Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate

Abstract

Dengue virus is a human pathogen that has reemerged as an increasingly important public health threat. We found that the cellular receptor utilized by dengue envelope protein to bind to target cells is a highly sulfated type of heparan sulfate. Heparin, highly sulfated heparan sulfate, and the polysulfonate pharmaceutical Suramin effectively prevented dengue virus infection of target cells, indicating that the envelope protein-target cell receptor interaction is a critical determinant of infectivity. The dengue envelope protein sequence includes two putative glycosaminoglycan-binding motifs at the carboxy terminus; the first could be structurally modeled and formed an unusual extended binding surface of basic amino acids. Similar motifs were also identified in the envelope proteins of other flaviviridae. Developing pharmaceuticals that inhibit target cell binding may be an effective strategy for treating flavivirus infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Henchal, E.A. & Putnak, J.R. The dengue viruses. Clin. Microbiol. Rev. 3, 376–396 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Institute of Medicine (U.S.), Committee on Emerging Microbial Threats to Health. Emerging Infections: Microbial Threats to Health in the United States (National Academy Press, Washington, DC, 1992).

  3. Halstead, S.B. The XXth century dengue pandemic: Need for surveillance and research. World Health Stat. Q. 45, 292–298 (1992).

    CAS  PubMed  Google Scholar 

  4. Monath, T.P. Dengue: The risk to developed and developing countries. Proc. Natl. Acad. Sci. USA 91, 2395–2400 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. World Health Organization. Dengue and dengue hemorrhagic fever. Report N117. (World Health Organization, Geneva, 1996).

  6. Centers for Disease Control. Dengue Fever at the U.S.–Mexico Border, 1995–1996. Morbid. Mortal. Weekly Rep. 45, N39 (1996).

  7. Tyler, K.L. & Fields, B.N. Pathogenesis of viral infections. in Fields Virology, 3rd edn., Vol. 1. (eds. Fields, B.N., Knipe, D.M. & Howley, P.M.) 173–217 (Lippincott-Raven, Philadelphia, 1996).

    Google Scholar 

  8. Wimmer, E. in Cellular Receptors for Animal Viruses. (ed. Wimmer, E.) 1–13 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1994).

    Google Scholar 

  9. Porterfield, J.S. Antibody-dependent enhancement of viral infectivity. Adv. Virus. Res. 31, 335–355 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. He, R.-T. et al. Antibodies that block virus attachment to Vero cells are a major component of the human neutralizing antibody response against dengue virus type 2. J. Med. Virol. 45, 451–461 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Rice, C.M. Flaviviridae: The viruses and their replication. in Fields Virology, 3rd edn., Vol. 1. (eds. Fields, B.N., Knipe, D.M. & Howley, P.M.) 931–959 (Lippincott-Raven, Philadelphia, 1996).

    Google Scholar 

  12. Chen, Y., Maguire, T. & Marks, R.M. Demonstration of binding of dengue virus envelope protein to target cells. J. Virol. 70, 8765–8772 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Couchman, J.R. & Woods, A. Structure and biology of pericellular proteoglycans. in Cell Structure and Extracellular Glycoconjugates, Vol. 1. (eds. Roberts, D.D. & Mecham, R.P.) 33–82 (Academic Press, New York, 1993).

    Chapter  Google Scholar 

  14. Rostand, K.S. & Esko, J.D. Microbial adherence and invasion through proteoglycans. Infect. Immun. 65, 1–8 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Thompson, L.D., Pantoliano, M.W. & Springer, B.A. Energetic characterization of the basic fibroblast growth factor–heparin interaction: Identification of the heparin binding domain. Biochemistry 33, 3831–3840 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Fromm, J.R., Hileman, R.E., Caldwell, E.E., Weiler, J.M. & Linhardt, R.J. Differences in the interaction of heparin with arginine and lysine and the importance of these basic amino acids in the binding of heparin to acidic fibroblast growth factor. Arch. Biochem. Biophys. 323, 279–287 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Bernfield, M. et al. Biology of syndecans. Annu. Rev. Cell Biol. 8, 365–393 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Toida, T., Imanari, T., Hileman, R.E., Fromm, J.R. & Linhardt, R.J. Structural differences in heparan sulfates from different tissues and species. Biochem. J. 322, 499–506 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Linhardt, R.J. & Toida, T. Heparin oligosaccharides-new analogs development and application. in Carbohydrates as Drugs (eds. Witczak, Z.B. & Nieforth, K.A.) 277–341 (Marcel Dekker, New York, 1997).

    Google Scholar 

  20. Pervin, A., Callo, C., Jandik, K.A., Han, X.J. & Linhardt, R.J. Preparation and structural characterization of large heparin-derived oligosaccharides. Glycobiology 5, 83–95 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Toida, T., Hileman, R.E., Smith, A.E., Vlahova, P.I. & Linhardt, R.J. Enzymatic preparation of heparin oligosaccharides containing antithrombin III binding sites. J. Biol. Chem. 271, 32040–32047 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Linhardt, R.J. Analysis of glycoconjugates. in Current Protocols in Molecular Biology, Vol. 2. (ed. Varki, A.) 17.13.17–17.13.32 (Wiley Interscience, Boston, 1994).

    Google Scholar 

  23. Bame, K.J. & Esko, J.D. Undersulfated heparan sulfate in a Chinese hamster ovary cell mutant defective in heparan sulfate N-sulfotransferase. J. Biol. Chem. 264, 8059–8065 (1989).

    CAS  PubMed  Google Scholar 

  24. Esko, J.D. et al. Inhibition of chondroitin and heparan sulfate biosynthesis in Chinese hamster ovary cell mutants defective in galactosyltransferase I. J. Biol. Chem. 262, 12189–12195 (1987).

    CAS  PubMed  Google Scholar 

  25. Lidholt, K. et al. A single mutation affects both N-acetylglucosaminyltransferaseand glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. Proc. Notl. Acad. Sci. USA 89, 2267–2271 (1992).

    Article  CAS  Google Scholar 

  26. Esko, J.D., Stewart, T.E. & Taylor, W.H. Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc. Natl. Acad. Sci. USA 82, 3197–3201 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baeuerle, P.A. & Huttner, W.B. Chlorate–a potent inhibitor of protein sulfation in intact cells. Biochem. Biophys. Res. Commun. 141, 870–877 (1986).

    Article  CAS  PubMed  Google Scholar 

  28. Raake, W., Klauser, R.J., Elling, H. & Meinetsberger, E. Anticoagulant and an-tithrombotic properties of synthetic sulfated bis-lactobionic acid amides. Thromb. Res. 56, 719–730 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Sternbergh, W.C., Sobel, M. & Makhoul, R.G. Heparinoids with low anticoagulant potency attenuate postischemic endothelial cell dysfunction. J. Vasc. Surg. 21, 477–483 (1995).

    Article  PubMed  Google Scholar 

  30. Mohan, P., Hopfinger, A.J. & Baba, M. Naphthalenedisulfonic acid derivatives as potential anti-HIV agents: Chemistry, biology and molecular modeling of their inhibition of reverse transcriptase. Antiviral Chem. Chemother. 2, 215–222 (1991).

    Article  CAS  Google Scholar 

  31. Cardin, A.D. & Weintraub, H.J. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 9, 21–32 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Faham, S., Hileman, R.E., Fromm, J.R., Linhardt, R.J. & Rees, D.C. Heparin structure and interactions with basic fibroblast growth factor. Science 271, 1116–1120 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Chen, W.-B. & Maguire, T. Nucleotide sequence of the envelope glycoprotein gene of a dengue-2 virus isolated during an epidemic of benign dengue fever in Tonga in 1974. Nucleic Acids Res. 18, 5889 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rey, F.A., Heinz, F.X., Mandl, C., Kunz, C. & Harrison, S.C. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 375, 291–298 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Peitsch, M.C. ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem. Soc. Trans. 24, 274–279 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Bork, P., Holm, L. & Sander, C. The immunoglobulin fold. Structural classification sequence patterns and common core. J. Mol. Biol. 242, 309–320 (1994).

    CAS  PubMed  Google Scholar 

  37. McClain, D.S. & Fuller, O. Cell-specific kinetics and efficiency of herpes simplex virus type 1 entry are determined by two distinct phases of attachment. Virology 198, 690–702. (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Montgomery, R.I., Warner, M.S., Lum, B.J. & Spear, P. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NCF receptor family. Cell 87, 427–436 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Maccarana, M., Sakura, Y., Tawada, A., Yoshida, K. & Lindahl;, U. Domain structure of heparan sulfates from bovine organs. J. Biol. Chem. 271, 17804–17810 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Jackson, T. et al. Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J. Virol. 70, 5282–5287 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ortega-Barria, E. & Pereira, M.E. A novel T.cruzi heparin-binding protein promotes fibroblast adhesion and penetration of engineered bacteria and trypanosomes into mammalian cells. Cell 67, 411–421 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Ruoslahti, E. & Pierschbacher, M.D. New perspectives in cell adhesion: RGD and integrins. Science 238, 491–497 (1987).

    Article  CAS  PubMed  Google Scholar 

  43. Sanchez, I.J. & Ruiz, B.H. A single nucleotide change in the E protein of dengue virus 2 Mexican strain affects neurovirulence in mice. J. Gen. Virol. 77, 2541–2545 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Lin, B., Parrish, C.R., Murray, J.M. & Wright, P.J. Localization of a neutralization epi-tope on the envelope protein of dengue virus type 2. Virology 202, 885–890 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Jiang, W.R., Lowe, A., Higgs, S., Reid, H. & Gould, E.A. Single amino acid codon changes detected in louping ill virus antibody-resistant mutants with reduced neurovirulence. J. Gen. Virol. 74, 931–935 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Jennings, A.D. et al. Analysis of a yellow fever virus isolated from a fatal case of vaccine-associated human encephalitis. J. Infect. Dis. 169, 512–518 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Holzmann, H., Heinz, F.X., Mandl, C.W., Guirakhoo, F. & Kunz, C. A single amino acid substitution in envelope protein E of tick-borne encephalitis virus leads to attenuation in the mouse model. J. Virol. 64, 5156–5159 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cecilia, D. & Gould, E.A. Nucleotide changes responsible for loss of neuroinvasive-ness in Japanese encephalitis virus neutralization-resistant mice. Virology 181, 70–77 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. Reed, L.J. & Muench, H. A simple method of estimating fifty per cent end points. Am. J. Hygiene 27, 493–497. (1938).

    Google Scholar 

  50. Ojala, W.H. et al. Complexes of lysine, histidine and arginine with sulfonated azo dyes: Model systems for understanding the biomolecular recognition of glycosaminoglycans by proteins. J. Am. Chem. Soc. 118, 2131–2142 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Maguire, T., Hileman, R. et al. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 3, 866–871 (1997). https://doi.org/10.1038/nm0897-866

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0897-866

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing