Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic variability in the regulation of gene expression in ten regions of the human brain

Abstract

Germ-line genetic control of gene expression occurs via expression quantitative trait loci (eQTLs). We present a large, exon-specific eQTL data set covering ten human brain regions. We found that cis-eQTL signals (within 1 Mb of their target gene) were numerous, and many acted heterogeneously among regions and exons. Co-regulation analysis of shared eQTL signals produced well-defined modules of region-specific co-regulated genes, in contrast to standard coexpression analysis of the same samples. We report cis-eQTL signals for 23.1% of catalogued genome-wide association study hits for adult-onset neurological disorders. The data set is publicly available via public data repositories and via http://www.braineac.org/. Our study increases our understanding of the regulation of gene expression in the human brain and will be of value to others pursuing functional follow-up of disease-associated variants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Unsupervised hierarchical clustering of cis-eQTL signals and related expression data.
Figure 2: Regional characterization of cis-eQTL signals.
Figure 3: Regional characterization examples.
Figure 4: Region-specific gene switching example.
Figure 5: Exon-level characterization of cis-eQTL signals.
Figure 6: Functional characterization by location of sentinel in relation to its target gene.
Figure 7: Examples of GWAS hits that were cis-eQTL signals.

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. International Parkinson's Disease Genomics Consortium (IPDGC) & Wellcome Trust Case Control Consortium 2 (WTCCC2). A two-stage meta-analysis identifies several new loci for Parkinson's disease. PLoS Genet. 7, e1002142 (2011).

  2. Hollingworth, P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat. Genet. 43, 429–435 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hamshere, M.L. et al. Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. Mol. Psychiatry 18, 708–712 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Hardy, J. & Singleton, A. Genomewide association studies and human disease. N. Engl. J. Med. 360, 1759–1768 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Visscher, P.M., Brown, M.A., McCarthy, M.I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Emilsson, V. et al. Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Moffatt, M.F. et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448, 470–473 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Jellinger, K. Recent Developments in Parkinson's Disease 33–36 (Raven, 1986).

  9. Hyman, B.T., Van Hoesen, G.W., Damasio, A.R. & Barnes, C.L. Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. Science 225, 1168–1170 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, E.T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, Q., Lee, J.A. & Black, D.L. Neuronal regulation of alternative pre-mRNA splicing. Nat. Rev. Neurosci. 8, 819–831 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Norris, A.D. & Calarco, J.A. Emerging roles of alternative pre-mRNA splicing regulation in neuronal development and function. Front. Neurosci. 6, 122 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Myers, A.J. et al. A survey of genetic human cortical gene expression. Nat. Genet. 39, 1494–1499 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Heinzen, E.L. et al. Tissue-specific genetic control of splicing: implications for the study of complex traits. PLoS Biol. 6, e1 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Webster, J.A. et al. Genetic control of human brain transcript expression in Alzheimer disease. Am. J. Hum. Genet. 84, 445–458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gibbs, J.R. et al. Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet. 6, e1000952 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, C. et al. Whole-genome association mapping of gene expression in the human prefrontal cortex. Mol. Psychiatry 15, 779–784 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kang, H.J. et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483–489 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Colantuoni, C. et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 478, 519–523 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hernandez, D.G. et al. Integration of GWAS SNPs and tissue specific expression profiling reveal discrete eQTLs for human traits in blood and brain. Neurobiol. Dis. 47, 20–28 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim, S., Cho, H., Lee, D. & Webster, M.J. Association between SNPs and gene expression in multiple regions of the human brain. Transl. Psychiatry 2, e113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zou, F. et al. Brain expression genome-wide association study (eGWAS) identifies human disease-associated variants. PLoS Genet. 8, e1002707 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ramasamy, A. et al. Resolving the polymorphism-in-probe problem is critical for correct interpretation of expression QTL studies. Nucleic Acids Res. 41, e88 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Trabzuni, D. et al. Quality control parameters on a large dataset of regionally dissected human control brains for whole genome expression studies. J. Neurochem. 119, 275–282 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zeller, T. et al. Genetics and beyond–—the transcriptome of human monocytes and disease susceptibility. PLoS ONE 5, e10693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fairfax, B.P. et al. Genetics of gene expression in primary immune cells identifies cell type–specific master regulators and roles of HLA alleles. Nat. Genet. 44, 502–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grundberg, E. et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat. Genet. 44, 1084–1089 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Albert, F.W., Treusch, S., Shockley, A.H., Bloom, J.S. & Kruglyak, L. Genetics of single-cell protein abundance variation in large yeast populations. Nature 506, 494–497 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schorge, S., van de Leemput, J., Singleton, A., Houlden, H. & Hardy, J. Human ataxias: a genetic dissection of inositol triphosphate receptor (ITPR1)-dependent signaling. Trends Neurosci. 33, 211–219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nixon, R.A. The role of autophagy in neurodegenerative disease. Nat. Med. 19, 983–997 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Gruber, A.R., Fallmann, J., Kratochvill, F., Kovarik, P. & Hofacker, I.L. AREsite: a database for the comprehensive investigation of AU-rich elements. Nucleic Acids Res. 39, D66–D69 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Pankratz, N. et al. Meta-analysis of Parkinson's disease: identification of a novel locus, RIT2. Ann. Neurol. 71, 370–384 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van Es, M.A. et al. Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nat. Genet. 41, 1083–1087 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Augustin, I., Rosenmund, C., Sudhof, T.C. & Brose, N. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400, 457–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Varoqueaux, F. et al. Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc. Natl. Acad. Sci. USA 99, 9037–9042 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Köhler, M. et al. Small-conductance, calcium-activated potassium channels from mammalian brain. Science 273, 1709–1714 (1996).

    Article  PubMed  Google Scholar 

  37. McKay, J.D. et al. Lung cancer susceptibility locus at 5p15.33. Nat. Genet. 40, 1404–1406 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thorgeirsson, T.E. et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452, 638–642 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thorgeirsson, T.E. et al. Sequence variants at CHRNB3–CHRNA6 and CYP2A6 affect smoking behavior. Nat. Genet. 42, 448–453 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat. Genet. 42, 441–447 (2010).

  41. Liu, J.Z. et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat. Genet. 42, 436–440 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Landi, M.T. et al. A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Am. J. Hum. Genet. 85, 679–691 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Capasso, M. et al. Common variations in BARD1 influence susceptibility to high-risk neuroblastoma. Nat. Genet. 41, 718–723 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Naj, A.C. et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nat. Genet. 43, 436–441 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lambert, J.C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat. Genet. 41, 1094–1099 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Plagnol, V., Smyth, D.J., Todd, J.A. & Clayton, D.G. Statistical independence of the colocalized association signals for type 1 diabetes and RPS26 gene expression on chromosome 12q13. Biostatistics 10, 327–334 (2009).

    Article  PubMed  Google Scholar 

  47. Millar, T. et al. Tissue and organ donation for research in forensic pathology: the MRC Sudden Death Brain and Tissue Bank. J. Pathol. 213, 369–375 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Beach, T.G. et al. The Sun Health Research Institute Brain Donation Program: description and experience, 1987–2007. Cell Tissue Bank 9, 229–245 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hawrylycz, M.J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roth, R.B. et al. Gene expression analyses reveal molecular relationships among 20 regions of the human CNS. Neurogenetics 7, 67–80 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Irizarry, R.A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003).

    Article  PubMed  Google Scholar 

  52. Nalls, M.A. et al. Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet 377, 641–649 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Li, Y., Willer, C., Sanna, S. & Abecasis, G. Genotype imputation. Annu. Rev. Genomics Hum. Genet. 10, 387–406 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, Y., Willer, C.J., Ding, J., Scheet, P. & Abecasis, G.R. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34, 816–834 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Coin, L.J. et al. cnvHap: an integrative population and haplotype-based multiplatform model of SNPs and CNVs. Nat. Methods 7, 541–546 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Shabalin, A.A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28, 1353–1358 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. A Stat. Soc. 57, 289–300 (1995).

    Google Scholar 

  58. Hindorff, L.A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106, 9362–9367 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Obenchain, V., Morgan, M. & Lawrence, M. R Package Version 1.4.8 (Bioconductor, 2012).

  60. Barbosa-Morais, N.L. et al. A re-annotation pipeline for Illumina BeadArrays: improving the interpretation of gene expression data. Nucleic Acids Res. 38, e17 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Banner Sun Health Research Institute Brain and Body Donation Program of Sun City, Arizona for the provision of human biospecimens. The Brain and Body Donation Program is supported by the US National Institute of Neurological Disorders and Stroke (U24 NS072026 National Brain and Tissue Resource for Parkinson's Disease and Related Disorders), the National Institute on Aging (P30 AG19610 Arizona Alzheimer's Disease Core Center), the Arizona Department of Health Services (contract 211002, Arizona Alzheimer's Research Center), the Arizona Biomedical Research Commission (contracts 4001, 0011, 05-901 and 1001 to the Arizona Parkinson's Disease Consortium) and the Michael J. Fox Foundation for Parkinson's Research. We would like to thank AROS Applied Biotechnology AS company laboratories and Affymetrix for their input. H. Jonvik, L. Stanyer, J. Toombs and M. Gaskin provided invaluable assistance in helping with our computer infrastructure and in sample handling and databasing. We thank A. Pittman for discussions. This work was supported by the UK Medical Research Council (MRC) through the MRC Sudden Death Brain Bank (C.S.), a Project Grant (G0901254 to J.H. and M.E.W.) and Training Fellowship (G0802462 to M.R.). D.T. was supported by the King Faisal Specialist Hospital and Research Centre, Saudi Arabia. This work was also supported in part by the Intramural Research Program of the US National Institute on Aging, National Institutes of Health, Department of Health and Human Services; project ZO1 AG000947. We acknowledge support from the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy's and St Thomas' National Health Service (NHS) Foundation Trust and King's College London. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

A.R.: statistical and computer analysis, data display, web tool implementation and manuscript drafting; D.T.: laboratory work and analysis, manuscript revision; S.G.: manuscript revision and web tool implementation; V.V.: web tool implementation; C.S.: neuropathological characterization; R.W.: brain dissection and documentation; T.D.: copy number variant (CNV) analysis; L.C.: supervision of CNV analysis; R.d.S.: study design; M.R.C.: data accrual for NABEC and manuscript revision; A.B.S.: data accrual for NABEC and manuscript revision; J.H.: study design, funding acquisition and manuscript revision; M.R.: study design, funding acquisition and manuscript drafting and revision; M.E.W.: statistical analysis, study design, funding acquisition and manuscript drafting and revision.

Corresponding authors

Correspondence to Mina Ryten or Michael E Weale.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Summary of sample features and analyses.

(a) Summary of sample characteristics and demographic information. (b) Plots of principal component axes 1 and 3 of gene expression with each sample coloured on the basis of brain region of origin or individual of origin. Given the number of individuals (N = 134) no key is provided within the figure. CRBL: cerebellar cortex; FCTX: frontal cortex; HIPP: hippocampus; MEDU: the inferior olivary nucleus (sub-dissected from the medulla); OCTX: occipital cortex; PUTM: putamen (at the level of the anterior commissure); SNIG: substantia nigra; TCTX: temporal cortex; THAL: thalamus (at the level of the lateral geniculate nucleus); WHMT: intralobular white matter. (c) Outline of the methods and analyses performed in this study.

Supplementary Figure 2 Comparison of cis-eQTL-based and expression-based clustering of gene expression

Rows relate to expression IDs in all panels. (a) Heatplot depicting membership of each expression ID within each of the ten cis-eQTL clusters identified in Figure 1a (labelled according to the brain region it is most associated with). Expression IDs are ordered according to cis-eQTL-based clustering (as depicted in Figure 1a). (b) Heatplot depicting gene expression in all ten brain regions. Expression IDs are ordered according to cis-eQTL-based clustering (as depicted in Figure 1a). (c) Heatplot depicting membership of each expression ID within each of the ten cis-eQTL clusters identified in Figure 1a (labelled according to the brain region it is most associated with). Expression IDs are ordered according to expression-based clustering (as depicted in Figure 1b). (d) Heatplot depicting gene expression in all ten brain regions. Expression IDs are ordered according to expression-based clustering (as depicted in Figure 1b). CRBL: cerebellar cortex; FCTX: frontal cortex; TCTX: temporal cortex; HIPP: hippocampus; MEDU: the inferior olivary nucleus (sub-dissected from the medulla); OCTX: occipital cortex; PUTM: putamen (at the level of the anterior commissure); SNIG: substantia nigra; THAL: thalamus (at the level of the lateral geniculate nucleus); WHMT: intralobular white matter.

Supplementary Figure 3 The effect of normalization approaches on cis-eQTL signals.

(a) Comparison of the regression coefficients for cis-eQTL analysis when all tissues are normalized together vs. when each tissue is normalized separately. (b) Comparison of the p-value of regression coefficients for cis-eQTL analysis when all tissues are normalized together vs. when each tissue is normalized separately.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 2314 kb)

Supplementary Methods Checklist (PDF 430 kb)

Supplementary Table 1

Sample details and related demographic information (XLSX 110 kb)

Supplementary Table 2

List of 91K cis-eQTL subsignals (sentinel × exprID × tissue) (XLS 7201 kb)

Supplementary Table 3

Replication of cis-eQTL signals (XLS 2856 kb)

Supplementary Table 4

Description of cis-eQTL clusters (XLSX 5944 kb)

Supplementary Table 5

Heterogeneity of cis-eQTL signals across brain regions and exons (XLS 1704 kb)

Supplementary Table 6

Variants with multiple gene targets (XLS 89 kb)

Supplementary Table 7

cis-eQTL signals for variants in the GWAS catalog (downloaded 7 March 2014) (XLSX 2177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramasamy, A., Trabzuni, D., Guelfi, S. et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat Neurosci 17, 1418–1428 (2014). https://doi.org/10.1038/nn.3801

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3801

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing