Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases

Abstract

Human leukocyte antigen (HLA) genes confer substantial risk for autoimmune diseases on a log-additive scale. Here we speculated that differences in autoantigen-binding repertoires between a heterozygote's two expressed HLA variants might result in additional non-additive risk effects. We tested the non-additive disease contributions of classical HLA alleles in patients and matched controls for five common autoimmune diseases: rheumatoid arthritis (ncases = 5,337), type 1 diabetes (T1D; ncases = 5,567), psoriasis vulgaris (ncases = 3,089), idiopathic achalasia (ncases = 727) and celiac disease (ncases = 11,115). In four of the five diseases, we observed highly significant, non-additive dominance effects (rheumatoid arthritis, P = 2.5 × 10−12; T1D, P = 2.4 × 10−10; psoriasis, P = 5.9 × 10−6; celiac disease, P = 1.2 × 10−87). In three of these diseases, the non-additive dominance effects were explained by interactions between specific classical HLA alleles (rheumatoid arthritis, P = 1.8 × 10−3; T1D, P = 8.6 × 10−27; celiac disease, P = 6.0 × 10−100). These interactions generally increased disease risk and explained moderate but significant fractions of phenotypic variance (rheumatoid arthritis, 1.4%; T1D, 4.0%; celiac disease, 4.1%) beyond a simple additive model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disease associations of HLA and non-HLA variants.
Figure 2: Non-additive contribution of the HLA region to autoimmune disease risk.
Figure 3: Interaction effects among HLA haplotypes.

Similar content being viewed by others

References

  1. Horton, R. et al. Gene map of the extended human MHC. Nat. Rev. Genet. 5, 889–899 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Parkes, M., Cortes, A., van Heel, D.A. & Brown, M.A. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat. Rev. Genet. 14, 661–673 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Trowsdale, J. & Knight, J.C. Major histocompatibility complex genomics and human disease. Annu. Rev. Genomics Hum. Genet. 14, 301–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thursz, M.R., Thomas, H.C., Greenwood, B.M. & Hill, A.V. Heterozygote advantage for HLA class-II type in hepatitis B virus infection. Nat. Genet. 17, 11–12 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Carrington, M. et al. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 283, 1748–1752 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Penn, D.J., Damjanovich, K. & Potts, W.K. MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc. Natl. Acad. Sci. USA 99, 11260–11264 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Savage, A.E. & Zamudio, K.R. MHC genotypes associate with resistance to a frog-killing fungus. Proc. Natl. Acad. Sci. USA 108, 16705–16710 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dean, M., Carrington, M. & O'Brien, S.J. Balanced polymorphism selected by genetic versus infectious human disease. Annu. Rev. Genomics Hum. Genet. 3, 263–292 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Lipsitch, M., Bergstrom, C.T. & Antia, R. Effect of human leukocyte antigen heterozygosity on infectious disease outcome: the need for allele-specific measures. BMC Med. Genet. 4, 2 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Woelfing, B., Traulsen, A., Milinski, M. & Boehm, T. Does intra-individual major histocompatibility complex diversity keep a golden mean? Phil. Trans. R. Soc. Lond. B 364, 117–128 (2009).

    Article  Google Scholar 

  11. Tsai, S. & Santamaria, P. MHC class II polymorphisms, autoreactive T-cells and autoimmunity. Front. Immunol. 4, 321 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Goyette, P. et al. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat. Genet. 47, 172–179 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wordsworth, P. et al. HLA heterozygosity contributes to susceptibility to rheumatoid arthritis. Am. J. Hum. Genet. 51, 585–591 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Thomson, G. et al. Relative predispositional effects of HLA class II DRB1-DQB1 haplotypes and genotypes on type 1 diabetes: a meta-analysis. Tissue Antigens 70, 110–127 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Koeleman, B.P.C. et al. Genotype effects and epistasis in type 1 diabetes and HLA-DQ trans dimer associations with disease. Genes Immun. 5, 381–388 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Wilkie, A.O. The molecular basis of genetic dominance. J. Med. Genet. 31, 89–98 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gjuvsland, A.B., Plahte, E., Ådnøy, T. & Omholt, S.W. Allele interaction—single locus genetics meets regulatory biology. PLoS ONE 5, e9379 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lenz, T.L. Computational prediction of MHC II–antigen binding supports divergent allele advantage and explains trans-species polymorphism. Evolution 65, 2380–2390 (2011).

    Article  PubMed  Google Scholar 

  19. Jia, X. et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS ONE 8, e64683 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Raychaudhuri, S. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44, 291–296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Han, B. et al. Fine mapping seronegative and seropositive rheumatoid arthritis to shared and distinct HLA alleles by adjusting for the effects of heterogeneity. Am. J. Hum. Genet. 94, 522–532 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu, X. et al. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk. Nat. Genet. 47, 888–905 (2015).

    Article  CAS  Google Scholar 

  23. Okada, Y. et al. Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes. Am. J. Hum. Genet. 95, 162–172 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gockel, I. et al. Common variants in the HLA-DQ region confer susceptibility to idiopathic achalasia. Nat. Genet. 46, 901–904 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Gutierrez-Achury, J. et al. Fine mapping in the MHC region accounts for 18% additional genetic risk for celiac disease. Nat. Genet. 47, 577–578 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rich, S.S. et al. The Type 1 Diabetes Genetics Consortium. Ann. NY Acad. Sci. 1079, 1–8 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. de Bakker, P.I.W. & Raychaudhuri, S. Interrogating the major histocompatibility complex with high-throughput genomics. Hum. Mol. Genet. 21, R29–R36 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eyre, S. et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat. Genet. 44, 1336–1340 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Balding, D.J., Bishop, M.J. & Cannings, C. Handbook of Statistical Genetics (John Wiley & Sons, 2007).

  30. Wray, N.R. & Goddard, M.E. Multi-locus models of genetic risk of disease. Genome Med. 2, 10 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Stahl, E.A. et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat. Genet. 44, 483–489 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. de Bakker, P.I.W. et al. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum. Mol. Genet. 17, R122–R128 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Clop, A. et al. An in-depth characterization of the major psoriasis susceptibility locus identifies candidate susceptibility alleles within an HLA-C enhancer element. PLoS ONE 8, e71690 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gregersen, P.K., Silver, J. & Winchester, R.J. The shared epitope hypothesis. an approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30, 1205–1213 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Holoshitz, J. The rheumatoid arthritis HLA-DRB1 shared epitope. Curr. Opin. Rheumatol. 22, 293–298 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. MacGregor, A., Ollier, W., Thomson, W., Jawaheer, D. & Silman, A. HLA-DRB1*0401/0404 genotype and rheumatoid arthritis: increased association in men, young age at onset, and disease severity. J. Rheumatol. 22, 1032–1036 (1995).

    CAS  PubMed  Google Scholar 

  37. Megiorni, F. & Pizzuti, A. HLA-DQA1 and HLA-DQB1 in celiac disease predisposition: practical implications of the HLA molecular typing. J. Biomed. Sci. 19, 88 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vader, W. et al. The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc. Natl. Acad. Sci. USA 100, 12390–12395 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Monsuur, A.J. et al. Effective detection of human leukocyte antigen risk alleles in celiac disease using tag single nucleotide polymorphisms. PLoS ONE 3, e2270 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wood, A.R. et al. Another explanation for apparent epistasis. Nature 514, E3–E5 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Klareskog, L., Lundberg, K. & Malmström, V. in Advances in Immunology Vol. 118 (ed. Frederick, W.A.) 129–158 (Academic Press, 2013).

  42. Viatte, S., Plant, D. & Raychaudhuri, S. Genetics and epigenetics of rheumatoid arthritis. Nat. Rev. Rheumatol. 9, 141–153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vadheim, C.M., Rotter, J.I., Maclaren, N.K., Riley, W.J. & Anderson, C.E. Preferential transmission of diabetic alleles within the HLA gene complex. N. Engl. J. Med. 315, 1314–1318 (1986).

    Article  CAS  PubMed  Google Scholar 

  44. Sasaki, T., Nemoto, M., Yamasaki, K. & Tajima, N. Preferential transmission of maternal allele with DQA1*0301-DQB1*0302 haplotype to affected offspring in families with type 1 diabetes. J. Hum. Genet. 44, 318–322 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Bronson, P.G., Ramsay, P.P., Thomson, G., Barcellos, L.F. & Diabetes Genetics Consortium. Analysis of maternal-offspring HLA compatibility, parent-of-origin and non-inherited maternal effects for the classical HLA loci in type 1 diabetes. Diabetes Obes. Metab. 11, 74–83 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Miyadera, H. et al. Cell-surface MHC density profiling reveals instability of autoimmunity-associated HLA. J. Clin. Invest. 125, 275–291 (2015).

    Article  PubMed  Google Scholar 

  47. Trynka, G. et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat. Genet. 43, 1193–1201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. So, H.-C., Gui, A.H.S., Cherny, S.S. & Sham, P.C. Evaluating the heritability explained by known susceptibility variants: a survey of ten complex diseases. Genet. Epidemiol. 35, 310–317 (2011).

    Article  PubMed  Google Scholar 

  49. Witte, J.S., Visscher, P.M. & Wray, N.R. The contribution of genetic variants to disease depends on the ruler. Nat. Rev. Genet. 15, 765–776 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kwan, S.H., Purcell, S. & Sham, P.C. in Statistical Genetics: Gene Mapping through Linkage and Association (eds. Neale, B.M., Ferreira, M.A.R., Medland, S.E. & Posthuma, D.) 17–42 (Taylor & Francis, 2007).

  51. Okada, Y. et al. Risk for ACPA-positive rheumatoid arthritis is driven by shared HLA amino acid polymorphisms in Asian and European populations. Hum. Mol. Genet. 23, 6916–6926 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by grants from the German Research Foundation (DFG; LE 2593/1-1 and LE 2593/2-1 (T.L.L.), GO 1795/1-1 (I.G.), KN 378/2-1 (M.K.) and SCHU 1596/5-1 (J.S.)), by grants from the US National Institutes of Health (1R01AR062886 (P.I.W.d.B.), R01AR065183 (J.T.E.), 1R01AR063759-01A1 (S.R.), 5U01GM092691 (S.R.) and 1UH2AR067677-01 (S.R.)), by the IMI (European Union)–funded program BTCure (L.K.) and by the Netherlands Organization for Scientific Research (Vernieuwingsimpuls VIDI Award NWO project 016.126.354 (P.I.W.d.B.)). Sample collection for J.M. was supported by a grant from the Instituto de Salud Carlos III (RD12/0009). M.M.N. received support for this work from the Alfried Krupp von Bohlen und Halbach-Stiftung and is a member of the DFG-funded Excellence Cluster ImmunoSensation.

Author information

Authors and Affiliations

Authors

Contributions

T.L.L., A.J.D., S.R., P.I.W.d.B. and S.R.S. conceived the study, coordinated the study and wrote the initial version of the manuscript. T.L.L., A.J.D., S.R., B.H., X.H., Y.O., P.I.W.d.B. and S.R.S. contributed to the study design and analysis strategy. T.L.L., A.J.D. and S.R. conducted all analyses. The following authors organized and contributed subject samples and provided SNP genotype data: S.E., T.W.J.H., L.K., J.M., S.R.-D., J.W. and P.K.G. (rheumatoid arthritis); W.-M.C., S.O.-G. and S.S.R. (T1D); G.A., A.F., D.D.G., R.P.N., P.R., P.E.S., L.C.T. and J.T.E. (psoriasis); J.G.-A., D.A.v.H., A.Z. and C.W. (celiac disease); and J.B., G.E.B., I.G., M.K., M.M.N., M.M.W. and J.S. (achalasia). The following authors contributed to critical writing and review of the manuscript: X.H., D.A.v.H., M.K., S.E., S.S.R., L.K., A.Z., C.W., Y.O. and T.W.J.H. All authors contributed to the final manuscript.

Corresponding authors

Correspondence to Paul I W de Bakker or Soumya Raychaudhuri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1–17 and Supplementary Note. (PDF 2430 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenz, T., Deutsch, A., Han, B. et al. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat Genet 47, 1085–1090 (2015). https://doi.org/10.1038/ng.3379

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3379

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing