Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subclonal diversification of primary breast cancer revealed by multiregion sequencing

Abstract

The sequencing of cancer genomes may enable tailoring of therapeutics to the underlying biological abnormalities driving a particular patient's tumor. However, sequencing-based strategies rely heavily on representative sampling of tumors. To understand the subclonal structure of primary breast cancer, we applied whole-genome and targeted sequencing to multiple samples from each of 50 patients' tumors (303 samples in total). The extent of subclonal diversification varied among cases and followed spatial patterns. No strict temporal order was evident, with point mutations and rearrangements affecting the most common breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and MYC, occurring early in some tumors and late in others. In 13 out of 50 cancers, potentially targetable mutations were subclonal. Landmarks of disease progression, such as resistance to chemotherapy and the acquisition of invasive or metastatic potential, arose within detectable subclones of antecedent lesions. These findings highlight the importance of including analyses of subclonal structure and tumor evolution in clinical trials of primary breast cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Study design.
Figure 2: Systematic sampling revealed spatial and temporal tumor evolution.
Figure 3: Subclonal patterns in multifocal breast cancers.
Figure 4: The genome-wide spectrum of branching evolution.
Figure 5: Subclonal driver mutations and parallel evolution.
Figure 6: Structural variants shape cancer evolution.

Similar content being viewed by others

References

  1. Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shah, S.P. et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486, 395–399 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Meric-Bernstam, F. et al. Concordance of genomic alterations between primary and recurrent breast cancer. Mol. Cancer Ther. 13, 1382–1389 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ding, L. et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, S. et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 4, 1116–1130 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Hammond, M.E. et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol. 28, 2784–2795 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Seol, H. et al. Intratumoral heterogeneity of HER2 gene amplification in breast cancer: its clinicopathological significance. Mod. Pathol. 25, 938–948 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Simon, R. & Roychowdhury, S. Implementing personalized cancer genomics in clinical trials. Nat. Rev. Drug Discov. 12, 358–369 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Sleijfer, S., Bogaerts, J. & Siu, L.L. Designing transformative clinical trials in the cancer genome era. J. Clin. Oncol. 31, 1834–1841 (2013).

    Article  PubMed  Google Scholar 

  12. Moskaluk, C.A., Hruban, R.H. & Kern, S.E. p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res. 57, 2140–2143 (1997).

    CAS  PubMed  Google Scholar 

  13. Powell, S.M. et al. APC mutations occur early during colorectal tumorigenesis. Nature 359, 235–237 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Papaemmanuil, E. et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122, 3616–3627, 3699 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Green, M.R. et al. Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma. Blood 121, 1604–1611 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yachida, S. & Iacobuzio-Donahue, C.A. Evolution and dynamics of pancreatic cancer progression. Oncogene 32, 5253–5260 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Sottoriva, A. et al. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47, 209–216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46, 225–233 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cooper, C.S. et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat. Genet. 47, 367–372 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Santarius, T., Shipley, J., Brewer, D., Stratton, M.R. & Cooper, C.S. A census of amplified and overexpressed human cancer genes. Nat. Rev. Cancer 10, 59–64 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Futreal, P.A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 177–183 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lawrence, M.S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gonzalez-Perez, A. et al. IntOGen-mutations identifies cancer drivers across tumor types. Nat. Methods 10, 1081–1082 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stephens, P.J. et al. The landscape of cancer genes and mutational processes in breast cancer. Nature 486, 400–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ellis, M.J. et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486, 353–360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Banerji, S. et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486, 405–409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cancer Genome Atlas Network Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

  31. Zhang, J. et al. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science 346, 256–259 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Van Loo, P. et al. Allele-specific copy number analysis of tumors. Proc. Natl. Acad. Sci. USA 107, 16910–16915 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zack, T.I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134–1140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Balko, J.M. et al. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov. 4, 232–245 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Almendro, V. et al. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity. Cell Rep. 6, 514–527 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Almendro, V. et al. Genetic and phenotypic diversity in breast tumor metastases. Cancer Res. 74, 1338–1348 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. de Bruin, E.C. et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346, 251–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ali, H.R. et al. Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome Biol. 15, 431 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nielsen, T.O. et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin. Cancer Res. 10, 5367–5374 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Sørlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 98, 10869–10874 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Perou, C.M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Rakha, E.A. & Ellis, I.O. Breast cancer: updated guideline recommendations for HER2 testing. Nat. Rev. Clin. Oncol. 11, 8–9 (2014).

    Google Scholar 

  44. Early Breast Cancer Trialists' Collaborative Group. et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378, 771–784 (2011).

  45. Yuan, Y. et al. Assessing the clinical utility of cancer genomic and proteomic data across tumor types. Nat. Biotechnol. 32, 644–652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Denkert, C. et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J. Clin. Oncol. 28, 105–113 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Bolli, N. et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat. Commun. 5, 2997 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Supek, F., Minana, B., Valcarcel, J., Gabaldon, T. & Lehner, B. Synonymous mutations frequently act as driver mutations in human cancers. Cell 156, 1324–1335 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fischer, A., Vazquez-Garcia, I., Illingworth, C.J. & Mustonen, V. High-definition reconstruction of clonal composition in cancer. Cell Rep. 7, 1740–1752 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Oesper, L., Mahmoody, A. & Raphael, B.J. THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing data. Genome Biol. 14, R80 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., Campbell, P.J. & Stratton, M.R. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 3, 246–259 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the Wellcome Trust. P.J.C. is a Wellcome Trust Senior Clinical Fellow (103858/Z/14/Z). L.R.Y., Y.L. and L.B.A. are funded by Wellcome Trust PhD fellowships. S.N.-Z. is funded by a Wellcome Trust Intermediate Clinical Research Fellowship (WT100183MA). P.V.L. is a postdoctoral researcher at the Research Foundation Flanders (FWO). Work within the project is supported by the Belgian Cancer Plan–Ministry of Health, the Breast Cancer Research Foundation, the Brussels Region, the Norwegian Cancer Society, the Norwegian Health Region West and the Bergen Research Foundation. Some samples referenced in this publication will be included in the Breast Cancer Genome Analyses for the International Cancer Genome Consortium (ICGC) Working Group led by the Wellcome Trust Sanger Institute. BASIS is a part of the ICGC working group and is funded by the European Community's Seventh Framework Programme (FP7/2010-2014) under grant agreement number 242006. This working group also encompasses a triple-negative breast cancer project funded by the Wellcome Trust (grant 077012/Z/05/Z) and a HER2+ breast cancer project funded by Institut National du Cancer (INCa). We thank B. Leirvaag, D. Ekse, N.K. Duong and C. Eriksen for technical assistance. Research performed at Los Alamos National Laboratory was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy.

Author information

Authors and Affiliations

Authors

Contributions

L.R.Y. and P.J.C. designed and directed the study and prepared the manuscript. L.R.Y. and M.G. performed analyses and prepared figures. S.K., T.A. and P.E.L. contributed to the study design and sample preparation for cohort 1. C.D., C.S., M.I. and M.M. contributed to the study design and sample preparation for cohort 2. D.C.W., P.V.L., G.G., H.D., Y.S.J., S. McLaren, M.R., S.N.-Z., A.B., D.G., A.M., K.R., J.H., D.J., M.R.S., Y.L. and L.B.A. contributed to analysis. S. Martin managed samples. A.L.R., D.L., H.K.H. and P.K.L. conducted histopathological assessment. P.-Y.A., D.V., B.J., A.G.-C. and A.F. performed DNA extraction. L.J.M. contributed to library preparation, PCR and gel electrophoresis.

Corresponding author

Correspondence to Peter J Campbell.

Ethics declarations

Competing interests

P.J.C. and M.R.S. are founders, stock holders and consultants for 14M Genomics Ltd, a genomics diagnostic company.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Note (PDF 7718 kb)

Supplementary Source Code

R code for mutation clustering (ZIP 3 kb)

Supplementary Table 1

Patient and sample characteristics (XLS 144 kb)

Supplementary Table 2

Sequencing coverage (XLS 91 kb)

Supplementary Table 3

Annotation of potential driver genes (XLS 59 kb)

Supplementary Table 4

Validation data (XLS 201 kb)

Supplementary Table 5

Mutation clusters. (XLS 145 kb)

Supplementary Table 6

Heterogeneity scores. (XLS 72 kb)

Supplementary Table 7

Mutation and copy number calls from capture data. (XLS 131 kb)

Supplementary Table 8

Coding mutations and oncogenic copy number events from whole genome data (XLS 199 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yates, L., Gerstung, M., Knappskog, S. et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat Med 21, 751–759 (2015). https://doi.org/10.1038/nm.3886

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3886

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer