Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autotaxin, an ectoenzyme that produces lysophosphatidic acid, promotes the entry of lymphocytes into secondary lymphoid organs

Abstract

The extracellular lysophospholipase D autotaxin (ATX) and its product, lysophosphatidic acid, have diverse functions in development and cancer, but little is known about their functions in the immune system. Here we found that ATX had high expression in the high endothelial venules of lymphoid organs and was secreted. Chemokine-activated lymphocytes expressed receptors with enhanced affinity for ATX, which provides a mechanism for targeting the secreted ATX to lymphocytes undergoing recruitment. Lysophosphatidic acid induced chemokinesis in T cells. Intravenous injection of enzymatically inactive ATX attenuated the homing of T cells to lymphoid tissues, probably through competition with endogenous ATX and exertion of a dominant negative effect. Our results support the idea of a new and general step in the homing cascade in which the ectoenzyme ATX facilitates the entry of lymphocytes into lymphoid organs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of ATX transcripts by mouse tissues.
Figure 2: Localization of ATX protein in lymphoid organs.
Figure 3: Secretion of ATX by HECs and transfected MDCK cells.
Figure 4: Integrin dependency of the binding of ATX to human T cells.
Figure 5: Effects of LPA on human T cells.
Figure 6: Migration of T cells to and within lymphoid organs in the presence of exogenous ATX.

Similar content being viewed by others

References

  1. Miyasaka, M. & Tanaka, T. Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat. Rev. Immunol. 4, 360–370 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Rosen, S.D. Ligands for L-selectin: homing, inflammation, and beyond. Annu. Rev. Immunol. 22, 129–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. von Andrian, U.H. & Mempel, T.R. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3, 867–878 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Drayton, D.L., Liao, S., Mounzer, R.H. & Ruddle, N.H. Lymphoid organ development: from ontogeny to neogenesis. Nat. Immunol. 7, 344–353 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Ley, K., Laudanna, C., Cybulsky, M. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Butcher, E.C. & Picker, L.J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Ley, K. Arrest chemokines. Microcirculation 10, 289–295 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Girard, J.-P. & Springer, T.A. Cloning from purified high endothelial venule cells of hevinl a close relative of the antiadhesive extracellular matrix protein SPARC. Immunity 2, 113–123 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Izawa, D. et al. Expression profile of active genes in mouse lymph node high endothelial cells. Int. Immunol. 11, 1989–1998 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Palmeri, D., Zuo, F.R., Rosen, S.D. & Hemmerich, S. Differential gene expression profile of human tonsil high endothelial cells: implications for lymphocyte trafficking. J Leuk. Biol. 75, 910–927 (2004).

    Article  CAS  Google Scholar 

  11. Stracke, M.L. et al. Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J. Biol. Chem. 267, 2524–2529 (1992).

    CAS  PubMed  Google Scholar 

  12. Murata, J. et al. cDNA cloning of the human tumor motility-stimulating protein, autotaxin, reveals a homology with phosphodiesterases. J. Biol. Chem. 269, 30479–30484 (1994).

    CAS  PubMed  Google Scholar 

  13. Mills, G.B. & Moolenaar, W.H. The emerging role of lysophosphatidic acid in cancer. Nat. Rev. Cancer 3, 582–591 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Tanaka, M. et al. Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. J. Biol. Chem. 281, 25822–25830 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. van Meeteren, L.A. et al. Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol. Cell. Biol. 26, 5015–5022 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, H.Y. et al. Stimulation of tumor cell motility linked to phosphodiesterase catalytic site of autotaxin. J. Biol. Chem. 271, 24408–24412 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Umezu-Goto, M. et al. Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J. Cell Biol. 158, 227–233 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tokumura, A. et al. Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J. Biol. Chem. 277, 39436–39442 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Goetzl, E.J. & Rosen, H. Regulation of immunity by lysosphingolipids and their G protein-coupled receptors. J. Clin. Invest. 114, 1531–1537 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hama, K. et al. Lysophosphatidic acid and autotaxin stimulate cell motility of neoplastic and non-neoplastic cells through LPA1. J. Biol. Chem. 279, 17634–17639 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Cyster, J.G. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol. 23, 127–159 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Jansen, S. et al. Proteolytic maturation and activation of autotaxin (NPP2), a secreted metastasis-enhancing lysophospholipase D. J. Cell Sci. 118, 3081–3089 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Koike, S., Keino-Masu, K., Ohto, T. & Masu, M. The N-terminal hydrophobic sequence of autotaxin (ENPP2) functions as a signal peptide. Genes Cells 11, 133–142 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Baekkevold, E.S. et al. Culture characterization of differentiated high endothelial venule cells from human tonsils. Lab. Invest. 79, 327–336 (1999).

    CAS  PubMed  Google Scholar 

  25. Cohen, D., Rodriguez-Boulan, E. & Musch, A. Par-1 promotes a hepatic mode of apical protein trafficking in MDCK cells. Proc. Natl. Acad. Sci. USA 101, 13792–13797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ruoslahti, E. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12, 697–715 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Kitani, A. et al. Soluble VCAM-1 induces chemotaxis of Jurkat and synovial fluid T cells bearing high affinity very late antigen-4. J. Immunol. 161, 4931–4938 (1998).

    CAS  PubMed  Google Scholar 

  28. Stam, J.C., Michiels, F., van der Kammen, R.A., Moolenaar, W.H. & Collard, J.G. Invasion of T-lymphoma cells: cooperation between Rho family GTPases and lysophospholipid receptor signaling. EMBO J. 17, 4066–4074 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Idzko, M. et al. Lysophosphatidic acid induces chemotaxis, oxygen radical production, CD11b up-regulation, Ca2. mobilization, and actin reorganization in human eosinophils via pertussis toxin-sensitive G proteins. J. Immunol. 172, 4480–4485 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Bleul, C.C., Fuhlbrigge, R.C., Casasnovas, J.M., Aiuti, A. & Springer, T.A. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J. Exp. Med. 184, 1101–1109 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Zheng, Y., Kong, Y. & Goetzl, E.J. Lysophosphatidic acid receptor-selective effects on Jurkat T cell migration through a Matrigel model basement membrane. J. Immunol. 166, 2317–2322 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Wilkinson, P.C. The locomotor capacity of human lymphocytes and its enhancement by cell growth. Immunology 57, 281–289 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ager, A. Regulation of lymphocyte migration into lymph nodes by high endothelial venules. Biochem. Soc. Trans. 25, 421–428 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Harris, H. The stimulation of lymphocyte motility by cultured high endothelial cells and its inhibition by pertussis toxin. Int. Immunol. 3, 535–542 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Browning, J.L. et al. Lymphotoxin-β receptor signaling is required for the homeostatic control of HEV differentiation and function. Immunity 23, 539–550 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Huber, C. et al. Lymphotoxin-β receptor-dependent genes in lymph node and follicular dendritic cell transcriptomes. J. Immunol. 174, 5526–5536 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Bayless, K.J. & Davis, G.E. Identification of dual α4β1 integrin binding sites within a 38 amino acid domain in the N-terminal thrombin fragment of human osteopontin. J. Biol. Chem. 276, 13483–13489 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Goetzl, E.J., Kong, Y. & Voice, J.K. Cutting edge: differential constitutive expression of functional receptors for lysophosphatidic acid by human blood lymphocytes. J. Immunol. 164, 4996–4999 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Rieken, S. et al. Lysophospholipids control integrin-dependent adhesion in splenic B cells through Gi and G12/G13 family G-proteins, but not through Gq/G11 . J. Biol. Chem. 281, 36985–36992 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Zheng, Y., Voice, J.K., Kong, Y. & Goetzl, E.J. Altered expression and functional profile of lysophosphatidic acid receptors in mitogen-activated human blood T lymphocytes. FASEB J. 14, 2387–2389 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Wu, H.-L. et al. Lysophosphatidic acid stimulates thrombomodulin lectin-like domain shedding in human endothelial cells. Biochem. Biophys. Res. Commun. 367, 162–168 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Miller, M.J., Wei, S.H., Parker, I. & Cahalan, M.D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Bajenoff, M. et al. Highways, byways and breadcrumbs: directing lymphocyte traffic in the lymph node. Trends Immunol. 28, 346–352 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Worbs, T., Mempel, T.R., Bolter, J., von Andrian, U.H. & Forster, R. CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo. J. Exp. Med. 204, 489–495 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Okada, T. & Cyster, J.G. CC chemokine receptor 7 contributes to Gi-dependent T cell motility in the lymph node. J. Immunol. 178, 2973–2978 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Huang, J.H. et al. Requirements for T lymphocyte migration in explanted lymph nodes. J. Immunol. 178, 7747–7755 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Woolf, E. et al. Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nat. Immunol. 8, 1076–1085 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Kotarsky, K. et al. Lysophosphatidic acid binds to and activates GPR92, a G protein-coupled receptor highly expressed in gastrointestinal lymphocytes. J. Pharmacol. Exp. Ther. 318, 619–628 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Lee, C.W., Rivera, R., Gardell, S., Dubin, A.E. & Chun, J. GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5 . J. Biol. Chem. 281, 23589–23597 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Luster, A.D., Alon, R. & von Andrian, U.H. Immune cell migration in inflammation: present and future therapeutic targets. Nat. Immunol. 6, 1182–1190 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Fox, M.A., Collello, R.J., Macklin, W.B. & Fuss, B. Phosphodiesterase-Ialpha/autotaxin: a counteradhesive protein expressed by oligodendrocytes during onset of myelination. Mol. Cell. Neurosci. 23, 507–519 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Bistrup, A. et al. Sulfotransferases of two specificities function in the reconstitution of high-endothelial-cell ligands for L-selectin. J. Cell Biol. 145, 899–910 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lasky, L.A. et al. An endothelial ligand for L-selectin is a novel mucin-like molecule. Cell 69, 927–938 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Fuss (Virginia Commonwealth University Medical Center) for polyclonal anti–rat ATX; J.G. Cyster (University of California, San Francisco) for monoclonal anti–mouse α4 and anti–mouse αL and for rat insulin promoter–B lymphocyte chemokine mice; J. Bluestone (University of California, San Francisco) for nonobese diabetic mice; M. Singer and D. Tsay for assistance with homing assays; and E.J. Goetzl and J.G. Cyster for advice and critical reading of this manuscript. Supported by the National Institute of Health (RO1-GM57411 and RO1-GM23547 to S.D.R.) and the Uehara Memorial Foundation, Japan (H.K.).

Author information

Authors and Affiliations

Authors

Contributions

H.K. and S.D.R. conceptualized and designed the research and prepared the manuscript; S.D.R. supervised the research and provided intellectual guidance; H.K. did experiments and analyzed data; R.N. and R.K. participated in the early phases of this project; Y.M. quantified ATX homing; and M.D.G. supervised the in situ hybridization.

Corresponding author

Correspondence to Steven D Rosen.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 8615 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanda, H., Newton, R., Klein, R. et al. Autotaxin, an ectoenzyme that produces lysophosphatidic acid, promotes the entry of lymphocytes into secondary lymphoid organs. Nat Immunol 9, 415–423 (2008). https://doi.org/10.1038/ni1573

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1573

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing