMed Central  Google Scholar 

  128. Lennon, E.M. et al. Early life stress triggers persistent colonic barrier dysfunction and exacerbates colitis in adult IL-10−/− mice. Inflamm. Bowel Dis. 19, 712–719 (2013).

    CAS  PubMed  Google Scholar 

  129. Gue, M., Junien, J.L. & Bueno, L. Conditioned emotional response in rats enhances colonic motility through the central release of corticotropin-releasing factor. Gastroenterology 100, 964–970 (1991).

    CAS  PubMed  Google Scholar 

  130. Gué, M., Peeters, T., Depoortere, I., Vantrappen, G. & Buéno, L. Stress-induced changes in gastric emptying, postprandial motility, and plasma gut hormone levels in dogs. Gastroenterology 97, 1101–1107 (1989).

    PubMed  Google Scholar 

  131. Rubio, C.A. & Huang, C.B. Quantification of the sulphomucin-producing cell population of the colonic mucosa during protracted stress in rats. In Vivo 6, 81–84 (1992).

    CAS  PubMed  Google Scholar 

  132. Da Silva, S. et al. Stress disrupts intestinal mucus barrier in rats via mucin O-glycosylation shift: prevention by a probiotic treatment. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G420–G429 (2014).

    CAS  PubMed  Google Scholar 

  133. Park, A.J. et al. Altered colonic function and microbiota profile in a mouse model of chronic depression. Neurogastroenterol. Motil. 25, 733–e575 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Hueston, C.M. & Deak, T. The inflamed axis: the interaction between stress, hormones, and the expression of inflammatory-related genes within key structures comprising the hypothalamic-pituitary-adrenal axis. Physiol. Behav. 124, 77–91 (2014).

    CAS  PubMed  Google Scholar 

  135. Jangi, S. et al. Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 7, 12015 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Tremlett, H. et al. Gut microbiota in early pediatric multiple sclerosis: a case-control study. Eur. J. Neurol. 23, 1308–1321 (2016).

    PubMed  PubMed Central  Google Scholar 

  137. Chen, J. et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci. Rep. 6, 28484 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Miyake, S. et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLoS One 10, e0137429 (2015).

    PubMed  PubMed Central  Google Scholar 

  139. Cantarel, B.L. et al. Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J. Investig. Med. 63, 729–734 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Keshavarzian, A. et al. Colonic bacterial composition in Parkinson's disease. Mov. Disord. 30, 1351–1360 (2015).

    CAS  PubMed  Google Scholar 

  141. Bu, X.L. et al. A study on the association between infectious burden and Alzheimer's disease. Eur. J. Neurol. 22, 1519–1525 (2015).

    PubMed  Google Scholar 

  142. Gungor, B., Adiguzel, E., Gursel, I., Yilmaz, B. & Gursel, M. Intestinal microbiota in patients with spinal cord injury. PLoS One 11, e0145878 (2016).

    PubMed  PubMed Central  Google Scholar 

  143. Fouts, D.E. et al. Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury. J. Transl. Med. 10, 174 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Aizawa, E. et al. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J. Affect. Disord. 202, 254–257 (2016).

    PubMed  Google Scholar 

  145. Jiang, H. et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 48, 186–194 (2015).

    PubMed  Google Scholar 

  146. Messaoudi, M. et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr. 105, 755–764 (2011).

    CAS  PubMed  Google Scholar 

  147. Mohammadi, A.A. et al. The effects of probiotics on mental health and hypothalamic-pituitary-adrenal axis: a randomized, double-blind, placebo-controlled trial in petrochemical workers. Nutr. Neurosci. 19, 387–395 (2016).

    CAS  PubMed  Google Scholar 

  148. Tomova, A. et al. Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Behav. 138, 179–187 (2015).

    CAS  PubMed  Google Scholar 

  149. Wang, L. et al. Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol. Autism 4, 42 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. De Angelis, M. et al. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One 8, e76993 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Kang, D.-W. et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 8, e68322 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Williams, B.L. et al. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One 6, e24585 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Adams, J.B., Johansen, L.J., Powell, L.D., Quig, D. & Rubin, R.A. Gastrointestinal flora and gastrointestinal status in children with autism--comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 11, 22 (2011).

    PubMed  PubMed Central  Google Scholar 

  154. Finegold, S.M. et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16, 444–453 (2010).

    CAS  PubMed  Google Scholar 

  155. Parracho, H.M.R.T., Bingham, M.O., Gibson, G.R. & McCartney, A.L. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol. 54, 987–991 (2005).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by funding from the NIH Director's Early Independence award (5DP5OD017924 to E.Y.H.), Alfred P. Sloan Fellowship in Neuroscience (to E.Y.H.), NIH Ruth L. Kirschstein National Research Service Award (T32GM065823 to C.A.O.) and UCLA Life Sciences Division, Department of Integrative Biology & Physiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine Y Hsiao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fung, T., Olson, C. & Hsiao, E. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20, 145–155 (2017). https://doi.org/10.1038/nn.4476

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4476

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing