Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The multiple pathways to autoimmunity

Abstract

Efforts to understand autoimmunity have been pursued relentlessly for several decades. It has become apparent that the immune system evolved multiple mechanisms for controlling self-reactivity, and defects in one or more of these mechanisms can lead to a breakdown of tolerance. Among the multitude of lesions associated with disease, the most common seem to affect peripheral tolerance rather than central tolerance. The initial trigger for both systemic autoimmune disorders and organ-specific autoimmune disorders probably involves the recognition of self or foreign molecules, especially nucleic acids, by innate sensors. Such recognition, in turn, triggers inflammatory responses and the engagement of previously quiescent autoreactive T cells and B cells. Here we summarize the most prominent autoimmune pathways and identify key issues that require resolution for full understanding of pathogenic autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Escape of autoreactive T cells and B cells from central tolerance and engagement in the periphery.
Figure 2: Engagement of endosomal or cytosolic nucleic-acid sensors as central events in inflammatory responses.
Figure 3: Pathways by which sensors of self and foreign nucleic acids promote autoimmunity.
Figure 4: The multiple pathways to autoimmunity.

Similar content being viewed by others

References

  1. Kono, D.H. & Theofilopoulos, A.N. Autoimmunity. in Kelley and Firestein′s Textbook of Rheumatology, 10th edn. (eds. Firestein, G.S., Budd, R.C., Gabriel, S.E., McInnes, I.B. & O'Dell, J.R.) 301–317 (Elsevier, Philadelphia, 2017).

  2. Park, H., Bourla, A.B., Kastner, D.L., Colbert, R.A. & Siegel, R.M. Lighting the fires within: the cell biology of autoinflammatory diseases. Nat. Rev. Immunol. 12, 570–580 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gutierrez-Arcelus, M., Rich, S.S. & Raychaudhuri, S. Autoimmune diseases—connecting risk alleles with molecular traits of the immune system. Nat. Rev. Genet. 17, 160–174 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hunt, K.A. et al. Negligible impact of rare autoimmune-locus coding-region variants on missing heritability. Nature 498, 232–235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bouneaud, C., Kourilsky, P. & Bousso, P. Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity 13, 829–840 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Yu, W. et al. Clonal deletion prunes but does not eliminate self-specific αβ CD8+ T lymphocytes. Immunity 42, 929–941 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Legoux, F.P. et al. CD4+ T cell tolerance to tissue-restricted self antigens is mediated by antigen-specific regulatory T cells rather than deletion. Immunity 43, 896–908 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Malhotra, D. et al. Tolerance is established in polyclonal CD4+ T cells by distinct mechanisms, according to self-peptide expression patterns. Nat. Immunol. 17, 187–195 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mathis, D. & Benoist, C. Aire. Annu. Rev. Immunol. 27, 287–312 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Anderson, M.S. & Su, M.A. AIRE expands: new roles in immune tolerance and beyond. Nat. Rev. Immunol. 16, 247–258 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bansal, K., Yoshida, H., Benoist, C. & Mathis, D. The transcriptional regulator Aire binds to and activates super-enhancers. Nat. Immunol. 18, 263–273 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lei, Y. et al. Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. J. Exp. Med. 208, 383–394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamano, T. et al. Thymic B cells are licensed to present self antigens for central T cell tolerance induction. Immunity 42, 1048–1061 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Oftedal, B.E. et al. Dominant mutations in the autoimmune regulator AIRE are associated with common organ-specific autoimmune diseases. Immunity 42, 1185–1196 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Anderson, M.S. & Casanova, J.L. More than meets the eye: monogenic autoimmunity strikes again. Immunity 42, 986–988 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Takaba, H. et al. Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance. Cell 163, 975–987 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Meffre, E. The establishment of early B cell tolerance in humans: lessons from primary immunodeficiency diseases. Ann. NY Acad. Sci. 1246, 1–10 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Nemazee, D. Mechanisms of central tolerance for B cells. Nat. Rev. Immunol. 17, 281–294 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Avrameas, S. Natural autoantibodies: from 'horror autotoxicus' to 'gnothi seauton'. Immunol. Today 12, 154–159 (1991).

    CAS  PubMed  Google Scholar 

  21. Paterson, A.M. & Sharpe, A.H. Taming tissue-specific T cells: CTLA-4 reins in self-reactive T cells. Nat. Immunol. 11, 109–111 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Okazaki, T., Chikuma, S., Iwai, Y., Fagarasan, S. & Honjo, T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat. Immunol. 14, 1212–1218 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Pincetic, A. et al. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat. Immunol. 15, 707–716 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Macauley, M.S., Crocker, P.R. & Paulson, J.C. Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol. 14, 653–666 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ceeraz, S. et al. VISTA deficiency accelerates the development of fatal murine lupus nephritis. Arthritis Rheumatol. 69, 814–825 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schmitt, H. et al. Siglec-H protects from virus-triggered severe systemic autoimmunity. J. Exp. Med. 213, 1627–1644 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sharma, P. & Allison, J.P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205–214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fathman, C.G. & Lineberry, N.B. Molecular mechanisms of CD4+ T-cell anergy. Nat. Rev. Immunol. 7, 599–609 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Friesen, T.J., Ji, Q. & Fink, P.J. Recent thymic emigrants are tolerized in the absence of inflammation. J. Exp. Med. 213, 913–920 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kalekar, L.A. et al. CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors. Nat. Immunol. 17, 304–314 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yarkoni, Y., Getahun, A. & Cambier, J.C. Molecular underpinning of B-cell anergy. Immunol. Rev. 237, 249–263 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zikherman, J., Parameswaran, R. & Weiss, A. Endogenous antigen tunes the responsiveness of naive B cells but not T cells. Nature 489, 160–164 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Getahun, A., Beavers, N.A., Larson, S.R., Shlomchik, M.J. & Cambier, J.C. Continuous inhibitory signaling by both SHP-1 and SHIP-1 pathways is required to maintain unresponsiveness of anergic B cells. J. Exp. Med. 213, 751–769 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lamagna, C., Hu, Y., DeFranco, A.L. & Lowell, C.A. B cell-specific loss of Lyn kinase leads to autoimmunity. J. Immunol. 192, 919–928 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Prasad, S., Starck, S.R. & Shastri, N. Presentation of cryptic peptides by MHC Class I is enhanced by inflammatory stimuli. J. Immunol. 197, 2981–2991 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Doyle, H.A. & Mamula, M.J. Autoantigenesis: the evolution of protein modifications in autoimmune disease. Curr. Opin. Immunol. 24, 112–118 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Delong, T. et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science 351, 711–714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oldstone, M.B. Molecular mimicry and autoimmune disease. Cell 50, 819–820 (1987).

    Article  CAS  PubMed  Google Scholar 

  39. Wucherpfennig, K.W. & Strominger, J.L. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80, 695–705 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sanderson, N.S. et al. Cocapture of cognate and bystander antigens can activate autoreactive B cells. Proc. Natl. Acad. Sci. USA 114, 734–739 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morikawa, H. & Sakaguchi, S. Genetic and epigenetic basis of Treg cell development and function: from a FoxP3-centered view to an epigenome-defined view of natural Treg cells. Immunol. Rev. 259, 192–205 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Li, M.O. & Rudensky, A.Y. T cell receptor signalling in the control of regulatory T cell differentiation and function. Nat. Rev. Immunol. 16, 220–233 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thiault, N. et al. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat. Immunol. 16, 628–634 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Weist, B.M., Kurd, N., Boussier, J., Chan, S.W. & Robey, E.A. Thymic regulatory T cell niche size is dictated by limiting IL-2 from antigen-bearing dendritic cells and feedback competition. Nat. Immunol. 16, 635–641 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, Z. et al. Immune homeostasis enforced by co-localized effector and regulatory T cells. Nature 528, 225–230 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Procaccini, C. et al. The proteomic landscape of human ex vivo regulatory and conventional T cells reveals specific metabolic requirements. Immunity 44, 406–421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Newton, R., Priyadharshini, B. & Turka, L.A. Immunometabolism of regulatory T cells. Nat. Immunol. 17, 618–625 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang, S., Fujikado, N., Kolodin, D., Benoist, C. & Mathis, D. Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348, 589–594 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Su, L.F., Del Alcazar, D., Stelekati, E., Wherry, E.J. & Davis, M.M. Antigen exposure shapes the ratio between antigen-specific Tregs and conventional T cells in human peripheral blood. Proc. Natl. Acad. Sci. USA 113, E6192–E6198 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arpaia, N. et al. A distinct function of regulatory T cells in tissue protection. Cell 162, 1078–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dombrowski, Y. et al. Regulatory T cells promote myelin regeneration in the central nervous system. Nat. Neurosci. 20, 674–680 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kitagawa, Y. et al. Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nat. Immunol. 18, 173–183 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Apostolidis, S.A. et al. Phosphatase PP2A is requisite for the function of regulatory T cells. Nat. Immunol. 17, 556–564 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kieback, E. et al. Thymus-derived regulatory T cells are positively selected on natural self-antigen through cognate interactions of high functional avidity. Immunity 44, 1114–1126 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Malchow, S. et al. Aire enforces immune tolerance by directing autoreactive T cells into the regulatory T cell lineage. Immunity 44, 1102–1113 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Miyara, M., Ito, Y. & Sakaguchi, S. TREG-cell therapies for autoimmune rheumatic diseases. Nat. Rev. Rheumatol. 10, 543–551 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Spence, A., Klementowicz, J.E., Bluestone, J.A. & Tang, Q. Targeting Treg signaling for the treatment of autoimmune diseases. Curr. Opin. Immunol. 37, 11–20 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Visperas, A. & Vignali, D.A. Are regulatory T cells defective in type 1 diabetes and can we fix them? J. Immunol. 197, 3762–3770 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10, 1000–1007 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guo, J. & Zhou, X. Regulatory T cells turn pathogenic. Cell. Mol. Immunol. 12, 525–532 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Blasius, A.L. & Beutler, B. Intracellular toll-like receptors. Immunity 32, 305–315 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16, 343–353 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Theofilopoulos, A.N., Kono, D.H., Beutler, B. & Baccala, R. Intracellular nucleic acid sensors and autoimmunity. J. Interferon Cytokine Res. 31, 867–886 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, Q., Sun, L. & Chen, Z.J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 17, 1142–1149 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Barber, G.N. STING-dependent cytosolic DNA sensing pathways. Trends Immunol. 35, 88–93 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Crow, M.K. Type I interferon in the pathogenesis of lupus. J. Immunol. 192, 5459–5468 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Rönnblom, L. The type I interferon system in the etiopathogenesis of autoimmune diseases. Ups. J. Med. Sci. 116, 227–237 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6, 823–835 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Santiago-Raber, M.L. et al. Type-I interferon receptor deficiency reduces lupus-like disease in NZB mice. J. Exp. Med. 197, 777–788 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baccala, R. et al. Anti-IFN-α/β receptor antibody treatment ameliorates disease in lupus-predisposed mice. J. Immunol. 189, 5976–5984 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Christensen, S.R. et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25, 417–428 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Pisitkun, P. et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312, 1669–1672 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Subramanian, S. et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc. Natl. Acad. Sci. USA 103, 9970–9975 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Weindel, C.G. et al. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation. Autophagy 11, 1010–1024 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Martinez, J. et al. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature 533, 115–119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kono, D.H. et al. Endosomal TLR signaling is required for anti-nucleic acid and rheumatoid factor autoantibodies in lupus. Proc. Natl. Acad. Sci. USA 106, 12061–12066 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Blasius, A.L. et al. Slc15a4, AP-3, and Hermansky-Pudlak syndrome proteins are required for Toll-like receptor signaling in plasmacytoid dendritic cells. Proc. Natl. Acad. Sci. USA 107, 19973–19978 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Koh, Y.T. et al. Role of nucleic acid-sensing TLRs in diverse autoantibody specificities and anti-nuclear antibody-producing B cells. J. Immunol. 190, 4982–4990 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Baccala, R. et al. Essential requirement for IRF8 and SLC15A4 implicates plasmacytoid dendritic cells in the pathogenesis of lupus. Proc. Natl. Acad. Sci. USA 110, 2940–2945 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rowland, S.L. et al. Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model. J. Exp. Med. 211, 1977–1991 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sisirak, V. et al. Genetic evidence for the role of plasmacytoid dendritic cells in systemic lupus erythematosus. J. Exp. Med. 211, 1969–1976 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kobayashi, T. et al. The histidine transporter SLC15A4 coordinates mTOR-dependent inflammatory responses and pathogenic antibody production. Immunity 41, 375–388 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Teichmann, L.L. et al. Dendritic cells in lupus are not required for activation of T and B cells but promote their expansion, resulting in tissue damage. Immunity 33, 967–978 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Teichmann, L.L., Schenten, D., Medzhitov, R., Kashgarian, M. & Shlomchik, M.J. Signals via the adaptor MyD88 in B cells and DCs make distinct and synergistic contributions to immune activation and tissue damage in lupus. Immunity 38, 528–540 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Funabiki, M. et al. Autoimmune disorders associated with gain of function of the intracellular sensor MDA5. Immunity 40, 199–212 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Buskiewicz, I.A. et al. Reactive oxygen species induce virus-independent MAVS oligomerization in systemic lupus erythematosus. Sci. Signal. 9, ra115 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sisirak, V. et al. Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell 166, 88–101 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Stetson, D.B., Ko, J.S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hung, T. et al. The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression. Science 350, 455–459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Garcia-Romo, G.S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra19 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Caielli, S. et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J. Exp. Med. 213, 697–713 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lood, C. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 22, 146–153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Henault, J. et al. Self-reactive IgE exacerbates interferon responses associated with autoimmunity. Nat. Immunol. 17, 196–203 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Honda, K. & Littman, D.R. The microbiota in adaptive immune homeostasis and disease. Nature 535, 75–84 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Ruff, W.E. & Kriegel, M.A. Autoimmune host-microbiota interactions at barrier sites and beyond. Trends Mol. Med. 21, 233–244 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Huttenhower, C., Kostic, A.D. & Xavier, R.J. Inflammatory bowel disease as a model for translating the microbiome. Immunity 40, 843–854 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Smith, P.M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Mazmanian, S.K., Round, J.L. & Kasper, D.L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Neff, C.P. et al. Diverse intestinal bacteria contain putative zwitterionic capsular polysaccharides with anti-inflammatory properties. Cell Host Microbe 20, 535–547 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Monteleone, I. et al. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology 141, 237–248 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Qiu, J. et al. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity 39, 386–399 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Knip, M. & Siljander, H. The role of the intestinal microbiota in type 1 diabetes mellitus. Nat. Rev. Endocrinol. 12, 154–167 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 1551 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Haghikia, A. et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43, 817–829 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Rothhammer, V. et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Glenn, J.D. & Mowry, E.M. Emerging concepts on the gut microbiome and multiple sclerosis. J. Interferon Cytokine Res. 36, 347–357 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Scher, J.U., Littman, D.R. & Abramson, S.B. Microbiome in inflammatory arthritis and human rheumatic diseases. Arthritis Rheumatol. 68, 35–45 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wegner, N. et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 62, 2662–2672 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang, X. et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21, 895–905 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Konig, M.F. et al. Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Sci. Transl. Med. 8, 369ra176 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Thaiss, C.A. et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514–529 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Korem, T. et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science 349, 1101–1106 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mehta, A. & Baltimore, D. MicroRNAs as regulatory elements in immune system logic. Nat. Rev. Immunol. 16, 279–294 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Atianand, M.K. & Fitzgerald, K.A. Long non-coding RNAs and control of gene expression in the immune system. Trends Mol. Med. 20, 623–631 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Satpathy, A.T. & Chang, H.Y. Long noncoding RNA in hematopoiesis and immunity. Immunity 42, 792–804 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Xiao, C. et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat. Immunol. 9, 405–414 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lai, M. et al. Regulation of B-cell development and tolerance by different members of the miR-1792 family microRNAs. Nat. Commun. 7, 12207 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gonzalez-Martin, A. et al. The microRNA miR-148a functions as a critical regulator of B cell tolerance and autoimmunity. Nat. Immunol. 17, 433–440 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Garo, L.P. & Murugaiyan, G. Contribution of MicroRNAs to autoimmune diseases. Cell. Mol. Life Sci. 73, 2041–2051 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Wu, G.C. et al. Emerging role of long noncoding RNAs in autoimmune diseases. Autoimmun. Rev. 14, 798–805 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Castellanos-Rubio, A. et al. A long noncoding RNA associated with susceptibility to celiac disease. Science 352, 91–95 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rubtsova, K., Marrack, P. & Rubtsov, A.V. Sexual dimorphism in autoimmunity. J. Clin. Invest. 125, 2187–2193 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Markle, J.G. & Fish, E.N. SeXX matters in immunity. Trends Immunol. 35, 97–104 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Ter Horst, R. et al. Host and environmental factors influencing individual human cytokine responses. Cell 167, 1111–1124 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Grimaldi, C.M., Jeganathan, V. & Diamond, B. Hormonal regulation of B cell development: 17 β-estradiol impairs negative selection of high-affinity DNA-reactive B cells at more than one developmental checkpoint. J. Immunol. 176, 2703–2710 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Dragin, N. et al. Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases. J. Clin. Invest. 126, 1525–1537 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Zhu, M.L. et al. Sex bias in CNS autoimmune disease mediated by androgen control of autoimmune regulator. Nat. Commun. 7, 11350 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Markle, J.G. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 1084–1088 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Yurkovetskiy, L. et al. Gender bias in autoimmunity is influenced by microbiota. Immunity 39, 400–412 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Smith-Bouvier, D.L. et al. A role for sex chromosome complement in the female bias in autoimmune disease. J. Exp. Med. 205, 1099–1108 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Carrel, L. & Willard, H.F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434, 400–404 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Brooks, W.H. X chromosome inactivation and autoimmunity. Clin. Rev. Allergy Immunol. 39, 20–29 (2010).

    Article  PubMed  Google Scholar 

  139. Berletch, J.B., Yang, F. & Disteche, C.M. Escape from X inactivation in mice and humans. Genome Biol. 11, 213 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang, Y. et al. Genes that escape X-inactivation in humans have high intraspecific variability in expression, are associated with mental impairment but are not slow evolving. Mol. Biol. Evol. 30, 2588–2601 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Harris, V.M. et al. Klinefelter's syndrome (47,XXY) is in excess among men with Sjögren's syndrome. Clin. Immunol. 168, 25–29 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hughes, T. et al. Analysis of autosomal genes reveals gene-sex interactions and higher total genetic risk in men with systemic lupus erythematosus. Ann. Rheum. Dis. 71, 694–699 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Ellebrecht, C.T. et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353, 179–184 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Clemente-Casares, X. et al. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature 530, 434–440 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Beutler, D. Burton, L. Teyton and D. Nemazee for manuscript review and advice. Supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR065919 and AR068910 to A.N.T.), the National Heart, Lung and Blood Institute (HL114408 to D.H.K.) and the National Institute of Allergy and Infectious Diseases (AI121525 and AI117563 to R.B.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Argyrios N Theofilopoulos or Roberto Baccala.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theofilopoulos, A., Kono, D. & Baccala, R. The multiple pathways to autoimmunity. Nat Immunol 18, 716–724 (2017). https://doi.org/10.1038/ni.3731

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3731

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing