Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Angiopoietin-2 sensitizes endothelial cells to TNF-α and has a crucial role in the induction of inflammation

Abstract

The angiopoietins Ang-1 and Ang-2 have been identified as ligands of the receptor tyrosine kinase Tie-2 (refs. 1,2). Paracrine Ang-1–mediated activation of Tie-2 acts as a regulator of vessel maturation and vascular quiescence3,4. In turn, the antagonistic ligand Ang-2 acts by an autocrine mechanism5,6,7 and is stored in endothelial Weibel-Palade bodies from where it can be rapidly released upon stimulation8. The rapid release of Ang-2 implies functions of the angiopoietin-Tie system beyond its established role during vascular morphogenesis as a regulator of rapid vascular responses. Here we show that mice deficient in Ang-2 (encoded by the gene Angpt2) cannot elicit an inflammatory response in thioglycollate-induced or Staphylococcus aureus–induced peritonitis, or in the dorsal skinfold chamber model. Recombinant Ang-2 restores the inflammation defect in Angpt2−/− mice. Intravital microscopy showed normal TNF-α–induced leukocyte rolling in the vasculature of Angpt2−/−mice, but rolling cells did not firmly adhere to activated endothelium. Cellular experiments showed that Ang-2 promotes adhesion by sensitizing endothelial cells toward TNF-α and modulating TNF-α–induced expression of endothelial cell adhesion molecules. Together, these findings identify Ang-2 as an autocrine regulator of endothelial cell inflammatory responses. Ang-2 thereby acts as a switch of vascular responsiveness exerting a permissive role for the activities of proinflammatory cytokines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thioglycollate-induced peritonitis and S. aureus infection experiments.
Figure 2: Intravital microscopy analysis of rolling and adhering leukocytes after TNF-α stimulation in the dorsal skinfold chamber model.
Figure 3: Ang-2–mediated sensitization of endothelial cells to TNF-α–induced monocyte adhesion and expression of cell adhesion molecules.
Figure 4: Expression of ICAM-1 on HUVECs.

Similar content being viewed by others

References

  1. Maisonpierre, P.C. et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55–60 (1997).

    Article  CAS  Google Scholar 

  2. Davis, S. et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87, 1161–1169 (1996).

    Article  CAS  Google Scholar 

  3. Suri, C. et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87, 1171–1180 (1996).

    Article  CAS  Google Scholar 

  4. Thurston, G. et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286, 2511–2514 (1999).

    Article  CAS  Google Scholar 

  5. Gale, N.W. et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev. Cell 3, 411–423 (2002).

    Article  CAS  Google Scholar 

  6. Stratmann, A., Risau, W. & Plate, K.H. Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am. J. Pathol. 153, 1459–1466 (1998).

    Article  CAS  Google Scholar 

  7. Zhang, L. et al. Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res. 63, 3403–3412 (2003).

    CAS  PubMed  Google Scholar 

  8. Fiedler, U. et al. The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood 103, 4150–4156 (2004).

    Article  CAS  Google Scholar 

  9. Hobson, B. & Denekamp, J. Endothelial proliferation in tumours and normal tissues: continuous labelling studies. Br. J. Cancer 49, 405–413 (1984).

    Article  CAS  Google Scholar 

  10. Folkman, J. The role of angiogenesis in tumor growth. Semin. Cancer Biol. 3, 65–71 (1992).

    CAS  PubMed  Google Scholar 

  11. Eberhard, A. et al. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res. 60, 1388–1393 (2000).

    CAS  PubMed  Google Scholar 

  12. Thurston, G. et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat. Med. 6, 460–463 (2000).

    Article  CAS  Google Scholar 

  13. Ramsauer, M. & D'Amore, P.A. Getting Tie(2)d up in angiogenesis. J. Clin. Invest. 110, 1615–1617 (2002).

    Article  CAS  Google Scholar 

  14. Jeon, B.H. et al. Tie-ing the antiinflammatory effect of angiopoietin-1 to inhibition of NF-κB. Circ. Res. 92, 586–588 (2003).

    Article  CAS  Google Scholar 

  15. Gamble, J.R. et al. Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circ. Res. 87, 603–607 (2000).

    Article  CAS  Google Scholar 

  16. Nykanen, A.I. et al. Angiopoietin-1 protects against the development of cardiac allograft arteriosclerosis. Circulation 107, 1308–1314 (2003).

    Article  Google Scholar 

  17. Wong, A.L. et al. Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ. Res. 81, 567–574 (1997).

    Article  CAS  Google Scholar 

  18. Hanahan, D. Signaling vascular morphogenesis and maintenance. Science 277, 48–50 (1997).

    Article  CAS  Google Scholar 

  19. Scharpfenecker, M., Fiedler, U., Reiss, Y. & Augustin, H.G. The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J. Cell Sci. 118, 771–780 (2005).

    Article  CAS  Google Scholar 

  20. Pitera, J.E., Woolf, A.S., Gale, N.W., Yancopoulos, G.D. & Yuan, H.T. Dysmorphogenesis of kidney cortical peritubular capillaries in angiopoietin-2–deficient mice. Am. J. Pathol. 165, 1895–1906 (2004).

    Article  CAS  Google Scholar 

  21. Chavakis, T. et al. Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes. Nat. Med. 8, 687–693 (2002).

    Article  CAS  Google Scholar 

  22. Butcher, E.C. & Picker, L.J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  CAS  Google Scholar 

  23. Vajkoczy, P., Schilling, L., Ullrich, A., Schmiedek, P. & Menger, M.D. Characterization of angiogenesis and microcirculation of high-grade glioma: an intravital multifluorescence microscopic approach in the athymic nude mouse. J. Cereb. Blood Flow Metab. 18, 510–520 (1998).

    Article  CAS  Google Scholar 

  24. Lejeune, F.J., Ruegg, C. & Lienard, D. Clinical applications of TNF-α in cancer. Curr. Opin. Immunol. 10, 573–580 (1998).

    Article  CAS  Google Scholar 

  25. Oliner, J. et al. Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell 6, 507–516 (2004).

    Article  CAS  Google Scholar 

  26. Lehr, H.A., Vollmar, B., Vajkoczy, P. & Menger, M.D. Intravital fluorescence microscopy for the study of leukocyte interaction with platelets and endothelial cells. Methods Enzymol. 300, 462–481 (1999).

    Article  CAS  Google Scholar 

  27. Vajkoczy, P. et al. Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2. J. Clin. Invest. 109, 777–785 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Joos (Freiburg) and S. Lüke (Berlin) for technical assistance, and N. Esser (Freiburg) and K. Kruse (Freiburg) for support in the maintenance of mouse colonies and experimental models. This work was supported by the Deutsche Forschungsgemeinschaft (SFB-TR23, subproject A3 (to H.G.A.), SFB-TR23, subproject C2 (to P.V.), Fi879/1-3 (to U.F.), He1850/6-2 (to M.H.) and Pr372/18-2 (to K.T.P.)) and Austrian Science Fund (FWF JRP “Angiogenesis,” subproject 4 (to H.G.A.)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hellmut G Augustin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Breeding statistics of Ang-2-deficient mice bred in the C57Bl6 background and in the 129/J background. (PDF 19 kb)

Supplementary Fig. 2

Ang-2 expression and storage in human tissues. (PDF 65 kb)

Supplementary Fig. 3

Analysis of cells recruited into the lung of wild type and Ang2-deficient mice after Streptococcus pneumoniae infection. (PDF 30 kb)

Supplementary Fig. 4

Tie2 expression in different cell populations. (PDF 47 kb)

Supplementary Methods (PDF 28 kb)

Supplementary Video 1

Baseline leukocyte rolling in wild-type mice. (MPG 1985 kb)

Supplementary Video 2

Baseline leukocyte rolling in Angptl2−/− mice. (MOV 1287 kb)

Supplementary Video 3

Leukocyte adhesion in wild-type mice 1 h after TNF-α treatment. (MOV 1111 kb)

Supplementary Video 4

Leukocyte rolling in Angptl2−/− mice 1 h after TNF-a treatment. (MOV 1312 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiedler, U., Reiss, Y., Scharpfenecker, M. et al. Angiopoietin-2 sensitizes endothelial cells to TNF-α and has a crucial role in the induction of inflammation. Nat Med 12, 235–239 (2006). https://doi.org/10.1038/nm1351

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1351

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing