Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes

Abstract

We have previously reported suggestive linkage of type 2 diabetes mellitus to chromosome 10q1. We genotyped 228 microsatellite markers in Icelandic individuals with type 2 diabetes and controls throughout a 10.5-Mb interval on 10q. A microsatellite, DG10S478, within intron 3 of the transcription factor 7–like 2 gene (TCF7L2; formerly TCF4) was associated with type 2 diabetes (P = 2.1 × 10−9). This was replicated in a Danish cohort (P = 4.8 × 10−3) and in a US cohort (P = 3.3 × 10−9). Compared with non-carriers, heterozygous and homozygous carriers of the at-risk alleles (38% and 7% of the population, respectively) have relative risks of 1.45 and 2.41. This corresponds to a population attributable risk of 21%. The TCF7L2 gene product is a high mobility group box–containing transcription factor previously implicated in blood glucose homeostasis. It is thought to act through regulation of proglucagon gene expression in enteroendocrine cells via the Wnt signaling pathway2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TCF7L2 region of interest with respect to linkage disequilibrium (LD) of SNPs in CEPH Utah HapMap v16.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Reynisdottir, I. et al. Localization of a susceptibility gene for type 2 diabetes to chromosome 5q34-q35.2. Am. J. Hum. Genet. 73, 323–335 (2003).

    Article  CAS  Google Scholar 

  2. Yi, F., Brubaker, P.L. & Jin, T. TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J. Biol. Chem. 280, 1457–1464 (2005).

    Article  CAS  Google Scholar 

  3. Zimmet, P., Alberti, K.G. & Shaw, J. Global and societal implications of the diabetes epidemic. Nature 414, 782–787 (2001).

    Article  CAS  Google Scholar 

  4. Rich, S.S. Mapping genes in diabetes. Genetic epidemiological perspective. Diabetes 39, 1315–1319 (1990).

    Article  CAS  Google Scholar 

  5. Altshuler, D. et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat. Genet. 26, 76–80 (2000).

    Article  CAS  Google Scholar 

  6. Horikawa, Y. et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat. Genet. 26, 163–175 (2000).

    Article  CAS  Google Scholar 

  7. Gloyn, A.L. et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 52, 568–572 (2003).

    Article  CAS  Google Scholar 

  8. Duggirala, R. et al. Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans. Am. J. Hum. Genet. 64, 1127–1140 (1999).

    Article  CAS  Google Scholar 

  9. Falk, C.T. & Rubinstein, P. Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations. Ann. Hum. Genet. 51, 227–233 (1987).

    Article  CAS  Google Scholar 

  10. The International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  11. Mantel, N. & Haenszel, W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22, 719–748 (1959).

    CAS  PubMed  Google Scholar 

  12. Kong, A. & Cox, N.J. Allele-sharing models: LOD scores and accurate linkage tests. Am. J. Hum. Genet. 61, 1179–1188 (1997).

    Article  CAS  Google Scholar 

  13. Prunier, C., Hocevar, B.A. & Howe, P.H. Wnt signaling: physiology and pathology. Growth Factors 22, 141–150 (2004).

    Article  CAS  Google Scholar 

  14. Huelsken, J. & Birchmeier, W. New aspects of Wnt signaling pathways in higher vertebrates. Curr. Opin. Genet. Dev. 11, 547–553 (2001).

    Article  CAS  Google Scholar 

  15. Nelson, W.J. & Nusse, R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303, 1483–1487 (2004).

    Article  CAS  Google Scholar 

  16. Duval, A. et al. The human T-cell transcription factor-4 gene: structure, extensive characterization of alternative splicings, and mutational analysis in colorectal cancer cell lines. Cancer Res. 60, 3872–3879 (2000).

    CAS  PubMed  Google Scholar 

  17. Fajans, S.S., Bell, G.I. & Polonsky, K.S. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N. Engl. J. Med. 345, 971–980 (2001).

    Article  CAS  Google Scholar 

  18. Wolfrum, C., Asilmaz, E., Luca, E., Friedman, J.M. & Stoffel, M. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature 432, 1027–1032 (2004).

    Article  CAS  Google Scholar 

  19. Nakae, J. et al. Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat. Genet. 32, 245–253 (2002).

    Article  CAS  Google Scholar 

  20. Noble, J.A. et al. A polymorphism in the TCF7 gene, C883A, is associated with type 1 diabetes. Diabetes 52, 1579–1582 (2003).

    Article  CAS  Google Scholar 

  21. Wong, N.A. & Pignatelli, M. Beta-catenin–a linchpin in colorectal carcinogenesis? Am. J. Pathol. 160, 389–401 (2002).

    Article  CAS  Google Scholar 

  22. Lepourcelet, M. et al. Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 5, 91–102 (2004).

    Article  CAS  Google Scholar 

  23. Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat. Genet. 19, 379–383 (1998).

    Article  CAS  Google Scholar 

  24. Tanko, L.B., Bagger, Y.Z., Nielsen, S.B. & Christiansen, C. Does serum cholesterol contribute to vertebral bone loss in postmenopausal women? Bone 32, 8–14 (2003).

    Article  CAS  Google Scholar 

  25. Lewontin, R.C. The interaction of selection and linkage. II. Optimum models. Genetics 50, 757–782 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the International HapMap Consortium for providing valuable data which were crucial for parts of our analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Struan F A Grant or Kari Stefansson.

Ethics declarations

Competing interests

S.F.A.G., G.T., I.R., A.M., J. Sainz, A. Helgason, H.S., V.E., A. Helgadottir, U.S., K.P.M., G.B.W., E.P., T.J., T.G., A.G., J. Saemundsdottir, U.T., J.R.G., A.K. and K.S. own stock or stock options in deCODE Genetics.

Supplementary information

Supplementary Figure 1

A phylogenetic network representing the genealogical relationships between haplotypes in the TCF7L2 gene. (PDF 544 kb)

Supplementary Table 1

Genotype summaries for DG10S478 and the five correlated SNPs for the cohorts from Iceland, Denmark and USA. (PDF 21 kb)

Supplementary Table 2

Correlation of five selected public SNPs from the CEPH Utah HapMap with composite allele X of microsatellite DG10S478 in the cohorts from Iceland, Denmark and USA. (PDF 66 kb)

Supplementary Table 3

Association of the at-risk alleles of the five selected SNPs and the composite allele X of the microsatellite DG10S478 to type 2 diabetes in Iceland, Denmark and USA. (PDF 45 kb)

Supplementary Table 4

Combined association of the at-risk alleles of the five selected SNPs and the composite allele X of microsatellite DG10X478 to type 2 diabetes in all three cohorts. (PDF 41 kb)

Supplementary Table 5

Age and BMI ranges for the cohorts from Iceland, Denmark and USA. (PDF 22 kb)

Supplementary Table 6

Association between copies of composite allele X of DG10S478 and covariates within affected and control individuals separately. (PDF 22 kb)

Supplementary Methods (PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grant, S., Thorleifsson, G., Reynisdottir, I. et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38, 320–323 (2006). https://doi.org/10.1038/ng1732

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1732

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing