Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fibroblast growth factor 2 control of vascular tone

Abstract

Vascular tone control is essential in blood pressure regulation, shock, ischemia-reperfusion, inflammation, vessel injury/repair, wound healing, temperature regulation, digestion, exercise physiology, and metabolism. Here we show that a well-known growth factor, FCF2, long thought to be involved in many developmental and homeostatic processes, including growth of the tissue layers of vessel walls, functions in vascular tone control. Fgf2 knockout mice are morphologically normal and display decreased vascular smooth muscle contractility, low blood pressure and thrombocytosis. Following intra-arterial mechanical injury, FGF2-deficient vessels undergo a normal hyperplastic response. These results force us to reconsider the function of FGF2 in vascular development and homeostasis in terms of vascular tone control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kessler, D.S. & Melton, D.A. Vertebrate embryonic induction: Mesodermal and neural patterning. Science 266, 596–604 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Kimelman, D. & Kirschner, M. Synergistic induction of mesoderm by FGF and TGF-beta and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell 869–877 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Flamme, I. & Risau, W. Induction of vasculogenesis and hematopoiesis in vitro. Development 116, 435–439 (1992).

    CAS  PubMed  Google Scholar 

  4. Slack, J.M. & Isaacs, H.V., Position and structure of projections formed by implants of a ventral character. Dev. Biol. 161, 313–317 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Schneider, M.D., McLellan, W.R., Black, F.M. & Parker, T.G. Growth factors, growth factor response elements, and the cardiac phenotype. Basic Res. Cardiol. 87 (Suppl. 2), 33–48 (1992).

    CAS  PubMed  Google Scholar 

  6. Parker, T.G., Packer, S.E. & Schneider, M.D. Peptide growth factors can provoke “fetal” contractile protein gene expression in rat cardiac myocytes. J. Clin. Invest 85, 507–514 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Folkman, J. & Klagsbrun, M Vascular physiology: A family of angiogenic peptides. Nature 329, 671–672 (1987).

    Article  Google Scholar 

  8. Doetschman, T., Shull, M., Kier, A. & Coffin, J.D. Embryonic stem cell model systems for vascular morphogenesis and cardiac disorders. Hypertension 22, 618–629 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Weiss, R.H. & Maduri, M. The mitogenic effect of thrombin in vascular smooth muscle cells is largely due to basic fibroblast growth factor. J. Biol Chem. 268, 5724–5727(1993).

    CAS  PubMed  Google Scholar 

  10. Ali, S., Davis, M.G., Becker, M.W. & Dorn, G.W.2. Thromboxane A2 stimulates vascular smooth muscle hypertrophy by up-regulating the synthesis and release of endogenous basic fibroblast growth factor. J. Biol. Chem. 268, 17397–17403 (1993).

    CAS  PubMed  Google Scholar 

  11. Itoh, H., Mukoyama, M., Pratt, R.E., Gibbons, G.H. & Dzau, V.J. Multiple autocrine growth factors modulate vascular smooth muscle cell growth response to angiotensin II. J. Clin. Invest 91, 2268–2274 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Davis, M.G., et al. Intracrine and autocrine effects of basic fibroblast growth factor in vascular smooth muscle cells. J. Mol. Cell Cardiol. 29, 1061–1072 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Hebert, J.M., Basilico, C., Goldfarb, M., Haub, O. & Martin, G.R., Isolation of cDNAs encoding four mouse FGF family members and characterization of their expression patterns during embryogenesis. Dev. Biol. 138, 454–463 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Yanagisawa Miwa, A., et al. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 257, 1401–1403 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Lindner, V. & Reidy, M.A. Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. Proc. Natl. Acad. Sci. USA 88, 3739–3743 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tsuboi, R., Shi, C.M., Rifkin, D.B. & Ogawa, H.A. wound healing model using healing-impaired diabetic mice. J. Dermatol. 19, 673–675 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. MacMillan, V., et al. Mice expressing a bovine basic fibroblast growth factor trans-gene in the brain show increased resistance to hypoxemic- ischemic cerebral damage. Stroke 24, 1735–1739 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Coffin, J.D., et al. Abnormal bone growth and selective translational regulation in basic fibroblast growth factor (FGF-2) transgenic mice. Mol. Biol. Cell 6, 1861–1873(1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thompson, S., Clarke, A.R., Pow, A.M., Hooper, M.L. & Melton, D.W. Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell 56, 313–321 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Baird, A., Schubert, D., Ling, N. & Guillemin, R. Receptor- and heparin-binding domains of basic fibroblast growth factor. Proc. Natl. Acad. Sci. USA 85, 2324–2328 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arakawa, T., et al. The importance of Arg40 and 45 in the mitogenic activity and structural stability of basic fibroblast growth factor: Effects of acidic amino acid substitutions. J. Protein Chem. 14, 263–274 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Faham, S., Hileman, R.E., Fromm, J.R., Linhardt, R.J. & Rees, D.C. Heparin structure and interactions with basic fibroblast growth factor. Science 271, 1116–1120 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Sugi, Y., Sasse, J. . & Lough, J. Inhibition of precardiac mesoderm cell proliferation by antisense oligodeoxynucleotide complementary to fibroblast growth factor-2 (FGF-2). Dev. Biol. 157, 28–37 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Merle, P.L., Feige, J.J. & Verdetti, J. Basic fibroblast growth factor activates calcium channels in neonatal rat cardiomyocytes. J. Biol. Chem. 270, 17361–17367 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Lorenz, J.N. & Robbins, J. Measurement of intraventricular pressure and cardiac performance in the intact closed-chest anesthetized mouse. Am. J. Physiol. 272, H1137–H1146 (1997).

    CAS  PubMed  Google Scholar 

  26. Grupp, I.L., Subramaniam, A., Hewett, T.E., Robbins, J. & Grupp, G. Comparison of normal, hypodynamic, and hyperdynamic mouse hearts using isolated work-performing heart preparations. Am. J. Physiol. 265, H1401–H1410 (1993).

    CAS  PubMed  Google Scholar 

  27. Huang, P.L., et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377, 239–242 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Cristiani, C., Volpi, D., Landonio, A., & Bertolero, F. Endothelin-1 -selective binding sites are downregulated by transforming growth factor-beta and upregulated by basic fibroblast growth factor in a vascular smooth muscle-derived cell line. J. Cardiovasc. Pharmacol. 23, 988–994 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Sutter, M.C. & Ljung, B., Contactility, muscle mass and agonist sensitivity of isolated portal veins from normo- and hypertensive rats. Acta Physiol. Scand. 99, 484–495 (1977).

    Article  Google Scholar 

  30. Schwartz, S.M. & Liaw, L. Growth control and morphogenesis in the development and pathology of arteries. J. Cardiovasc. Pharmacol. 21 (Suppl. 1), S31–S49 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Carmeliet, P., Moons, L., Ploplis, V., Plow, E. & Collen, D. Impaired arterial neointima formation in mice with disruption of the plasminogen gene. J. Clin. Invest 99, 200–208 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Currier, J.W. & Faxon, D.P. Restenosis after percutaneous transluminal coronary angioplasty: Have we been aiming at the wrong target? J. Am. Coll. Cardiol. 25, 516–520(1995).

    Article  CAS  PubMed  Google Scholar 

  33. Schwartz, S.M., Campbell, G.R. & Campbell, J.H. Replication of smooth muscle cells in vascular disease. Circ. Res. 58, 427–444 (1986).

    Article  CAS  PubMed  Google Scholar 

  34. Campbell, G.R. & Campbell, J.H. The phenotypes of smooth muscle expressed in human atheroma. Ann. N.Y. Acad. Sci. 598, 143–58, 143-158 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Aikawa, M., et al. Human smooth muscle myosin heavy chain isoforms as molecular markers for vascular development and atherosclerosis. Circ. Res. 73, 1000–1012 (1993).

    Article  Google Scholar 

  36. Aikawa, M., et al. Phenotypic modulation of smooth muscle cells during progression of human atherosclerosis as determined by altered expression of myosin heavy chain isoforms. Ann. N.Y. Acad. Sci. 748, 578–85, 578–585 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Allouche, M. Basic fibroblast growth factor and hematopoiesis. Leukemia 9 937–942 (1995).

    CAS  PubMed  Google Scholar 

  38. Muenke, M., et al. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nature Genet 8, 269–274 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Rutland, P., et al. Identical mutations in the FGFR2 gene cause both Pfeiffer and Crouzon syndrome phenotypes. Nature Genet 9 173–176(1995).

    Article  CAS  PubMed  Google Scholar 

  40. Jabs, E.W., et al. Jackson-Weiss and Crouzon syndromes are allelic with mutations in fibroblast growth factor receptor 2. Nature Genet 8, 275–279 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Rousseau, F., et al. Mutations in the gene encoding fibroblast growth factor receptor- 3 in achondroplasia. Nature 371, 252–254 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Colvin, J.S., Bohne, B.A., Harding, G.W., McEwen, D.G. & Ornitz, D.M. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nature Genet 12, 390–397 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Burstein, S.A., Adamson, J.W., Thorning, D. & Harker, L.A. Characteristics of murine megakaryocytic colonies in vitro. Blood 54, 169–179 (1979).

    CAS  PubMed  Google Scholar 

  44. Lalli, J., Harrer, J.M., Luo, W., Kranias, E.G., & Paul, R.J. Targeted ablation of the phospholamban gene is associated with a marked decrease in sensitivity in aortic smooth muscle. Circ. Res. 80, 506–513 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, M., Sutliff, R., Paul, R. et al. Fibroblast growth factor 2 control of vascular tone. Nat Med 4, 201–207 (1998). https://doi.org/10.1038/nm0298-201

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0298-201

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing