Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human susceptibility and resistance to Norwalk virus infection

Abstract

Infectious diseases have influenced population genetics and the evolution of the structure of the human genome in part by selecting for host susceptibility alleles that modify pathogenesis. Norovirus infection is associated with 90% of epidemic non-bacterial acute gastroenteritis worldwide. Here, we show that resistance to Norwalk virus infection is multifactorial. Using a human challenge model, we showed that 29% of our study population was homozygous recessive for the α(1,2)fucosyltransferase gene (FUT2) in the ABH histo-blood group family and did not express the H type-1 oligosaccharide ligand required for Norwalk virus binding. The FUT2 susceptibility allele was fully penetrant against Norwalk virus infection as none of these individuals developed an infection after challenge, regardless of dose. Of the susceptible population that encoded a functional FUT2 gene, a portion was resistant to infection, suggesting that a memory immune response or some other unidentified factor also affords protection from Norwalk virus infection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Norwalk VLPs bind to saliva from Se+ volunteers.
Figure 2: Norwalk virus–specific salivary IgA response is predictive of infection.
Figure 3: Model of Norwalk virus challenge outcomes.

Similar content being viewed by others

References

  1. Mead, P.S. et al. Food-related illness and death in the United States. Emerg. Infect. Dis. 5, 607–625 (1999).

    Article  CAS  Google Scholar 

  2. Fankhauser, R.L., Noel, J.S., Monroe, S.S., Ando, T. & Glass, R.I. Molecular epidemiology of “Norwalk-like viruses” in outbreaks of gastroenteritis in the United States. J. Infect. Dis. 178, 1571–1578 (1998).

    Article  CAS  Google Scholar 

  3. Ho, M.S. et al. Viral gastroenteritis aboard a cruise ship. Lancet 2, 961–965 (1989).

    Article  CAS  Google Scholar 

  4. Koopmans, M. et al. Molecular epidemiology of human enteric caliciviruses in the Netherlands. J. Infect. Dis. 181, S262–S269 (2000).

    Article  Google Scholar 

  5. Glass, R.I. et al. The epidemiology of enteric caliciviruses from humans: a reassessment using new diagnostics. J. Infect. Dis. 181 (suppl. 2), S254–S261 (2000).

    Article  Google Scholar 

  6. Marie-Cardine, A. et al. Epidemiology of acute viral gastroenteritis in children hospitalized in Rouen, France. Clin. Infect. Dis. 34, 1170–1178 (2002).

    Article  Google Scholar 

  7. Herwaldt, B.L. et al. Characterization of a variant strain of Norwalk virus from a food-borne outbreak of gastroenteritis on a cruise ship in Hawaii. J. Clin. Microbiol. 32, 861–866 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Matsui, S.M. & Greenberg, H.B. Immunity to calicivirus infection. J. Infect. Dis. 181 (suppl. 2), S331–S335 (2000).

    Article  Google Scholar 

  9. Johnson, P.C., Mathewson, J.J., DuPont, H.L. & Greenberg, H.B. Multiple-challenge study of host susceptibility to Norwalk gastroenteritis in US adults. J. Infect. Dis. 161, 18–21 (1990).

    Article  CAS  Google Scholar 

  10. Hutson, A.M., Atmar, R.L., Graham, D.Y. & Estes, M.K. Norwalk virus infection and disease is associated with ABO histo-blood group type. J. Infect. Dis. 185, 1335–1337 (2002).

    Article  Google Scholar 

  11. Marionneau, S. et al. Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology 122, 1967–1977 (2002).

    Article  CAS  Google Scholar 

  12. Rouquier, S. et al. Molecular cloning of a human genomic region containing the H blood group α(1,2)fucosyltransferase gene and two H locus-related DNA restriction fragments. Isolation of a candidate for the human Secretor blood group locus. J. Biol. Chem. 270, 4632–4639 (1995).

    Article  CAS  Google Scholar 

  13. Marionneau, S. et al. ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie 83, 565–573 (2001).

    Article  CAS  Google Scholar 

  14. Harrington, P.R., Lindesmith, L., Yount, B., Moe, C.L. & Baric, R.S. Binding of Norwalk virus-like particles to ABH histo-blood group antigens is blocked by antisera from infected human volunteers or experimentally vaccinated mice. J. Virol. 76, 12335–12343 (2002).

    Article  CAS  Google Scholar 

  15. Oriol, R., Candelier, J.J. & Mollicone, R. Molecular genetics of H. Vox Sang. 78, 105–108 (2000).

    CAS  PubMed  Google Scholar 

  16. Wyatt, R.G. et al. Comparison of three agents of acute infectious nonbacterial gastroenteritis by cross-challenge in volunteers. J. Infect. Dis. 129, 709–714 (1974).

    Article  CAS  Google Scholar 

  17. Parrino, T.A., Schreiber, D.S., Trier, J.S., Kapikian, A.Z. & Blacklow, N.R. Clinical immunity in acute gastroenteritis caused by Norwalk agent. N. Engl. J. Med. 297, 86–89 (1977).

    Article  CAS  Google Scholar 

  18. Moe, C.L. et al. Application of PCR to detect Norwalk virus in fecal specimens from outbreaks of gastroenteritis. J. Clin. Microbiol. 32, 642–648 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Carrington, M., Dean, M., Martin, M.P. & O'Brien, S.J. Genetics of HIV-1 infection: chemokine receptor CCR5 polymorphism and its consequences. Hum. Mol. Genet. 8, 1939–1945 (1999).

    Article  CAS  Google Scholar 

  20. Dean, M. et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 273, 1856–1862 (1996).

    Article  CAS  Google Scholar 

  21. Boren, T., Falk, P., Roth, K.A., Larson, G. & Normark, S. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262, 1892–1895 (1993).

    Article  CAS  Google Scholar 

  22. Schaeffer, A.J. et al. Host pathogenesis in urinary tract infections. Internal J. Antimicrob. Agents 17, 245–251 (2001).

    Article  CAS  Google Scholar 

  23. Saadi, A.T. et al. Isolation of an adhesin from Staphlococcus aureus that binds Lewis a blood group antigen and its relevance to sudden infant death syndrome. FEMS Immunol. Med. Microbiol. 8, 315–320 (1994).

    Article  CAS  Google Scholar 

  24. Hutson, A.M., Atmar, R.L., Marcus, D.M. & Estes, M.K. Norwalk virus-like particle hemagglutination by binding to H histo- blood group antigens. J. Virol. 77, 405–415 (2003).

    Article  CAS  Google Scholar 

  25. Okhuysen, P.C., Jiang, X., Ye, L., Johnson, P.C. & Estes, M.K. Viral shedding and fecal IgA response after Norwalk virus infection. J. Infect. Dis. 171, 566–569 (1995).

    Article  CAS  Google Scholar 

  26. Graham, D.Y. et al. Norwalk virus infection of volunteers: new insights based on improved assays. J. Infect. Dis. 170, 34–43 (1994).

    Article  CAS  Google Scholar 

  27. Ball, J.M. et al. Recombinant Norwalk virus-like particles given orally to volunteers: phase I study. Gastroenterology 117, 40–48 (1999).

    Article  CAS  Google Scholar 

  28. Harrington, P.R. et al. Systemic, mucosal, and heterotypic immune induction in mice inoculated with Venezuelan equine encephalitis replicons expressing Norwalk virus-like particles. J. Virol. 76, 730–742 (2002).

    Article  CAS  Google Scholar 

  29. Dolin, R. et al. Biological properties of Norwalk agent of acute infectious nonbacterial gastroenteritis. Proc. Soc. Exp. Biol. Med. 140, 578–583 (1972).

    Article  CAS  Google Scholar 

  30. Wyatt, R.G. et al. In vitro cultivation in human fetal intestinal organ culture of a reovirus-like agent associated with nonbacterial gastroenteritis in infants and children. J. Infect. Dis. 130, 523–528 (1974).

    Article  CAS  Google Scholar 

  31. Ando, T. et al. Epidemiologic applications of novel molecular methods to detect and differentiate small round structured viruses (Norwalk-like viruses). J. Med. Virol. 47, 145–152 (1995).

    Article  CAS  Google Scholar 

  32. Monroe, S.S., Stine, S.E., Jiang, X., Estes, M.K. & Glass, R.I. Detection of antibody to recombinant Norwalk virus antigen in specimens from outbreaks of gastroenteritis. J. Clin. Microbiol. 31, 2866–2872 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sidmann, F.K. (ed.) Appendix 2: saliva testing for ABH and Lewis inTechnical Manual of the American Association of Blood Banks, 122–123 (J.B. Lippincott, Philadelphia, 1981).

    Google Scholar 

  34. Svensson, L., Petersson, A. & Henry, S.M. Secretor genotyping for A385T, G428A, C571T, C628T, 685delTGG, G849A, and other mutations from a single PCR. Transfusion 40, 856–860 (2000).

    Article  CAS  Google Scholar 

  35. Friedman, M.G. Radioimmunoassay for the detection of virus-specific IgA antibodies in saliva. J. Immunol. Meth. 54, 203–211 (1982).

    Article  CAS  Google Scholar 

  36. Baric, R.S. et al. Expression and self-assembly of Norwalk virus capsid protein from Venezuelan equine encephalitis virus replicons. J. Virol. 76, 3023–3030 (2003).

    Article  Google Scholar 

  37. Ward, R.L. et al. Salivary antibody titers in adults challenged with a human rotavirus. J. Med. Virol. 36, 222–225 (1992).

    Article  CAS  Google Scholar 

  38. Simell, B., Korkeila, M., Pursiainen, H., Kilpi, T.M. & Kayhty, H. Pneumococcal carriage and otitis media induce salivary antibodies to pneumococcal surface adhesin a, pneumolysin, and pneumococcal surface protein a in children. J. Infect. Dis. 183, 887–896 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Hutton and S. Hooper for additional statistical support; J. Herrmann, N. Blacklow, R. Calderon and the staff of the UNC General Clinical Research Center for their contributions to the human challenge studies; S. Fout for his support of the salivary assay development; and P. Harrington for critical reading of the manuscript. This work was supported by grants from the US Environmental Protection Agency (STAR grant R826139 and R-82936501), National Institutes of Health (AI23946 and GM63228, and RR00046 to the UNC General Clinical Research Center), the North Carolina Biotechnology Center (2000-ARG-0040) and Glaxo Wellcome, and by the Institut National de la Santé et de la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Baric.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindesmith, L., Moe, C., Marionneau, S. et al. Human susceptibility and resistance to Norwalk virus infection. Nat Med 9, 548–553 (2003). https://doi.org/10.1038/nm860

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm860

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing