Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hepatitis C virus infection activates an innate pathway involving IKK-α in lipogenesis and viral assembly

This article has been updated

Abstract

Hepatitis C virus (HCV) interacts extensively with host factors to not only establish productive infection but also trigger unique pathological processes. Our recent genome-wide siRNA screen demonstrated that IκB kinase-α (IKK-α) is a crucial host factor for HCV. Here we describe a new nuclear factor κB (NF-κB)-independent and kinase-mediated nuclear function of IKK-α in HCV assembly. HCV, through its 3′ untranslated region, interacts with DEAD box polypeptide 3, X-linked (DDX3X) to activate IKK-α, which translocates to the nucleus and induces a CBP/p300-mediated transcriptional program involving sterol regulatory element-binding proteins (SREBPs). This innate pathway induces lipogenic genes and enhances core-associated lipid droplet formation to facilitate viral assembly. Chemical inhibitors of IKK-α suppress HCV infection and IKK-α–induced lipogenesis, offering a proof-of-concept approach for new HCV therapeutic development. Our results show that HCV uses a novel mechanism to exploit intrinsic innate responses and hijack lipid metabolism, which may contribute to high chronicity rates and the pathological hallmark of steatosis in HCV infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Role of IKK-α in HCV infection.
Figure 2: The function of IKK-α in HCV assembly and HCV-induced lipid droplet formation.
Figure 3: The function of IKK-α and the NF-κB pathway.
Figure 4: Interaction of DDX3X with the HCV 3′ UTR and its role in HCV infection.
Figure 5: HCV infection, IKK-α activation, SREBP induction and lipid droplet formation.
Figure 6: The signaling pathway involved in IKK-α–mediated lipogenic induction of HCV infection.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Change history

  • 27 September 2013

     In the version of this article initially published, the HCV core mutant (F24Y) virus used in Figure 4h and Supplementary Figure 8g and attributed as a gift from A. Patel was incorrectly named. The correct name of the virus is Y35A. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Liang, T.J., Rehermann, B., Seeff, L.B. & Hoofnagle, J.H. Pathogenesis, natural history, treatment, and prevention of hepatitis C. Ann. Intern. Med. 132, 296–305 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Liang, T.J. & Ghany, M.G. N. Engl. J. Med. 368, 1907–1917 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rehermann, B. Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence. J. Clin. Invest. 119, 1745–1754 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Syed, G.H., Amako, Y. & Siddiqui, A. Hepatitis C virus hijacks host lipid metabolism. Trends Endocrinol. Metab. 21, 33–40 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Herker, E. & Ott, M. Unique ties between hepatitis C virus replication and intracellular lipids. Trends Endocrinol. Metab. 22, 241–248 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Diamond, D.L. et al. Temporal proteome and lipidome profiles reveal hepatitis C virus–associated reprogramming of hepatocellular metabolism and bioenergetics. PLoS Pathog. 6, e1000719 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Horton, J.D., Goldstein, J.L. & Brown, M.S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125–1131 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Waris, G., Felmlee, D.J., Negro, F. & Siddiqui, A. Hepatitis C virus induces proteolytic cleavage of sterol regulatory element binding proteins and stimulates their phosphorylation via oxidative stress. J. Virol. 81, 8122–8130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lerat, H. et al. Hepatitis C virus proteins induce lipogenesis and defective triglyceride secretion in transgenic mice. J. Biol. Chem. 284, 33466–33474 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bowie, A.G. & Unterholzner, L. Viral evasion and subversion of pattern-recognition receptor signalling. Nat. Rev. Immunol. 8, 911–922 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hayden, M.S. & Ghosh, S. Shared principles in NF-κB signaling. Cell 132, 344–362 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Perkins, N.D. Integrating cell-signalling pathways with NF-κB and IKK function. Nat. Rev. Mol. Cell Biol. 8, 49–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Pasparakis, M. Regulation of tissue homeostasis by NF-κB signalling: implications for inflammatory diseases. Nat. Rev. Immunol. 9, 778–788 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Anest, V. et al. A nucleosomal function for IκB kinase-α in NF-κB–dependent gene expression. Nature 423, 659–663 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Birbach, A. et al. Signaling molecules of the NF-κB pathway shuttle constitutively between cytoplasm and nucleus. J. Biol. Chem. 277, 10842–10851 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Yamamoto, Y., Verma, U.N., Prajapati, S., Kwak, Y.T. & Gaynor, R.B. Histone H3 phosphorylation by IKK-α is critical for cytokine-induced gene expression. Nature 423, 655–659 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Huang, W.C., Ju, T.K., Hung, M.C. & Chen, C.C. Phosphorylation of CBP by IKKα promotes cell growth by switching the binding preference of CBP from p53 to NF-κB. Mol. Cell 26, 75–87 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Li, Q. et al. A genome-wide genetic screen for host factors required for hepatitis C virus propagation. Proc. Natl. Acad. Sci. USA 106, 16410–16415 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zandi, E., Rothwarf, D.M., Delhase, M., Hayakawa, M. & Karin, M. The IκB kinase complex (IKK) contains two kinase subunits, IKKα and IKKβ, necessary for IκB phosphorylation and NF-κB activation. Cell 91, 243–252 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Akazawa, D. et al. CD81 expression is important for the permissiveness of Huh7 cell clones for heterogeneous hepatitis C virus infection. J. Virol. 81, 5036–5045 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miyanari, Y. et al. The lipid droplet is an important organelle for hepatitis C virus production. Nat. Cell Biol. 9, 1089–1097 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Herker, E. et al. Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat. Med. 16, 1295–1298 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McLauchlan, J. Lipid droplets and hepatitis C virus infection. Biochim. Biophys. Acta 1791, 552–559 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Saito, T., Owen, D.M., Jiang, F., Marcotrigiano, J. & Gale, M. Jr. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454, 523–527 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rothenfusser, S. et al. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J. Immunol. 175, 5260–5268 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, Z. et al. DDX1, DDX21, and DHX36 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells. Immunity 34, 866–878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oshiumi, H., Sakai, K., Matsumoto, M. & Seya, T. DEAD/H BOX 3 (DDX3) helicase binds the RIG-I adaptor IPS-1 to up-regulate IFN-β–inducing potential. Eur. J. Immunol. 40, 940–948 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Schröder, M., Baran, M. & Bowie, A.G. Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKɛ-mediated IRF activation. EMBO J. 27, 2147–2157 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ariumi, Y. et al. DDX3 DEAD-box RNA helicase is required for hepatitis C virus RNA replication. J. Virol. 81, 13922–13926 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Randall, G. et al. Cellular cofactors affecting hepatitis C virus infection and replication. Proc. Natl. Acad. Sci. USA 104, 12884–12889 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oshiumi, H. et al. Hepatitis C virus core protein abrogates the DDX3 function that enhances IPS-1–mediated IFN-β induction. PLoS ONE 5, e14258 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Angus, A.G. et al. Requirement of cellular DDX3 for hepatitis C virus replication is unrelated to its interaction with the viral core protein. J. Gen. Virol. 91, 122–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reed, B.D., Charos, A.E., Szekely, A.M., Weissman, S.M. & Snyder, M. Genome-wide occupancy of SREBP1 and its partners NFY and SP1 reveals novel functional roles and combinatorial regulation of distinct classes of genes. PLoS Genet. 4, e1000133 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ericsson, J. & Edwards, P.A. CBP is required for sterol-regulated and sterol regulatory element-binding protein-regulated transcription. J. Biol. Chem. 273, 17865–17870 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Oliner, J.D., Andresen, J.M., Hansen, S.K., Zhou, S. & Tjian, R. SREBP transcriptional activity is mediated through an interaction with the CREB-binding protein. Genes Dev. 10, 2903–2911 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Giandomenico, V., Simonsson, M., Gronroos, E. & Ericsson, J. Coactivator-dependent acetylation stabilizes members of the SREBP family of transcription factors. Mol. Cell Biol. 23, 2587–2599 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brass, A.L. et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science 319, 921–926 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Sessions, O.M. et al. Discovery of insect and human dengue virus host factors. Nature 458, 1047–1050 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Krishnan, M.N. et al. RNA interference screen for human genes associated with West Nile virus infection. Nature 455, 242–245 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brass, A.L. et al. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139, 1243–1254 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Heaton, N.S. & Randall, G. Dengue virus–induced autophagy regulates lipid metabolism. Cell Host Microbe 8, 422–432 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mackenzie, J.M., Khromykh, A.A. & Parton, R.G. Cholesterol manipulation by West Nile virus perturbs the cellular immune response. Cell Host Microbe 2, 229–239 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Hsu, N.Y. et al. Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell 141, 799–811 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Farese, R.V. Jr. & Walther, T.C. Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139, 855–860 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Asselah, T., Rubbia-Brandt, L., Marcellin, P. & Negro, F. Steatosis in chronic hepatitis C: why does it really matter? Gut 55, 123–130 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cai, D. et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat. Med. 11, 183–190 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yuan, M. et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ. Science 293, 1673–1677 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Arkan, M.C. et al. IKK-β links inflammation to obesity-induced insulin resistance. Nat. Med. 11, 191–198 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, X. et al. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell 135, 61–73 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Baker, R.G., Hayden, M.S. & Ghosh, S. NF-κB, inflammation, and metabolic disease. Cell Metab. 13, 11–22 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Munger, J. et al. Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat. Biotechnol. 26, 1179–1186 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Feld, J.J. et al. Hepatic gene expression during treatment with peginterferon and ribavirin: identifying molecular pathways for treatment response. Hepatology 46, 1548–1563 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Z. Hu, Y.-Y. Zhang, Y.-M. Li, E. Thomas, V. Gonzalez-Munoz and L. Holz for technical assistance, Y.-P. Wu of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Confocal Microscopy Core for helping with confocal imaging and W.-P. Chen of the NIDDK Microarray Core Facility for DNA microarray analysis. We also thank A. Patel of the University of Glasgow for providing the HCV core mutant (Y35A) virus and C. Rice (Rockefeller University) for the 9E10 NS5A antibody and other reagents. This work was supported by the Intramural Research Program of the NIDDK, US National Institutes of Health (NIH). Primary human hepatocytes were provided by the NIH-funded Liver Tissue Procurement and Cell Distribution System (N01-DK-7-0004/HHSN26700700004C, principal investigator, S. Strom, University of Pittsburgh).

Author information

Authors and Affiliations

Authors

Contributions

Q.L. and T.J.L. conceived and designed the study. Q.L., V.P., S.K. and H.C. conducted experiments. Q.L., V.P. and T.J.L. analyzed data. Q.L. and T.J.L. wrote the paper with the input from V.P. T.J.L. supervised the studies.

Corresponding author

Correspondence to T Jake Liang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Results and Supplementary Methods (PDF 1774 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Pène, V., Krishnamurthy, S. et al. Hepatitis C virus infection activates an innate pathway involving IKK-α in lipogenesis and viral assembly. Nat Med 19, 722–729 (2013). https://doi.org/10.1038/nm.3190

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3190

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing