Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide association study of hematological and biochemical traits in a Japanese population

Abstract

We report genome-wide association studies for hematological and biochemical traits from 14,700 Japanese individuals. We identified 60 associations for 8 hematological traits and 29 associations for 12 biochemical traits at genome-wide significance levels (P < 5 × 10−8). Of these, 46 associations were new to this study and 43 replicated previous reports. We compared these associated loci with those reported in similar GWAS in European populations. When the minor allele frequency was >10% in the Japanese population, 32 (94.1%) and 31 (91.2%) of the 34 hematological loci previously reported to be associated in a European population were replicated with P-values less than 0.05 and 0.01, respectively, and 31 (73.8%) and 27 (64.3%) of the 42 European biochemical loci were replicated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yamaguchi-Kabata, Y. et al. Japanese population structure, based on SNP genotypes from 7003 individuals compared to other ethnic groups: effects on population-based association studies. Am. J. Hum. Genet. 83, 445–456 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Soranzo, N. et al. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat. Genet. 41, 1182–1190 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thein, S.L. et al. Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. Proc. Natl. Acad. Sci. USA 104, 11346–11351 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Menzel, S. et al. The HBS1L-MYB intergenic region on chromosome 6q23.3 influences erythrocyte, platelet, and monocyte counts in humans. Blood 110, 3624–3626 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Ganesh, S.K. et al. Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium. Nat. Genet. 41, 1191–1198 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Benyamin, B. et al. Common variants in TMPRSS6 are associated with iron status and erythrocyte volume. Nat. Genet. 41, 1173–1175 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chambers, J.C. et al. Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin levels. Nat. Genet. 41, 1170–1172 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yip, S.P Sequence variation at the human ABO locus. Ann. Hum. Genet. 66, 1–27 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Garner, C. et al. Two candidate genes for low platelet count identified in an Asian Indian kindred by genome-wide linkage analysis: glycoprotein IX and thrombopoietin. Eur. J. Hum. Genet. 14, 101–108 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Maguire, J.M. et al. Polymorphisms in platelet glycoprotein 1balpha and factor VII and risk of ischemic stroke: a meta-analysis. Stroke 39, 1710–1716 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Dehghan, A. et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 372, 1953–1961 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kolz, M. et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 5, e1000504 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kathiresan, S. et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat. Genet. 40, 189–197 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kathiresan, S. et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat. Genet. 41, 56–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Saxena, R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Yuan, X. et al. Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes. Am. J. Hum. Genet. 83, 520–528 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nose, J., Saito, A. & Kamatani, N. Statistical analysis of the associations between polymorphisms within aldehyde dehydrogenase 2 (ALDH2), and quantitative and qualitative traits extracted from a large-scale database of Japanese single-nucleotide polymorphisms (SNPs). J. Hum. Genet. 53, 425–438 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Bagnasco, S.M., Peng, T., Janech, M., Karakashian, A. & Sands, J. Cloning and characterization of the human urea transporter UT-A1 and mapping of the human Slc14a2 gene. Am. J. Physiol. Renal Physiol. 281, F400–F406 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Aulchenko, Y.S. et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat. Genet. 41, 47–55 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Sabatti, C. et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat. Genet. 41, 35–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Melzer, D. et al. A genome-wide association study identifies protein quantitative trait loci (pQTLs). PLoS Genet. 4, e1000072 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Harmon, J.T. & Jamieson, G.A. The glycocalicin portion of platelet glycoprotein Ib expresses both high and moderate affinity receptor sites for thrombin. A soluble radioreceptor assay for the interaction of thrombin with platelets. J. Biol. Chem. 261, 13224–13229 (1986).

    CAS  PubMed  Google Scholar 

  23. Ware, J. et al. Nonsense mutation in the glycoprotein Ib alpha coding sequence associated with Bernard-Soulier syndrome. Proc. Natl. Acad. Sci. USA 87, 2026–2030 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miller, J.L., Cunningham, D., Lyle, V.A. & Finch, C.N. Mutation in the gene encoding the alpha chain of platelet glycoprotein Ib in platelet-type von Willebrand disease. Proc. Natl. Acad. Sci. USA 88, 4761–4765 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wiestner, A., Schlemper, R., van der Maas, A. & Skoda, R. An activating splice donor mutation in the thrombopoietin gene causes hereditary thrombocythaemia. Nat. Genet. 18, 49–52 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Shu, L., Yan, W. & Chen, X. RNPC1, an RNA-binding protein and a target of the p53 family, is required for maintaining the stability of the basal and stress-induced p21 transcript. Genes Dev. 20, 2961–2972 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wohlschlegel, J.A. et al. Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 290, 2309–2312 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Kozar, K. et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell 118, 477–491 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Yamaguchi, H. et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N. Engl. J. Med. 352, 1413–1424 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Fischer, E.H., Charbonneau, H. & Tonks, N.K. Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science 253, 401–406 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Castigli, E. et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat. Genet. 37, 829–834 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Salzer, U. et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat. Genet. 37, 820–828 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Inazu, A. et al. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N. Engl. J. Med. 323, 1234–1238 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Ichida, K. et al. Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese. Clin. Genet. 74, 243–251 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Nakamura, Y. The BioBank Japan project. Clin. Adv. Hematol. Oncol. 5, 696–697 (2007).

    PubMed  Google Scholar 

  36. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Whitehead, A. Combining estimates of a treatment difference across trials. in Meta-Analysis of Controlled Clinical Trials (Wiley, Chichester, UK, 2002).

  38. Higgins, J.P., Thompson, S.G., Deeks, J.J. & Altman, D.G. Measuring inconsistency in meta-analyses. Br. Med. J. 327, 557–560 (2003).

    Article  Google Scholar 

  39. The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

  40. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the technical staff of the Laboratory for Genotyping Development at RIKEN for SNP genotyping and K. Kamatani for useful advice about statistical analyses. We also thank all the participants and the staff of the BioBank Japan project. This study was supported by the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Contributions

Y.K., K.M., M.K. and N.K. designed the study; Y.N. managed BioBank Japan; M.K. and N.H. conducted genotyping experiments and quality control; Y.K., Y.O. and N.K. performed the statistical analysis; Y.K., Y.O., K.M., M.K., Y.D. and N.K. wrote the manuscript; Y.N. obtained the funding for the study.

Corresponding author

Correspondence to Naoyuki Kamatani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Tables 1–4 (PDF 2758 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamatani, Y., Matsuda, K., Okada, Y. et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet 42, 210–215 (2010). https://doi.org/10.1038/ng.531

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.531

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing