Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer

This article has been updated

Abstract

An increasingly recognized resistance mechanism to androgen receptor (AR)-directed therapy in prostate cancer involves epithelial plasticity, in which tumor cells demonstrate low to absent AR expression and often have neuroendocrine features. The etiology and molecular basis for this 'alternative' treatment-resistant cell state remain incompletely understood. Here, by analyzing whole-exome sequencing data of metastatic biopsies from patients, we observed substantial genomic overlap between castration-resistant tumors that were histologically characterized as prostate adenocarcinomas (CRPC-Adeno) and neuroendocrine prostate cancer (CRPC-NE); analysis of biopsy samples from the same individuals over time points to a model most consistent with divergent clonal evolution. Genome-wide DNA methylation analysis revealed marked epigenetic differences between CRPC-NE tumors and CRPC-Adeno, and also designated samples of CRPC-Adeno with clinical features of AR independence as CRPC-NE, suggesting that epigenetic modifiers may play a role in the induction and/or maintenance of this treatment-resistant state. This study supports the emergence of an alternative, 'AR-indifferent' cell state through divergent clonal evolution as a mechanism of treatment resistance in advanced prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clinical and mutational profile of the cohort.
Figure 2: Tracing CRPC-NE emergence through allele-specific analysis.
Figure 3: Methylation analysis of CRPC-NE and CRPC-Adeno tumors.
Figure 4: Integrative DNA, RNA and methylation analysis.

Similar content being viewed by others

Change history

  • 18 February 2016

    In the version of this article initially published online, the affiliation “Center for Cancer Precision Medicine, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts, USA.” was incorrectly attributed to Francesca Demichelis and should have been attributed to Levi A Garraway. The error has been corrected for all versions of this article.

References

  1. Siegel, R.L., Miller, K.D. & Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin. 65, 5–29 (2015).

    Article  PubMed  Google Scholar 

  2. Huggins, C. & Hodges, C.V. Studies on prostatic cancer: I. the effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. J. Urol. 168, 9–12 (2002).

    Article  PubMed  Google Scholar 

  3. Chen, C.D. et al. Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10, 33–39 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Knudsen, K.E. & Scher, H.I. Starving the addiction: new opportunities for durable suppression of AR signaling in prostate cancer. Clin. Cancer Res. 15, 4792–4798 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scher, H.I. et al. AFFIRM Investigators. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367, 1187–1197 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. de Bono, J.S. et al. COU-AA-301 Investigators. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Watson, P.A. et al. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Epstein, J.I. et al. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am. J. Surg. Pathol. 38, 756–767 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Beltran, H. et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 1, 487–495 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yao, J.L. et al. Small-cell carcinoma of the prostate: an immunohistochemical study. Am. J. Surg. Pathol. 30, 705–712 (2006).

    Article  PubMed  Google Scholar 

  11. Beltran, H. et al. Challenges in recognizing treatment-related neuroendocrine prostate cancer. J. Clin. Oncol. 30, e386–e389 (2012).

    Article  PubMed  Google Scholar 

  12. Aparicio, A. & Tzelepi, V. Neuroendocrine (small-cell) carcinomas: why they teach us essential lessons about prostate cancer. Oncology 28, 831–838 (2014).

    PubMed  Google Scholar 

  13. Lin, D. et al. High-fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 74, 1272–1283 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, H.T. et al. Neuroendocrine prostate cancer (NEPC) progressing from conventional prostatic adenocarcinoma: factors associated with time to development of NEPC and survival from NEPC diagnosis—a systematic review and pooled analysis. J. Clin. Oncol. 32, 3383–3390 (2014).

    Article  PubMed  Google Scholar 

  15. Hieronymus, H. et al. Gene expression signature–based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell 10, 321–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, H. et al. Pathogenesis of prostatic small-cell carcinoma involves the inactivation of the p53 pathway. Endocr. Relat. Cancer 19, 321–331 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou, Z. et al. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res. 66, 7889–7898 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Tan, H.L. et al. Rb loss is characteristic of prostatic small-cell neuroendocrine carcinoma. Clin. Cancer Res. 20, 890–903 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Grasso, C.S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu, R. et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 69, 16–22 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Antonarakis, E. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baca, S.C. et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barbieri, C.E. et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet. 44, 685–689 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pritchard, C.C. et al. Complex MSH2 and MSH6 mutations in hypermutated microsatellite-unstable advanced prostate cancer. Nat. Commun. 25, 4988 (2014).

    Article  CAS  Google Scholar 

  26. Prandi, D. et al. Unraveling the clonal hierarchy of somatic genomic aberrations. Genome Biol. 15, 439 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Forbes, S.A. et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–D811 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Rajan, N. et al. The cylindromatosis gene product, CYLD, interacts with MIB2 to regulate Notch signaling. Oncotarget 5, 12126–12140 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lim, J.H. et al. CYLD negatively regulates transforming growth factor–β–signaling via deubiquitinating Akt. Nat. Commun. 3, 771 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Theurillat, J.P. et al. Prostate cancer. Ubiquitylome analysis identifies dysregulation of effector substrates in SPOP-mutant prostate cancer. Science 346, 85–89 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lin, L. et al. Mechanisms underlying cancer growth and apoptosis by DEK overexpression in colorectal cancer. PLoS One 9, e111260 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nowell, P.C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  PubMed  Google Scholar 

  33. Maley, C.C. et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat. Genet. 38, 468–473 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Hansel, D.E. et al. Shared TP53 gene mutation in morphologically and phenotypically distinct concurrent primary small-cell neuroendocrine carcinoma and adenocarcinoma of the prostate. Prostate 69, 603–609 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Smith, B.A. et al. A basal stem cell signature identifies aggressive prostate cancer phenotypes. Proc. Natl. Acad. Sci. USA 112, E6544–E6552 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Steffan, J.J. et al. The transcription factor SPDEF suppresses prostate tumor metastasis. J. Biol. Chem. 287, 29968–29978 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Börno, S.T. et al. Genome-wide DNA methylation events in TMPRSS2-ERG fusion-negative prostate cancers implicate an EZH2-dependent mechanism with miR-26a hypermethylation. Cancer Discov. 2, 1024–1035 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Varambally, S. et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322, 1695–1699 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu, J. et al. A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res. 67, 10657–10663 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Karanikolas, B.D., Figueiredo, M.L. & Wu, L. Comprehensive evaluation of the role of EZH2 in the growth, invasion and aggression of a panel of prostate cancer cell lines. Prostate 70, 675–688 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Clermont, P.L. et al. Polycomb-mediated silencing in neuroendocrine prostate cancer. Clin. Epigenetics 7, 40 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheng, A.S. et al. EZH2-mediated concordant repression of Wnt antagonists promotes β-catenin–dependent hepatocarcinogenesis. Cancer Res. 71, 4028–4039 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Kanduri, M. et al. A key role for EZH2 in epigenetic silencing of HOX genes in mantle-cell lymphoma. Epigenetics 8, 1280–1288 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Akamatsu, S. et al. The placental gene PEG10 promotes progression of neuroendocrine prostate cancer. Cell Rep. 12, 922–936 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).

  47. Chakravarty, D. et al. The estrogen receptor alpha–regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat. Commun. 5, 5383 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Carreira, S. et al. Tumor clone dynamics in lethal prostate cancer. Sci. Transl. Med. 6, 254ra125 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Beltran, H. et al. Whole-exome sequencing of metastatic cancer and biomarkers of treatment response. JAMA Oncol. 1, 466–474 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Esgueva, R. et al. Next-generation prostate cancer biobanking: toward a processing protocol amenable for the International Cancer Genome Consortium. Diagn. Mol. Pathol. 21, 61–68 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Van Allen, E.M. et al. Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat. Med. 20, 682–688 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Cibulskis, K. et al. ContEst: estimating cross-contamination of human samples in next-generation sequencing data. Bioinformatics 27, 2601–2602 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Demichelis, F. et al. SNP panel identification assay (SPIA): a genetic-based assay for the identification of cell lines. Nucleic Acids Res. 36, 2446–2456 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ramos, A.H. et al. Oncotator: cancer variant annotation tool. Hum. Mutat. 36, E2423–E2429 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lawrence, M.S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Romanel, A., Lago, S., Prandi, D., Sboner, A. & Demichelis, F. ASEQ: fast allele-specific studies from next-generation sequencing data. BMC Med. Genomics 8, 9 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Habegger, L. et al. RSEQtools: a modular framework to analyze RNA-seq data using compact, anonymized data summaries. Bioinformatics 27, 281–283 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Park, K. et al. Antibody-based detection of ERG rearrangement–positive prostate cancer. Neoplasia 12, 590–598 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sboner, A. et al. FusionSeq: a modular framework for finding gene fusions by analyzing paired-end RNA-sequencing data. Genome Biol. 11, R104 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mosquera, J.M. et al. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer. Neoplasia 15, 1–10 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lin, P.C. et al. Epigenomic alterations in localized and advanced prostate cancer. Neoplasia 15, 373–383 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Akalin, A. et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 13, R87 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Dale, R.K., Pedersen, B.S. & Quinlan, A.R. Pybedtools: a flexible Python library for manipulating genomic datasets and annotations. Bioinformatics 27, 3423–3424 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, J., Bardes, E.E., Aronow, B.J. & Jegga, A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 37, W305–W311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Viré, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our patients and their families for participation in this study. We would also like to acknowledge R. Montgomery, A. Armstrong and R. Szmulewitz for contributing samples and S.S. Chae for his technical assistance. H.B. is the Damon Runyon-Gordon Family Clinical Investigator and is supported (in part) by the Damon Runyon Cancer Research Foundation (award no. CI-67-13). This work was also supported by the Ann and William Bresnan Foundation (H.B. and D.M.N.), the Department of Defense (grant no. PC121341; H.B.), the US National Institutes of Health (NIH) (grant no. R01 CA116337 (H.B., F.D. and M.A.R.), R01CA157845 (S.V.), R01 CA183857 (S.A.T.), 1K08CA188615 (E.M.V.A.), U54 HG003067 (L.A.G.), U01CA162148 (L.A.G.), 5U01 CA111275-09 (J.M.M., M.A.R. and F.D.), the Starr Cancer Consortium (H.B., L.A.G. and M.A.R), the American-Italian Cancer Foundation (L.P.), the Nuovo Soldati Foundation (J.C.), the A. Alfred Taubman Medical Institute (S.A.T.), a Prostate Cancer Foundation Young Investigator Award (E.M.V.A.), the Associazione Italiana per la Ricerca sul Cancro (AIRC; grant no. IG 13562; F.D.), the European Research Council (consolidator grant (CoG) SPICE (Synthetic lethal phenotype identification through cancer evolution analysis); F.D.) and the Prostate Cancer Foundation (H.B., S.A.T., M.A.R. and F.D.). H.B., J.M.M., S.A.T., D.M.N., S.T.T., E.M.V.A., O.E., A.S., L.A.G., M.A.R and F.D. are supported by a Stand Up To Cancer–Prostate Cancer Foundation Prostate Dream Team translational cancer research grant. Stand Up To Cancer is a program of the Entertainment Industry Foundation that is administered by the American Association for Cancer Research (grant no. SU2C-AACR-DT0712).

Author information

Authors and Affiliations

Authors

Contributions

H.B., M.A.R., L.A.G. and F.D. initiated and designed the study; H.B., S.A.T., D.M.N. and S.T.T. enrolled subjects and contributed samples and clinical data; J.M.M., L.P., J.C., C.M., B.V.S.K.C. and S.V. performed experiments; D.P., M.B., E.G., E.M.V.A., O.E., A.S. and F.D. did the statistical and bioinformatics analyses; H.B., M.A.R., L.A.G. and F.D. supervised the research; H.B., M.A.R., L.A.G. and F.D. wrote the first draft of the manuscript; and all authors contributed to the writing and editing of the revised manuscript, and approved the manuscript.

Corresponding authors

Correspondence to Himisha Beltran, Mark A Rubin or Francesca Demichelis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Figures 1–15 and Supplementary Table Legends (PDF 4627 kb)

Supplementary Tables

Supplementary Tables 1–15 (XLSX 15574 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beltran, H., Prandi, D., Mosquera, J. et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med 22, 298–305 (2016). https://doi.org/10.1038/nm.4045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4045

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing