Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large-scale discovery of enhancers from human heart tissue

Abstract

Development and function of the human heart depend on the dynamic control of tissue-specific gene expression by distant-acting transcriptional enhancers. To generate an accurate genome-wide map of human heart enhancers, we used an epigenomic enhancer discovery approach and identified 6,200 candidate enhancer sequences directly from fetal and adult human heart tissue. Consistent with their predicted function, these elements were markedly enriched near genes implicated in heart development, function and disease. To further validate their in vivo enhancer activity, we tested 65 of these human sequences in a transgenic mouse enhancer assay and observed that 43 (66%) drove reproducible reporter gene expression in the heart. These results support the discovery of a genome-wide set of noncoding sequences highly enriched in human heart enhancers that is likely to facilitate downstream studies of the role of enhancers in development and pathological conditions of the heart.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ChIP-Seq identification of candidate enhancer regions from human fetal and adult heart.
Figure 2: Human p300/CBP candidate enhancers are enriched near genes expressed in human heart.
Figure 3: In vivo testing of predicted human heart enhancer activities in transgenic mice.
Figure 4: In vivo activity of human cardiac enhancers in embryonic and 4-week-old transgenic mice.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Hoffman, J.I., Kaplan, S. & Liberthson, R.R. Prevalence of congenital heart disease. Am. Heart J. 147, 425–439 (2004).

    Article  Google Scholar 

  2. Lloyd-Jones, D. et al. Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121, e46–e215 (2010).

    Google Scholar 

  3. Bentham, J. & Bhattacharya, S. Genetic mechanisms controlling cardiovascular development. Ann. NY Acad. Sci. 1123, 10–19 (2008).

    Article  CAS  Google Scholar 

  4. Bruneau, B.G. The developmental genetics of congenital heart disease. Nature 451, 943–948 (2008).

    Article  CAS  Google Scholar 

  5. Pierpont, M.E. et al. Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 115, 3015–3038 (2007).

    Article  Google Scholar 

  6. Helgadottir, A. et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316, 1491–1493 (2007).

    Article  CAS  Google Scholar 

  7. McPherson, R. et al. A common allele on chromosome 9 associated with coronary heart disease. Science 316, 1488–1491 (2007).

    Article  CAS  Google Scholar 

  8. Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).

    Article  CAS  Google Scholar 

  9. Visel, A., Rubin, E.M. & Pennacchio, L.A. Genomic views of distant-acting enhancers. Nature 461, 199–205 (2009).

    Article  CAS  Google Scholar 

  10. Visel, A. et al. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature 464, 409–412 (2010).

    Article  CAS  Google Scholar 

  11. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008).

    Article  CAS  Google Scholar 

  12. Heintzman, N.D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    Article  CAS  Google Scholar 

  13. Visel, A. et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854–858 (2009).

    Article  CAS  Google Scholar 

  14. Xi, H. et al. Identification and characterization of cell type–specific and ubiquitous chromatin regulatory structures in the human genome. PLoS Genet. 3, e136 (2007).

    Article  Google Scholar 

  15. Blow, M.J. et al. ChIP-Seq identification of weakly conserved heart enhancers. Nat. Genet. 42, 806–810 (2010).

    Article  CAS  Google Scholar 

  16. Arany, Z., Sellers, W.R., Livingston, D.M. & Eckner, R. E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators. Cell 77, 799–800 (1994).

    Article  CAS  Google Scholar 

  17. Eckner, R. et al. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 8, 869–884 (1994).

    Article  CAS  Google Scholar 

  18. Ogryzko, V.V., Schiltz, R.L., Russanova, V., Howard, B.H. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953–959 (1996).

    Article  CAS  Google Scholar 

  19. Capaldi, A.P. et al. Structure and function of a transcriptional network activated by the MAPK Hog1. Nat. Genet. 40, 1300–1306 (2008).

    Article  CAS  Google Scholar 

  20. McLean, C.Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).

    Article  CAS  Google Scholar 

  21. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  Google Scholar 

  22. Dimas, A.S. et al. Common regulatory variation impacts gene expression in a cell type–dependent manner. Science 325, 1246–1250 (2009).

    Article  CAS  Google Scholar 

  23. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005).

    Article  CAS  Google Scholar 

  24. Narlikar, L. et al. Genome-wide discovery of human heart enhancers. Genome Res. 20, 381–392 (2010).

    Article  CAS  Google Scholar 

  25. Henderson, D.J. & Anderson, R.H. The development and structure of the ventricles in the human heart. Pediatr. Cardiol. 30, 588–596 (2009).

    Article  Google Scholar 

  26. Coppen, S.R. et al. Comparison of connexin expression patterns in the developing mouse heart and human foetal heart. Mol. Cell. Biochem. 242, 121–127 (2003).

    Article  CAS  Google Scholar 

  27. Kothary, R. et al. A transgene containing lacZ inserted into the dystonia locus is expressed in neural tube. Nature 335, 435–437 (1988).

    Article  CAS  Google Scholar 

  28. Pennacchio, L.A. et al. In vivo enhancer analysis of human conserved non-coding sequences. Nature 444, 499–502 (2006).

    Article  CAS  Google Scholar 

  29. Blake, J.A., Bult, C.J., Eppig, J.T., Kadin, J.A. & Richardson, J.E. The Mouse Genome Database genotypes:phenotypes. Nucleic Acids Res. 37, D712–D719 (2009).

    Article  CAS  Google Scholar 

  30. Morimoto, T., Sunagawa, Y., Fujita, M. & Hasegawa, K. Novel heart failure therapy targeting transcriptional pathway in cardiomyocytes by a natural compound, curcumin. Circ. J. 74, 1059–1066 (2010).

    Article  CAS  Google Scholar 

  31. Thompson, P.R. et al. Regulation of the p300 HAT domain via a novel activation loop. Nat. Struct. Mol. Biol. 11, 308–315 (2004).

    Article  CAS  Google Scholar 

  32. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  Google Scholar 

  33. Kuhn, R.M. et al. The UCSC Genome Browser Database: update 2009. Nucleic Acids Res. 37, D755–D761 (2009).

    Article  CAS  Google Scholar 

  34. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

    Article  CAS  Google Scholar 

  35. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    Article  CAS  Google Scholar 

  36. Conti, A. et al. Altered expression of mitochondrial and extracellular matrix genes in the heart of human fetuses with chromosome 21 trisomy. BMC Genomics 8, 268 (2007).

    Article  Google Scholar 

  37. Blankenberg, D. et al. Galaxy: a web-based genome analysis tool for experimentalists. Curr. Protoc. Mol. Biol. Chapter 19, Unit 19.10.1–19.10.21 (Wiley, 2010).

  38. Goecks, J., Nekrutenko, A. & Taylor, J. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11, R86 (2010).

    Article  Google Scholar 

  39. Sherry, S.T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).

    Article  CAS  Google Scholar 

  40. Hinrichs, A.S. et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 34, D590–D598 (2006).

    Article  CAS  Google Scholar 

  41. Nobrega, M.A., Ovcharenko, I., Afzal, V. & Rubin, E.M. Scanning human gene deserts for long-range enhancers. Science 302, 413 (2003).

    Article  CAS  Google Scholar 

  42. Visel, A., Minovitsky, S., Dubchak, I. & Pennacchio, L.A. VISTA Enhancer Browser—a database of tissue-specific human enhancers. Nucleic Acids Res. 35, D88–D92 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Hosseini and S. Phouanenavong for technical support, S. Deutsch for help in retrieving human genetic data and C. Attanasio and D. Dickel for critical comments on the manuscript. L.A.P. and A.V. were supported by a grant funded by the National Human Genome Research Institute (HG003988). B.L.B. was supported by grants from the National Heart, Lung, and Blood Institute (NHLBI, HL64658 and HL89707). D.M. and T.K. were supported by European Molecular Biology Organization (EMBO) long-term postdoctoral fellowships. B.C.J. was supported by the GlaxoSmithKline Research and Education Foundation for Cardiovascular Disease, University of California, San Francisco (UCSF) Foundation for Cardiac Research and a grant from the NHLBI (HL096836). P.C.S. was supported by the NHLBI and the Department of Veterans Affairs. Research was performed at Lawrence Berkeley National Laboratory and at the United States Department of Energy Joint Genome Institute (Department of Energy Contract DE-AC02-05CH11231, University of California).

Author information

Authors and Affiliations

Authors

Contributions

D.M., E.M.R., J.B., L.A.P. and A.V. conceived of and designed the experiments. D.M., M.J.B., T.K., D.J.M., B.C.J., J.A.A., A.H., I.P.-F., M.S., C.W. and V.A. performed experiments and data analysis. P.C.S. and B.L.B. provided reagents and materials and performed data analysis. All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Len A Pennacchio or Axel Visel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Figures 1–12 and Supplementary Tables 1–12. (PDF 5528 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

May, D., Blow, M., Kaplan, T. et al. Large-scale discovery of enhancers from human heart tissue. Nat Genet 44, 89–93 (2012). https://doi.org/10.1038/ng.1006

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1006

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research