Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The conundrums of understanding genetic risks for autism spectrum disorders

Abstract

Recent advances in the genetics of autism spectrum disorders (ASDs) are offering new valuable insights into molecular and cellular mechanisms of pathology. At the same time, the emerging data challenge long-standing diagnostic conventions and the notion of phenotypic specificity. This review addresses the particular issues that attend gene discovery in neuropsychiatric and neurodevelopmental disorders and ASDs in particular, summarizes recent findings in human genetics broadly that are driving the reevaluation of the conventional wisdom regarding the allelic architecture of common psychiatric conditions, reviews selected discoveries in ASDs and their relevance to models of pathology, highlights the conceptual and practical issues raised by the observation of a convergence of ASD genetic risks with distinct psychiatric disorders, and considers the important interplay of studies of neurobiology and genetics in clarifying and extending our understanding of social disability syndromes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Allele frequency and effect size in ASDs.
Figure 2: Convergent rare risks and common modulators leading to divergent neuropsychiatric disorders.

Similar content being viewed by others

References

  1. American Psychiatric Association Task Force on DSM-IV. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR (American Psychiatric Association, Washington, DC, 2000).

  2. Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nat. Rev. Neurosci. 10, 724–735 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hammock, E.A.D. & Levitt, P. The discipline of neurobehavioral development: the emerging interface that builds processes and skills. Hum. Dev. 49, 294–309 (2006).

    Article  Google Scholar 

  4. Geschwind, D.H. Advances in autism. Annu. Rev. Med. 60, 367–380 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Campbell, D.B. et al. Distinct genetic risk based on association of MET in families with co-occurring autism and gastrointestinal conditions. Pediatrics 123, 1018–1024 (2009).

    Article  PubMed  Google Scholar 

  6. Ivleva, E.I. et al. Genetics and intermediate phenotypes of the schizophrenia-bipolar disorder boundary. Neurosci. Biobehav. Rev. 34, 897–921 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. State, M.W. The genetics of child psychiatric disorders: focus on autism and Tourette syndrome. Neuron 68, 254–269 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chakravarti, A. Population genetics: making sense out of sequence. Nat. Genet. 21, 56–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Reich, D.E. & Lander, E.S. On the allelic spectrum of human disease. Trends Genet. 17, 502–510 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Altshuler, D., Daly, M.J. & Lander, E.S. Genetic mapping in human disease. Science 322, 881–888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hindorff, L.A. et al. A catalogue of published genome-wide association studies. National Human Genome Research Institute <http://www.genome.gov/gwastudies/> (2010).

  13. Goldstein, D.B. Common genetic variation and human traits. N. Engl. J. Med. 360, 1696–1698 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Manolio, T.A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cirulli, E.T. & Goldstein, D.B. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat. Rev. Genet. 11, 415–425 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Jamain, S. et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat. Genet. 34, 27–29 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marshall, C.R. et al. Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet. 82, 477–488 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weiss, L.A. et al. Association between microdeletion and microduplication at 16p11.2 and autism. N. Engl. J. Med. 358, 667–675 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Levy, D. et al. Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron 70, 886–897 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Sanders, S.J. et al. Multiple recurrent de novo copy number variations (CNVs), including duplications of the 7q11.23 Williams-Beuren syndrome region, are strongly associated with autism. Neuron 70, 863–885 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Durand, C.M. et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat. Genet. 39, 25–27 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Sousa, I. et al. MET and autism susceptibility: family and case-control studies. Eur. J. Hum. Genet. 17, 749–758 (2009).

    Article  CAS  Google Scholar 

  24. Campbell, D.B. et al. A genetic variant that disrupts MET transcription is associated with autism. Proc. Natl. Acad. Sci. USA 103, 16834–16839 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jackson, P.B. et al. Further evidence that the rs1858830 C variant in the promoter region of the MET gene is associated with autistic disorder. Autism Res. 2, 232–236 (2009).

    Article  PubMed  Google Scholar 

  26. Alarcón, M. et al. Linkage, association and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am. J. Hum. Genet. 82, 150–159 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arking, D.E. et al. A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am. J. Hum. Genet. 82, 160–164 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Campbell, D.B., Li, C., Sutcliffe, J.S., Persico, A.M. & Levitt, P. Genetic evidence implicating multiple genes in the MET receptor tyrosine kinase pathway in autism spectrum disorder. Autism Res. 1, 159–168 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Judson, M.C., Eagleson, K.L., Wang, L. & Levitt, P. Evidence of cell-nonautonomous changes in dendrite and dendritic spine morphology in the Met signaling-deficient mouse forebrain. J. Comp. Neurol. 518, 4463–4478 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tyndall, S.J., Patel, S.J. & Walikonis, R.S. Hepatocyte growth factor–induced enhancement of dendritic branching is blocked by inhibitors of N-methyl-D-aspartate receptors and calcium/calmodulin-dependent kinases. J. Neurosci. Res. 85, 2343–2351 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Gutierrez, H., Dolcet, X., Tolcos, M. & Davies, A. HGF regulates the development of cortical pyramidal dendrites. Development 131, 3717–3726 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Judson, M.C., Eagleson, K.L. & Levitt, P. A new synaptic player leading to autism risk: Met receptor tyrosine kinase. J. Neurodev. Disord. 3, 282–292 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Levitt, P. & Campbell, D.B. The genetic and neurobiologic compass points toward common signaling dysfunctions in autism spectrum disorders. J. Clin. Invest. 119, 747–754 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bill, B.R. & Geschwind, D.H. Genetic advances in autism: heterogeneity and convergence on shared pathways. Curr. Opin. Genet. Dev. 19, 271–278 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Judson, M.C., Bergman, M.Y., Campbell, D.B., Eagleson, K.L. & Levitt, P. Dynamic gene and protein expression patterns of the autism-associated met receptor tyrosine kinase in the developing mouse forebrain. J. Comp. Neurol. 513, 511–531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Judson, M.C., Amaral, D.G. & Levitt, P. Conserved subcortical and divergent cortical expression of proteins encoded by orthologs of the autism risk gene MET. Cereb. Cortex 21, 1613–1626 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Geschwind, D.H. & Levitt, P. Autism spectrum disorders: developmental disconnection syndromes. Curr. Opin. Neurobiol. 17, 103–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Qiu, S., Anderson, C.T., Levitt, P. & Shepherd, G.M. Circuit-specific intracortical hyperconnectivity in mice with deletion of the autism-associated met receptor tyrosine kinase. J. Neursci. 31, 5855–5864 (2011).

    Article  CAS  Google Scholar 

  39. Campbell, D.B. et al. Disruption of cerebral cortex MET signaling in autism spectrum disorder. Ann. Neurol. 62, 243–250 (2007).

    Article  PubMed  Google Scholar 

  40. Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Devlin, B., Melhem, N. & Roeder, K. Do common variants play a role in risk for autism? Evidence and theoretical musings. Brain Res. 1380, 78–84 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Buie, T. et al. Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics 125 (suppl. 1) S1–S18 (2010).

    Article  PubMed  Google Scholar 

  43. Sebat, J., Levy, D.L. & McCarthy, S.E. Rare structural variants in schizophrenia: one disorder, multiple mutations; one mutation, multiple disorders. Trends Genet. 25, 528–535 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McCarthy, S.E. et al. Microduplications of 16p11.2 are associated with schizophrenia. Nat. Genet. 41, 1223–1227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, K. et al. Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 459, 528–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Weiss, L.A., Arking, D.E., Daly, M.J. & Chakravarti, A. A genome-wide linkage and association scan reveals novel loci for autism. Nature 461, 802–808 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Anney, R. et al. A genome-wide scan for common alleles affecting risk for autism. Hum. Mol. Genet. 19, 4072–4082 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moss, J. & Howlin, P. Autism spectrum disorders in genetic syndromes: implications for diagnosis, intervention and understanding the wider autism spectrum disorder population. J. Intellect. Disabil. Res. 53, 852–873 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Skuse, D.H. Rethinking the nature of genetic vulnerability to autistic spectrum disorders. Trends Genet. 23, 387–395 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Bourgeron, T. A synaptic trek to autism. Curr. Opin. Neurobiol. 19, 231–234 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Laumonnier, F. et al. X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am. J. Hum. Genet. 74, 552–557 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Szatmari, P. et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat. Genet. 39, 319–328 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bachman, P. et al. Abnormally high EEG alpha synchrony during working memory maintenance in twins discordant for schizophrenia. Schizophr. Res. 103, 293–297 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ching, M.S. et al. Deletions of NRXN1 (neurexin-1) predispose to a wide spectrum of developmental disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B, 937–947 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gauthier, J. et al. Novel de novo HANK3 mutation in autistic patients. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 150B, 421–424 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Berkel, S. et al. Mutations detected in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat. Genet. 42, 489–491 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Pinto, D. et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466, 368–372 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fernandez, T. et al. Disruption of Contactin 4 (CNTN4) results in developmental delay and other features of 3p deletion syndrome. Am. J. Hum. Genet. 82, 1385 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fernandez, T. et al. Disruption of contactin 4 (CNTN4) results in developmental delay and other features of 3p deletion syndrome. Am. J. Hum. Genet. 74, 1286–1293 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Roohi, J. et al. Disruption of contactin 4 in three subjects with autism spectrum disorder. J. Med. Genet. 46, 176–182 (2009).

    Article  PubMed  Google Scholar 

  61. Glessner, J.T. et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459, 569–573 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Strauss, K.A. et al. Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N. Engl. J. Med. 354, 1370–1377 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Bakkaloglu, B. et al. Molecular cytogenetic analysis and resequencing of contactin associated protein–like 2 in autism spectrum disorders. Am. J. Hum. Genet. 82, 165–173 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Friedman, J.I. et al. CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy. Mol. Psychiatry 13, 261–266 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Vernes, S.C. et al. A functional genetic link between distinct developmental language disorders. N. Engl. J. Med. 359, 2337–2345 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Scott-Van Zeeland, A.A. et al. Altered functional connectivity in frontal lobe circuits is associated with variation in the autism risk gene CNTNAP2. Sci. Transl. Med. 2, 56ra80 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stein, M.B. et al. A common genetic variant in the neurexin superfamily member CNTNAP2 is associated with increased risk for selective mutism and social anxiety–related traits. Biol. Psychiatry 69, 825–831 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Pinto, D. et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466, 368–372 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Moreno-De-Luca, D. et al. Deletion 17q12 is a recurrent copy number variant that confers high risk of autism and schizophrenia. Am. J. Hum. Genet. 87, 618–630 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mefford, H.C. et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N. Engl. J. Med. 359, 1685–1699 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kumar, R.A. et al. Association and mutation analyses of 16p11.2 autism candidate genes. PLoS ONE 4, e4582 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pober, B.R. Williams-Beuren syndrome. N. Engl. J. Med. 362, 239–252 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Kumar, R.A. et al. Recurrent 16p11.2 microdeletions in autism. Hum. Mol. Genet. 17, 628–638 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Ji, W. et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat. Genet. 40, 592–599 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bochukova, E.G. et al. Large, rare chromosomal deletions associated with severe early-onset obesity. Nature 463, 666–670 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. King, B.H. & Lord, C. Is schizophrenia on the autism spectrum? Brain Res. 1380, 34–41 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Hoekstra, R.A., Happé, F., Baron-Cohen, S. & Ronald, A. Association between extreme autistic traits and intellectual disability: insights from a general population twin study. Br. J. Psychiatry 195, 531–536 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Scala, E. et al. MECP2 deletions and genotype-phenotype correlation in Rett syndrome. Am. J. Med. Genet. A 143A, 2775–2784 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Ehninger, D., Li, W., Fox, K., Stryker, M.P. & Silva, A.J. Reversing neurodevelopmental disorders in adults. Neuron 60, 950–960 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Guy, J., Gan, J., Selfridge, J., Cobb, S. & Bird, A. Reversal of neurological defects in a mouse model of Rett syndrome. Science 315, 1143–1147 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Krab, L.C. et al. Effect of simvastatin on cognitive functioning in children with neurofibromatosis type 1: a randomized controlled trial. JAMA 300, 287–294 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vernes, S.C. et al. A functional genetic link between distinct developmental language disorders. N. Engl. J. Med. 359, 2337–2345 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mukamel, Z. et al. Regulation of MET by FOXP2, genes implicated in higher cognitive dysfunction and autism risk. J. Neurosci. 31, 11437–11442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Roll, P. et al. Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex. Hum. Mol. Genet. 19, 4848–4860 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gilman, S.R. et al. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 70, 898–907 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Akil, H. et al. Medicine. The future of psychiatric research: genomes and neural circuits. Science 327, 1580–1581 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ayhan, Y., Sawa, A., Ross, C.A. & Pletnikov, M.V. Animal models of gene-environment interactions in schizophrenia. Behav. Brain Res. 204, 274–281 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Geschwind, D.H. & Konopka, G. Neuroscience in the era of functional genomics and systems biology. Nature 461, 908–915 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by grants from the Simons Foundation (to M.W.S. and P.L.) and the National Institute of Mental Health (MH067842 and MH080759 to P.L. and MH089956 and MH081754 to M.W.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthew W State or Pat Levitt.

Ethics declarations

Competing interests

Matthew W. State co-holds a patent pertaining to rare variation in the CNTNAP2 gene and the risk for autism spectrum disorders.

Rights and permissions

Reprints and permissions

About this article

Cite this article

State, M., Levitt, P. The conundrums of understanding genetic risks for autism spectrum disorders. Nat Neurosci 14, 1499–1506 (2011). https://doi.org/10.1038/nn.2924

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2924

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing