Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mapping of a major genetic modifier of embryonic lethality in TGFβ1 knockout mice

Abstract

The transforming growth factor β1 (TGFβ1) signalling pathway1,2 is important in embryogenesis3 and has been implicated in hereditary haemorrhagic telangiectasia (HHT)4,5, atherosclerosis6,7, tumorigenesis8,9 and immunomodulation10,11. Therefore, identification of factors which modulate TGFβ1 bioactivity in vivo is important. On a mixed genetic background, 50% Tgfb1−/− conceptuses die mid-gestation from defective yolk sac vasculogenesis3. The other half are developmentally normal but die three weeks postpartum3,10,11. Intriguingly, the vascular defects of Tgfb1−/− mice share histological similarities to lesions seen in HHT patients3–5. It has been suggested that dichotomy in Tgfb1−/− lethal phenotypes is due to maternal TGFβ1 rescue of some, but not all, Tgfb1−/− embryos12. Here we show that the Tgfb1−/− phenotype depends on the genetic background of the conceptus. In NIH/Ola, C57BL/6J/Ola and F1 conceptuses, Tgfb1−/− lethality can be categorized into three developmental classes. A major codominant modifier gene of embryo lethality was mapped to proximal mouse chromosome 5, using a genome scan for non-mendelian distribution of alleles in Tgfb1−/− neonatal animals which survive prenatal lethality. This gene accounts for around three quarters of the genetic effect between mouse strains and can, in part, explain the distribution of the three lethal phenotypes. This approach, using neonatal DNA samples, is generally applicable to identification of loci that influence the effect of early embryonic lethal mutations, thus furthering knowledge of genetic interactions that occur during early mammalian development in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cui, W. & Akhurst, R.J. Transforming growth factor (βs: biochemistry and biology in vitro and in vivo. in Growth factors and cytokines in health and disease, (eds. D. LeRoith and C. Brody) 357–394 (JAI Press, London, 1996).

  2. Massague, J. TGFβ signaling, receptors, transducers and Mad proteins. Cell 85, 947–950 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Dickson, M.C. et al. Transforming growth factor-β is essential for hematopoiesis and endothelial differentiationin vivo. Development 121, 1845–1854 (1995).

    CAS  PubMed  Google Scholar 

  4. McAllister, K.A. et al. Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nature Genet. 8, 345–351 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Johnson, D.W. et al. Mutation in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nature Genet. 13, 189–195 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Grainger, D.J., Kemp, P.R., Liu, A.C., Lawn, R.M. & Metcalfe, J.C. Activation of transforming growth factor-β is inhibited in transgenic apolipoprotein (a) mice. Nature 370, 460–462 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Grainger, D.J. et al. The serum concentration of active transforming growth factor-βis severely depressed in advanced atherosclerosis. Nature Med. 1, 74–79 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Markowitz, S. et al. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 268, 1276–1277 (1995).

    Article  Google Scholar 

  9. Cui, W. et al. TGFβ1 inhibits the formation of benign skin tumours but enhances progression to invasive spindle cell carcinomas in transgenic mice. Cell 86, 531–546 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Shull, M.M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kulkarni, A.B. et al. Transforming growth factor-β1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl. Acad. Sci. USA 90, 770–774 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Letterio, J.J. et al. Maternal rescue of the transforming growth factor β knockout. Science 264, 1936–1938 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Green, J.B.A. & Smith, J.C. Graded changes in dose of Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate. Nature 347, 391–394 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Lander, E.S. & Schork, N.J. Genetic dissection of complex traits. Science 265, 2037–2048 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Dickinson, M.E. et al. Chromosomal localization of seven members of the murine TGF-β superfamily suggests close linkage to several morphogenetic mutant loci. Genomics 6, 505–520 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Lander, E. & Kruglyak, L. Genetic dissection of complex traits: guidelines for interpreting and reporting results. Nature Genet. 11, 241–247 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Risch, N., Ghosh, S. & Todd, J.A. Statistical evaluation of multiple-locus linkage data in experimental species and its relevance to human studies: application to nonobese diabetic (NOD) mouse and human insulin-dependent Diabetes Mellitus. Am. J. Hum. Genet. 53, 702–714 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Laurey, S.G., Barton, D.E., Ullrich, A. & Franke, U. Chromosome mapping of the gene for type II insulin like growth factor receptor/cation-independent mannose-6-phosphate receptor in man and mouse. Genomics 3, 224–229 (1988).

    Article  Google Scholar 

  19. Bonyadi, M., Cui, W., Nagase, H. & Akhurst, R.J., The TGFβ type II receptor, Tgfbr2, maps to distal mouse chromosome 9. Genomics 33, 328–329 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Qureshi, S., Gros, T., Gros, P., Letarte, M. & Malo, D. The murine endoglin gene (Eng) maps to chromosome 2. Genomics 26, 165–166 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Avraham, K.B. et al. Mapping of murine fibroblast growth factor receptors refines regions of homology between mouse and human chromosomes. Genomics 21, 656–658 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Kimelman, D. & Kirschner, M. Synergistic induction of mesoderm by FGF and TGF-β and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell 51, 869–877 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Saunders, K.B. & D'Amore, P.A. FGF and TGF-β: Actions and interactions in biological systems. Eukaryot. Gene Expr. 1, 157–172 (1991).

    CAS  Google Scholar 

  24. Mock, B.A. et al. The murine interleukin 6 gene maps to the proximal region of chromosome 5. J. Immunol. 142, 1372–1376 (1989).

    CAS  PubMed  Google Scholar 

  25. Gautum, S.C. et al. Transforming growth factor beta1 (TGFβ1) potentiates IL1 alpha-induced IL6 mRNA and cytokine protein production in a human astrocytoma cell line. Oncol. Res. 5, 423–432 (1993).

    Google Scholar 

  26. Liu, J., Baker, J., Perkins, A.S., Robertson, E.J. & Efstradiatis, A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75, 59–72 (1993).

    CAS  PubMed  Google Scholar 

  27. George, E.L., Georges-Labouesse, E.N., Patel-King, R.S., Rayburn, H. & Hynes, R.O. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119, 1079–1091 (1993).

    CAS  PubMed  Google Scholar 

  28. Threadgill, D.W. et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Scinence 269, 230–234 (1995).

    Article  CAS  Google Scholar 

  29. Rozmahel, R. et al. Modulation of disease severity in cystic fibrosis transmembrane conductance regulator deficient mice by a secondary genetic factor. Nature Genet. 12, 280–287 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Proetzel, M. et al. Transforming growth factor-β3 is required for secondary palate fusion. Nature Genet. 11, 409–414 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Neumann, P.E. et al. Multifactorial inheritance of neural tube defects: localization of the major gene and recognition of modifiers in ct mutant mice. Nature Genet. 6, 357–362 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Lander, E.S. et al. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemary J. Akhurst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonyadi, M., Rusholme, S., Cousins, F. et al. Mapping of a major genetic modifier of embryonic lethality in TGFβ1 knockout mice. Nat Genet 15, 207–211 (1997). https://doi.org/10.1038/ng0297-207

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0297-207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing