Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder

Abstract

The congenital disorders of glycosylation (CDG) are characterized by defects in N-linked glycan biosynthesis that result from mutations in genes encoding proteins directly involved in the glycosylation pathway. Here we describe two siblings with a fatal form of CDG caused by a mutation in the gene encoding COG-7, a subunit of the conserved oligomeric Golgi (COG) complex. The mutation impairs integrity of the COG complex and alters Golgi trafficking, resulting in disruption of multiple glycosylation pathways. These cases represent a new type of CDG in which the molecular defect lies in a protein that affects the trafficking and function of the glycosylation machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alterations in protein glycosylation.
Figure 2: COG7 mutation reduces activities of nucleotide-sugar transporters and glycosyltransferases.
Figure 3: Trafficking of ST-GFP from endoplasmic reticulum to Golgi was impaired in patient fibroblasts.
Figure 4: Integrity of patients' COG complex was impaired.
Figure 5: P1 and P2 had homozygous mutation in splice site of COG7.

Similar content being viewed by others

References

  1. Varki, A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130 (1993).

    Article  CAS  Google Scholar 

  2. Storrie, B. et al. Recycling of Golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering. J. Cell Biol. 143, 1505–1521 (1998).

    Article  CAS  Google Scholar 

  3. Marquardt, T. & Denecke, J. Congenital disorders of glycosylation: review of their molecular bases, clinical presentations and specific therapies. Eur. J. Pediatr. 162, 359–379 (2003).

    CAS  PubMed  Google Scholar 

  4. Grunewald, S., Matthijs, G. & Jaeken, J. Congenital disorders of glycosylation: a review. Pediatr. Res. 52, 618–624 (2002).

    Article  Google Scholar 

  5. Schauer, R. Biosynthesis and function of N- and O-substituted sialic acids. Glycobiology 1, 449–452 (1991).

    Article  CAS  Google Scholar 

  6. Kim, S., Miura, Y., Etchison, J.R. & Freeze, H.H. Intact Golgi synthesize complex branched O-linked chains on glycoside primers: evidence for the functional continuity of seven glycosyltransferases and three sugar nucleotide transporters. Glycoconj. J. 18, 623–633 (2001).

    Article  Google Scholar 

  7. Lippincott-Schwartz, J., Roberts, T.H. & Hirschberg, K. Secretory protein trafficking and organelle dynamics in living cells. Annu. Rev. Cell Dev. Biol. 16, 557–589 (2000).

    Article  CAS  Google Scholar 

  8. Kingsley, D.M., Kozarsky, K.F., Segal, M. & Krieger, M. Three types of low density lipoprotein receptor-deficient mutant have pleiotropic defects in the synthesis of N-linked, O-linked, and lipid-linked carbohydrate chains. J. Cell Biol. 102, 1576–1585 (1986).

    Article  CAS  Google Scholar 

  9. Ungar, D. et al. Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J. Cell Biol. 157, 405–415 (2002).

    Article  CAS  Google Scholar 

  10. Whyte, J.R.C. & Munro, S. Vesicle tethering complexes in membrane traffic. J. Cell Sci. 115, 2627–2637 (2002).

    CAS  Google Scholar 

  11. Podos, S.D., Reddy, P., Ashkenas, J. & Krieger, M. LDLC encodes a Brefeldin-A sensitive, peripheral Golgi protein required for normal Golgi function. J. Cell Biol. 127, 679–691 (1994).

    Article  CAS  Google Scholar 

  12. Chatterton, J.E. et al. Expression cloning of LDLB, a gene essential for normal Golgi function and assembly of the ldlCp complex. Proc. Natl. Acad. Sci. USA 96, 915–920 (1999).

    Article  CAS  Google Scholar 

  13. Walter, D.M., Paul, K.S. & Waters, M.G. Purification and characterization of a novel 13 S hetero-oligomeric protein complex that stimulates in vitro Golgi transport J. Biol. Chem. 273, 29565–29576 (1998).

    Article  CAS  Google Scholar 

  14. Loh, E. & Hong, W. Sec34 is implicated in traffic from the endoplasmic reticulum to the Golgi and exists in a complex with GTC–90 and ldlBp. J. Biol. Chem. 277, 21955–21961 (2002).

    Article  CAS  Google Scholar 

  15. Whyte, J.R. & Munro, S. The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev. Cell 1, 527–537 (2001).

    Article  CAS  Google Scholar 

  16. Farkas, R.M. et al. The Drosophila COG5 homologue is required for cytokinesis, cell elongation, and assembly of specialized Golgi architecture during spermatogenesis. Mol. Biol. Cell 14, 190–200 (2003).

    Article  CAS  Google Scholar 

  17. Suvorova, E.S., Kurten, R.C. & Lupashin, V.V. Identification of a human orthologue of Sec34p as a component of the cis-Golgi vesicle tethering machinery. J. Biol. Chem. 276, 22810–22818 (2001).

    Article  CAS  Google Scholar 

  18. Freeze, H.H. Update and perspectives on congenital disorders of glycosylation. Glycobiology 11, 129R–143R (2001).

    Article  CAS  Google Scholar 

  19. Wopereis, S. et al. Apolipoprotein C–III isofocusing in the diagnosis of genetic defects in O-glycan biosynthesis. Clin. Chem. 49, 1839–1845 (2003).

    Article  CAS  Google Scholar 

  20. Oka, T., Ungar, D., Hughson, F.M. & Krieger, M. The COG and COPI complexes interact to control the abundance of GEARs, a subset of Golgi integral membrane proteins. Mol. Biol. Cell 15, 2423–2435 (2004).

    Article  CAS  Google Scholar 

  21. Olkkonen, V.M. & Ikonen, E. Genetic defects of intracellular-membrane transport. N. Engl. J. Med. 343, 1095–1104 (2000).

    Article  CAS  Google Scholar 

  22. Nichols, W.C. et al. Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 93, 61–70 (1998).

    Article  CAS  Google Scholar 

  23. Gedeon, A.K. et al. Identification of the gene (SEDL) causing X-linked spondyloepiphyseal dysplasia tarda. Nat. Genet. 22, 400–404 (1999).

    Article  CAS  Google Scholar 

  24. Zhang, B. et al. Bleeding due to disruption of a cargo-specific ER-to-Golgi transport complex. Nat. Genet. 34, 220–225 (2003).

    Article  CAS  Google Scholar 

  25. Blixt, O. et al. Efficient chemoenzymatic synthesis of O-linked sialyl oligosaccharides. J. Am. Chem. Soc. 124, 5739–5746 (2002).

    Article  CAS  Google Scholar 

  26. Steet, R.A., Melancon, P. & Kuchta, R.D. 3′-Azidothymidine potentially inhibits the biosynthesis of highly branched N-linked oligosaccharides and poly–N-acetyllactosamine chains in cells. J. Biol. Chem. 275, 26812–26820 (2000).

    CAS  PubMed  Google Scholar 

  27. Ory, D.S., Neugeboren, B.A. & Mulligan, R.C. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc. Natl. Acad. Sci. USA 93, 11400–11406 (1996).

    Article  CAS  Google Scholar 

  28. Ju, T., Cummings, R.D. & Canfield, W.M. Purification, characterization, and subunit structure of rat Core1β1,3-galactosyltransferase. J. Biol. Chem. 277, 169–177 (2002).

    Article  CAS  Google Scholar 

  29. Gillespie, W., Kelm, S. & Paulson, J.C. Cloning and expression of the Galβ1,3GalNAc α2,3–sialyltransferase. J. Biol. Chem. 267, 21004–21010 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Ungar, T. Oka and V. Lupashin for purified COG antibodies; M. Ichikawa for technical support; B. Hayes and J. Kawakami for sugar nucleotide pool measurements; M. Fukuda for ST3Gal-I–GFP construct; D. Ory for assistance in preparing the retrovirus; and J. Sijstermans and S. van der Meer for clinical evaluation of the patients. This work was supported by grants RO1 DK55615 (H.H.F.), R37 CA08759 (S.K.), GM59115 (M.K.), U54 GM62116 and R24 GM61894, and by the March of Dimes Foundation (H.H.F.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hudson H Freeze.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Steet, R., Bohorov, O. et al. Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. Nat Med 10, 518–523 (2004). https://doi.org/10.1038/nm1041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1041

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing